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Amodified predictor-corrector scheme combining with the depth gradient method (DGM) and the
weighted average flux (WAF) method has been presented to solve the one-dimensional shallow
water equations with source terms. Approximate solutions in the predictor step are obtained by
the DGM with piecewise-linear reconstructions in each cell volume. The source terms can then be
calculated directly by these predicted values at the corresponding half-time step. In the corrector
step, the TVD version of the WAF method is applied to calculate the numerical fluxes at the same
half-time step for each cell face. The accuracy of numerical solutions is shown by applying the
method to solve various test cases in both steady and unsteady problems with and without source
terms. It shows that the numerical results are in good agreement with the existing analytical
solutions as well as experimental data in some test cases.

1. Introduction

The shallow water equations have a wide variety of applications in ocean and hydraulic
engineering. Some examples are tides in oceans and moving waves in shallow beaches, as
well as flood waves in rivers. Due to the nonlinear behavior of the equations, analytical
method can only be successful in very special cases of flow. Numerical methods must be
used to solve approximately in case of realistic problems. A number of finite volumemethods
based on Godunov type have been developed to solve the shallowwater equations in various
forms. Difficulties in the computation arise when some source terms are introduced in the
model equations. The source terms are in the form of bed and friction slopes. A simple and
efficient method for solving the equations with source terms is a split-step method [1, 2] in
which the nonhomogeneous equations are splitt into a homogeneous equation and a set of
ordinary differential equations dealing with only the source and time derivative terms; see
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Figure 1: Computational diagram in the xt-plane.

[3]. By this method, the scheme is not easy to be improved to achieve high-order accuracy
in time discretization because the source terms cannot be computed directly during the
semitime integration step. Recently, the operator split-step method related with the Cauchy-
Kowalewski method is applied to solve the thermal-peakingwave in open-channel flows, see
[4], where the fluxes at interfaces are calculated by the weighted average method.

In this study, the predictor-corrector method for time integration is proposed. We
present a modified concept by applying both the depth gradient method (DGM) in [5]
and the weighted average flux method (WAF) method in [1] to solve numerically the one-
dimensional shallow water equations. The approximate solutions in the predictor step which
corresponds to the half-time step are obtained by the DGM; see Figure 1. The approximations
are performed by the piecewise-linear reconstruction to calculate the conservative variables at
cell interfaces in each cell volume. Then, these predicted solutions are employed to calculate
the values of source terms at the corresponding half-time step. This is a different point from
the usual operator splitting of the WAF method. The problems are then become how we can
calculate the numerical fluxes at the corresponding half-time step for each cell face. Various
approaches can be applied to resolve this problem. One famous method is the Roe averaging
method, see [6], but it is usually suffer from some artificial oscillations near the discontinuity
region. The slope limiter concept is needed to remove the oscillations. In this work, the WAF
method with the total variation diminishing (TVD) approach [7] is applied to obtain high-
order solutions and to remove some oscillations in case of very high gradient problem. This
is a modified approach. Consequently, the shallow water equations with source terms can be
solved numerically in this work.

The shallow water equations are shown in Section 2. The predictor-corrector method
with DGM andWAF are provided in Section 3. Accuracy of numerical results for both steady
and unsteady flows with and without source terms is demonstrated in Section 4. Conclusions
are made in Section 5.

2. The Shallow Water Equations

For a rectangular open-channel flow, the one-dimensional unsteady flow under the
hydrostatic pressure and small channel slope assumptions can be described in conservative
form as

∂U

∂t
+
∂F

∂x
= S, (2.1)
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Figure 2: Steady transcritical flow over a bump with a shock.

where x and t represent longitudinal distance and time, respectively, and

U =

[
h

uh

]
, F =

⎡
⎣ hu

hu2 +
1
2
gh2

⎤
⎦, (2.2)

where h is the fluid depth, u is the horizontal velocity, and g is the gravitation acceleration.
The source term S in (2.1) represents bed slope and friction slope at the bottom of the

channel

S =

[
0

gh
(
S0 − Sf

)
]
, (2.3)

where S0 is the slope of the bottom elevation zb, and Sf is the slope of the energy grade line,

Sf =
n2
Mu2

h4/3
, (2.4)

where nM is the Manning’s roughness coefficient.

3. Predictor-Corrector WAF with DGM

In this section, we present an accurate and efficient method that combines two important
concepts which are the weighted average flux method in [1], and the depth gradient method
modified from [5], with the predictor-corrector TVD scheme to solve numerically the shallow
water equation (2.1) in various test problems.
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The computational domain is discretized as xi = iΔx, and tn = nΔt, i = 1, . . .N, N is
the number of cells, and n is the number of time steps. In Figure 1, the cell volume and time
step are given by

Δx = xi+1/2 − xi−1/2, Δt = tn+1 − tn. (3.1)

Left and right interfaces for each cell are xi−(1/2) and xi+(1/2), respectively.
The integral averages of U(x, t) at time t = tn and t = tn+1 over the cell volume are

given by

Un
i =

1
Δx

∫ xi+1/2

xi−1/2
U(x, tn)dx, Un+1

i =
1
Δx

∫ xi+1/2

xi−1/2
U
(
x, tn+1

)
dx. (3.2)

Time integral averaged flux at interfaces are given by

Fi−1/2 =
1
Δt

∫ tn+1

tn
F(U(xi−1/2, t))dt, Fi+1/2 =

1
Δt

∫ tn+1

tn
F(U(xi+1/2, t))dt. (3.3)

The splitting scheme cooperating with the source term can be expressed by

Un+1
i = Un

i −
Δt

Δx

[
Fn
i+1/2 − Fn

i−1/2
]
+ ΔtS

(
U

(s)
i

)
. (3.4)

The source term is approximated atU(s)
i . There are two obvious choices which areU(s)

i = Un
i

and U
(s)
i = Un+1

i , or a linear combination of these two values,

U
(s)
i =

(
1 − β

)
Un

i + βUn+1
i , (3.5)

where β is a weighted constants in which 0 ≤ β ≤ 1.
The scheme (3.4) is just the first-order method in time. We can improve the scheme

by applying the predictor-corrector method. There are two time levels with Δt/2. The
computations can be separated into two time steps as

U∗
i = Un

i −
Δt

2Δx

[
FDGM
i+1/2 − FDGM

i−1/2
]
+ ΔtS

(
Un

i

)
, (3.6)

Un+1
i = U∗

i −
Δt

2Δx

[
FTVD
i+1/2 − FTVD

i−1/2
]
+ ΔtS

(
U∗

i

)
, (3.7)

where FDGM
i±(1/2) and FTVD

i±(1/2) are the numerical fluxes at interfaces obtained by the depth gradient
method and the TVD version of WAF method, respectively.
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Solving (3.6) provides the values of the conservative variables U∗
i at t = tn + Δt/2.

The values of fluxes at cell interfaces on the RHS of (3.6) are approximated by the method of
DGM described in the next section. Then, we use these predicted solutionsU∗

i to calculate the
source terms on the RHS of (3.7). The values of fluxes at cell interfaces on the RHS of (3.7) are
approximated by the WAF method which is in the process of the half-time step; see Figure 1.
Finally, the corrected solutions at t = tn + Δt can be obtained. So, the time integration process
is performed repeatly until the final time reached. All of computational details of the present
method are summarized in the next sections.

3.1. Predictor Step with DGM

We apply the DGM for solving U∗
i in (3.6). This scheme is an accurate reconstruction of

conservative variables at cell interfaces. Then, numerical fluxes at cell faces can be calculated
directly using the values of predicted-conservative variables. The values of conservative
variables within a cell are calculated using a piecewise-linear reconstruction, that is, for any
function φ within a cell i, the approximation is given by

φ = φi + (x − xi)δ
(
φi

)
, (3.8)

where δ is the gradient of φ given by

δφi = G

(
φi+1 − φi

xi+1 − xi
,
φi − φi−1
xi − xi−1

)
, (3.9)

where G is a slope limiter used to avoid spurious oscillations at the cell interfaces [5]. In our
work, we apply G as the minmod limiter which is in the form of

G(a, b) = max(0,min(a, b)). (3.10)

Thus, the values of φ on the left and right of the considering cell interface (i − 1/2) are

φL
i−1/2 = φi−1 +

1
2
Δxi−1δφi−1, φR

i−1/2 = φi − 1
2
Δxiδφi. (3.11)

The values of φL
i+1/2 and φR

i+1/2 can be calculated in the same way.
We apply the conservative variables h and u as the function φ in (3.8). The conservative

variables can then be approximated at the cell interfaces for each cell. Using (2.2), we can
calculate U and F at the cell faces. After substituting these values into (3.6), we can obtain
U∗

i such that the source term is calculated directly by the values of h and u in each cell. This
completes the calculations of the predictor step by the depth gradient method.
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3.2. Corrector Step with WAF

In the corrector step, we need to know the approximate values of fluxes at interfaces at time
step tn + Δt/2. Then we can march the numerical solutions in time to the next time step tn+1.
In this work, we apply the WAFmethod to obtain the numerical fluxes at time step tn +Δt/2.
This is a second-order accurate method in space; see [1]. Main concepts of this method are
summarized in this subsection.

In each cell volume, the Riemann problem must be solved locally in order to obtain
numerical fluxes at interfaces.We approximate these fluxes by the HLL (Harten, Lax, and van
Leer) approach; see [8]. Note that another related approach is HLLC approach which needs
to divide the region at interface into four regions. The HLL numerical flux can be written as

FHLL
i+1/2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

FL if SL ≥ 0,

SRFL − SLFR + SRSL(UR −UL)
SR − SL

if SL ≤ 0 ≤ SR,

FR if SR ≤ 0.

(3.12)

Here, SL and SR are the signal velocities in the solutions of the Riemann problemwith known
data UL ≡ Un

i and UR ≡ Un
i+1, and the corresponding fluxes FL ≡ Fn(UL) and FR ≡ Fn(UR).

The signal velocities must be estimated separately for two cases of wet and dry beds. More
detail derivations can be found in [9]. Summarized details of the approximations are given
in the next subsections.

3.2.1. Wet-Bed Approximation

Assuming that both the left and right waves are rarefaction waves, the wave speed estimates
SL and SR are

SL = uL − aLqL, SR = uR + aRqR, (3.13)

where qK with K is L or R given by

qK =

⎧⎪⎪⎨
⎪⎪⎩

√√√√1
2

[
(h∗ + hK)h∗

h2
K

]
if h∗ > hK,

1 if h∗ ≤ hK,

(3.14)

where h∗ is an approximation of the exact solution for h in the interface area or usually called
as star region. The approximations are given by

h∗ =
1
g

[
1
2
(aL + aR) +

1
4
(uL − uR)

]2
,

u∗ =
1
2
(uL + uR) + aL − aR,

(3.15)

where aK =
√
ghK for K is L or R.
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3.2.2. Dry-Bed Approximation

The computations of wave speed to the exact dry front are given by

SL =

⎧⎨
⎩
uR − 2aR if hL = 0,

usual estimate if hL > 0,

SR =

⎧⎨
⎩
uL + 2aL if hR = 0,

usual estimate if hR > 0.

(3.16)

Usual estimate means that the computations of wave speed are obtained from (3.13).

3.2.3. TVD Version of WAF Method

The basic idea of the weighted average flux method is described in this subsection. This
method provides numerical fluxes at interfaces for the next half-time step. The method is
performed by applying cell integration along the interface of the half-time step solution,

FWAF
i+(1/2) =

1
Δx

∫Δx/2

−Δx/2
F

(
Ui+(1/2)

(
x,

Δt

2

))
dx. (3.17)

In the form of wave structure, the integral (3.17) can be written as the summation

FWAF
i+(1/2) =

NC+1∑
k=1

wkF
(k)
i+(1/2), (3.18)

where the weights wk are

wk =
1
2
(ck − ck−1) with c0 = −1, cNC+1 = 1, (3.19)

ck =
ΔtSk

Δx
(3.20)

is the Courant number of wave k.
For this method, Sk is the speed of wave k andNC is the number of conservation laws,

or the number of waves in the solution of the Riemann problem.
Substituting the weights (3.19) into (3.18), an alternative expression can be obtained,

FWAF
i+1/2 =

1
2
(Fi + Fi+1) − 1

2

NC∑
k=1

ckΔF
(k)
i+1/2, (3.21)
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Figure 3: Steady transcritical flow over a bump without a shock.

with

ΔF
(k)
i+1/2 = F

(k+1)
i+1/2 − F

(k)
i+1/2 (3.22)

representing the flux jump across the wave k.
For a one-dimensional flow, we have NC = 2. So, we need to know F

(1)
i+(1/2), F

(2)
i+(1/2),

and F
(3)
i+(1/2) in order to compute weighted average flux in (3.21). Left and right areas can

be represented by k = 1 and k = 3, respectively. We have already known the values of
conservative variables in these areas from the initial conditions, except that in the interface
area which corresponds to k = 2. In this work, the computation by (3.12) is applied to
calculate the numerical flux at the interface region.

Following [1], a high-resolution method can be obtained by enforcing a total variation
diminishing (TVD) constraint to the weighted numerical flux at the interface. The resulting
TVD version of the WAF method can be expressed by

FTVD
i+1/2 =

1
2
(Fi + Fi+1) − 1

2

N∑
k=1

sgn(ck)φ
(k)
i+1/2ΔF

(k)
i+1/2, (3.23)

where φ
(k)
i+1/2 is a WAF limiter function. There are several choices of this limiter function. In

this work, we apply the minmod limiter function

φ
(k)
i+1/2 = φi+1/2

(
r(k), |ck |

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, r(k) ≤ 0,

1 − (1 − |ck|)r(k), 0 ≤ r(k) ≤ 1,

|ck|, r(k) ≥ 1.

(3.24)
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Figure 4: Steady subcritical flow over a bump.

The flow parameter r(k) is

r(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δq
(k)
i−1/2

Δq
(k)
i+1/2

if ck ≥ 0,

Δq
(k)
i+3/2

Δq
(k)
i+1/2

if ck < 0,

(3.25)

where q is a suitable variable. For shallow water flows, q is set to be h. Note that the value
of Δq

(k)
i−1/2 denotes the jump in q across wave k in the Riemann problem with data (Un

i−1,U
n
i ).

Hence, the approximation of flux at interface is finally obtained by (3.23). This completes the
weighted average flux method for computing flux at interfaces for each cell volume.

3.2.4. Calculation of Time Step

For any cell iwith length of Δxi, time step is defined by

Δti =
CnΔxi(

SL
i+1/2 − SR

i−1/2
) , (3.26)

where SL
i+1/2 and SR

i−1/2 are the left and right wave speed in the Riemann problem for cell i,
and Cn is the Courant number coefficient.
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Figure 5: Steady flow over a variable bed with friction.

For easy programming in the case of uniform cell length, the time step can be defined
by

Δt =
CnΔx

Smax
, (3.27)

where Smax = max{SL
i+1/2 − SR

i−1/2}, for all i.

3.2.5. Time Integration in the Corrector Step

Numerical solutions for the next time step can be obtained by using (3.7) as follows. The
numerical fluxes at interfaces are calculated by the flux slope limiter (3.23). The source term
S involving the bed slope and friction effects is actually the function of the conservative
variables h and u. We have already known the values of h and u at the half-time step from the
predictor calculations. Hence, we can calculate all terms on the RHS of (3.7). Consequently,
numerical solutions for the next time step are obtained. This completes the overall steps of
the predictor-corrector method with the TVD version of the WAF method.

4. Numerical Results

In this section, the presented method is applied to solve some benchmark problems in both
steady and unsteady flows. The accuracy of numerical solutions are demonstrated in various
test cases with and without friction effects, as well as the problems of wet and dry beds. In
most of all our numerical investigations, we set Cn = 0.95 for calculating time step size. This
value is relatively large comparingwith unity that shows the efficiency of the presentmethod.
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Figure 6: Quasistationary flow over a bump for ε = 0.2 at t = 0.7.

4.1. Steady Flows over a Bump

A steady one-dimensional flow in a channel 25-m-long with a bump at the bottom is defined
by

zb(x) =

⎧⎨
⎩
0.2 − 0.05(x − 10)2, if 8 < x < 12,

0, otherwise.
(4.1)

This flow is a frictionless test case. The steady flow can be subcritical, trancritical, or
supercritical flow with or without a steady shock depending on the initial and boundary
conditions. Some analytical solutions in various test cases are proposed by Goutal and
Maurel [10]. In our investigations, the simulations run initially by appropriate data until the
numerical solutions dramatically converge to some expected solutions.

4.1.1. Transcritical Flow with a Shock

In this test case, the upstream boundary is specified by a discharge per unit width of q =
0.18m2/s, while the downstream boundary is imposed by a fixed water depth h = 0.33m.
The flow domain is discretized by 1,000 grid cells. The free surface profiles for analytical and
numerical solutions are shown in Figure 2 which shows the accuracy of the proposedmethod.

4.1.2. Transcritical Flow without a Shock

The upstream boundary condition is imposed by a discharge per unit width of q = 1.53m2/s.
No boundary condition is specified at the downstream flow. The flow domain is discretized
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Figure 7: Quasistationary flow over a bump for ε = 0.01 at t = 0.7.

by 100 grid cells. The free surface profiles for analytical and numerical solutions are shown
in Figure 3. They are in good agreement.

4.1.3. Subcritical Flow

A discharge per unit width of q = 4.42m2/s is imposed at the upstream boundary, while a
water depth h = 2m is specified at the downstream boundary. The flow domain is discretized
by 100 grid cells. The free surface profiles for analytical and numerical solutions are shown
in Figure 4 which again shows very good agreement.

4.2. Steady Flow over a Variable Bed

A 1000m long rectangular channel has a discharge of 20m3/s. The flow is subcritical at inflow
and is subcritical at outflow. The outflow water depth is fixed to be 0.748409m. The Manning
coefficient for the channel is 0.03. The bed slope is given by

S0(x) =

(
1 − 4

gŷ(x)3

)
ŷ′(x) +

0.36
(
2ŷ(x) + 10

)4/3
(
10ŷ(x)

)10/3 , (4.2)
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Figure 8: Dam break flow in adverse sloping channel at x = 1.4m.

where

ŷ(x) =
(
4
g

)1/3
[
1 +

1
2
exp

(
−16
(

x

1000
− 1
2

)2
)]

. (4.3)

The analytical solution to this problem is given by h ≡ ŷ proposed previously by
MacDonald et al. [11]. The flow domain is discretized by 1000 grid cells. The comparison of
numerical result and analytical solution is shown in Figure 5. This shows the accuracy of the
presented solution. It also reveals that the present method can be used to simulate steady
flow in case of variable bed with friction roughness.

4.3. Quasistationary Flow

A quasistationary test case was proposed previously by LeVeque [12]. This test case is used
to demonstrate the ability of the proposed numerical scheme for computing some small
perturbations of initial wave traveling along the channel. The computational domain is
0 < x < 1. The bed profile is given by

zb(x) =

⎧⎪⎨
⎪⎩
0.25
(
cos
(
π(x − 0.5)

0.1

)
+ 1
)
, if |x − 0.5| < 0.1,

0, otherwise.
(4.4)
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The initial conditions are the stationary solution with u = 0 and

h(x, 0) =

⎧⎨
⎩
1 + ε, if 0.1 < x < 0.2,

1, otherwise.
(4.5)

where ε are some small perturbations.
At the early stage, the initial disturbance splits into two waves propagating on the

left and right at the characteristic speeds ±√gh. Many numerical methods may encounter
the difficulties of capturing the correct wave speeds of disturbances. The comparisons of the
presented solutions with those of LeVeque [12] at t = 0.7 for ε = 0.2 and ε = 0.01 are shown in
Figures 6 and 7. They are in good agreement with the same wave speeds. They also show that
the presented scheme can provide accurate solutions in comparingwith those are obtained by
the high-resolution Godunov method based on balancing the source terms and flux gradients
[12].

4.4. Unsteady Dam-Break Flow in Adverse Slope Channel

The laboratory experiment to induce shock formation of unsteady dam-break flow is
proposed by Aureli et al. [13]. This experiment shows reverse flow on wetting and drying
conditions. The experiment is conducted in a rectangular channel with length of 7m, width
of 1m, and Manning n coefficients of 0.025. The initial water depth is 0.292m in the reservoir
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Figure 10: Dam break flow in adverse sloping channel at x = 3.4m.
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Figure 11: Dam break flow in adverse sloping channel at x = 4.5 m.

and a dry bed in the tailwater. A zero-discharge is specified at the upstream boundary, while
a zero-gradient is imposed at the downstream boundary. The bed topography is given by

zb(x) =

⎧⎨
⎩
0, if 0 ≤ x < xc,

0.1(x − xc), if xc ≤ x ≤ 7,
(4.6)

in which xc = 3.5m.
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The flow domain is discretized by 700 grid cells. The Courant number is 0.95. The
comparisons between numerical results and measured water depth profiles at the four
different locations (1.4, 2.25, 3.4, 4.5m) are shown in Figures 8, 9, 10, and 11. These results
show very good agreements indicating that the presented scheme can capture not only shock
and reverse flows but also wetting and drying wave fronts in transient case.

5. Conclusions

A modified predictor-corrector method for solving the one-dimensional shallow water
equations with and without source terms is presented in this paper. This is a modified
approach that combines two important concepts which are the depth gradient method
(DGM) and the weighted average flux (WAF) method. The DGM is used to approximate
the conservative variables at the interfaces in each cell volume for the half-time step. This
is the predictor step. So, the source terms can be calculated directly at the same half-time
step. By using the WAF method, fluxes at interfaces can be approximated and these values
correspond to the half-time step aswell. Combining these information together, we canmarch
the numerical solutions in time to reach the next time step of calculations. This step is called
the corrector method. For fixing a Courant number value, time step size can be obtained. We
apply the presented scheme to solve both steady and unsteady problems. The considering
steady problems are flows over a bump with and without shock formation behind the
obstacle. It is found that our numerical results are in good agreement with the analytical
results in all test cases. For unsteady problem, we have run simulations in order to compare
with the existing experimental data of dam-break flow. This problem shows reverse flow
with shock on wetting and drying conditions. It is found that our numerical solutions are in
good agreement with the experimental data at all observed locations. Hence, the presented
scheme can be applied to capture shock formation in shallow water flow for both steady and
unsteady cases with or without source terms.
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