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An approach is developed for the extraction of affine invariant descriptors by cutting object into
slices. Gray values associated with every pixel in each slice are summed up to construct affine
invariant descriptors. As a result, these descriptors are very robust to additive noise. In order to
establish slices of correspondence between an object and its affine transformed version, general
contour (GC) of the object is constructed by performing projection along lines with different polar
angles. Consequently, affine in-variant division curves are derived. A slice is formed by points fall
in the region enclosed by two adjacent division curves. To test and evaluate the proposedmethod,
several experiments have been conducted. Experimental results show that the proposedmethod is
very robust to noise.

1. Introduction

Object recognition is an important topic in the area of computer vision and has been found
numerous applications in real world. One of the common difficulties in object recognition
is that the object shape is often distorted for observing under various orientations which
can be appropriately described by perspective transformation [1]. Furthermore, if the size of
observed object is far less than the distance between object and the observing position, the
change of the object’s shape can be described by affine transform.

The extraction of affine features plays a very important role in pattern recognition
and computer vision [2–4]. Many algorithms have been developed. Based on whether the
features are extracted from the contour only or from the whole shape region, the approaches
using invariants features can be classified into two main categories: region-based methods
and contour-based methods [5].
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The contour usually offers more shape information than interior content [5], and the
contour-based methods provide better data reduction. Examples of these approaches include
the Fourier descriptors (FD) [6] and the wavelet descriptors [1, 7–9], principal components
analysis descriptors [10] and the gradient-based local descriptors [11]. Mokhtarian and
Abbasi [12] use the maxima of curvature scale space image to represent 2D shapes under
affine transforms. However, the performance of these contour-based methods is strongly
dependent on the success of the boundary extraction process, and they can only be used
to objects with single boundary.

In contrast to contour-based methods, region-based techniques take all pixels with a
shape region into account to obtain the shape representation. Moment invariant methods
are the most widely used techniques. The commonly used affine moment invariants(AMIs)
[13, 14] are extensions of the classical moment invariants firstly developed by Hu [15].
Although the moment-based methods can be applicable to binary or gray-scale images, it
is shown in [16] that high-order moments are more vulnerable to white noise. This makes
their use undesirable in image representation and pattern recognition. On the other hand,
only moments of higher orders carry the fine details of an image. These two conflicting
factors generally limit the using of AMIs in object representation and recognition. Some
novel region-based have also been proposed to extract affine invariant features. Ben and
Arids propose the frequency domain technique [17]. Petrou and Kadyrov propose the trace
transformwhich is based on applying a particular combination of functions to the image [18].
Recently, a novel approach called multiscale autoconvolution(MSA) was derived by Rahtu
et al. [19]. Promising results have been obtained by MSA in various objection classification
problem. These methods give high accuracy but usually at the expense of high complexity
and computational demands. Furthermore, some of these methods are sensitive to noise in
the background [19].

To derive robust affine invariant descriptors, a region-based method is proposed in
this paper. We cut the object into slices, and the affine invariant descriptors are constructed
by summing up the gray value associated with every pixels in each slice.

To establish slices correspondence between an object and its affine transform version,
the central projection transformation(CPT) has been employed. CPT is firstly proposed in
[20] and further developed in [21] to extract rotation invariant features. By performing
projection along lines with different polar angles, any object can be converted to a closed
curve, which is referred to as general contour(GC) of the object. It can be proved that GC
derived from the affine transformed object is the same affine transformed version of the
original object.

Then, some affine invariant closed curves, which are called τ-division curves, are
derived from the object based on the obtainedGC. Points on these division curves are selected
as constant division points on the line segment connected the centroid of the object and
points on the obtained GC. As the constant varieties, various division curves can be derived.
Consequently, a slice is formed by points fallen in the region between two adjacent division
curves. Gray values associated with points in this slice are summed up to extract affine
invariant descriptors. Several experiments have been carried out to illustrate the proposed
method from different aspects. Satisfying results have been achieved.

The rest of the paper is organized as follows: in Section 2, the GC of object and
its properties are introduced. In Section 3, the affine invariant descriptors are constructed.
Furthermore, it is shown that these descriptors is robust to noise. The experiments and results
are shown in Section 4. Finally, some conclusion remarks are given in Section 5.
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2. The GC and Its Characteristics

Any object can be converted to a closed curve (general contour) of the object by taking
projection along lines from the centroid with different angles (central projection transform).
In this section, we devote to studying the characteristics of GC.

2.1. The GC of an Object

Suppose that an object is represented by I(x, y) in the 2D plane. Firstly, the origin of the
reference system is transformed to the centroid of the object, as denoted by O(x0, y0), which
can be computed from the geometric moments as follows:

x0 =

∫ ∫
xI
(
x, y
)
dxdy

∫ ∫
I
(
x, y
)
dx dy

, y0 =

∫ ∫
yI
(
x, y
)
dxdy

∫ ∫
I
(
x, y
)
dxdy

. (2.1)

Let R = max(x,y)∈D
√
(x − x0)2 + (y − y0)2 be the longest distance from (x0, y0) to a point (x, y)

on the pattern.
To derive the GC of an object, the Cartesian coordinate system should be converted to

polar coordinate system. The conversion is based on the following relations:

x = r cos θ, y = r sin θ. (2.2)

Hence, the shape can be represented by a function f of r and θ, namely,

I
(
x, y
)
= f(r, θ), (2.3)

where r ∈ [0, R], and θ ∈ [0, 2π).
After the conversion of the system, we perform CPT to the object by computing the

following integral:

g(θ) =
∫R

0
f(r, θ)dr, (2.4)

where θ ∈ [0, 2π). The function g(θ) is, in fact, equal to the total mass as distributed along
different angle from 0 to R. The CPT method has been used to extract rotation invariant
signature by combining wavelet analysis and fractal theory in [21]. A satisfying classification
rate has been achieved in the recognition of rotated English letters, Chinese characters, and
handwritten signatures. For more details of CPT, refer to [20].

From a practical point of view, the images to be analyzed by a recognition system
are most often stored in discrete formats. Catering to such two-dimensional discrimination
patterns, we should modify (2.4) into the following expressions:

g(θk) =
R∑

r=0

f(r, θk), (2.5)
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Figure 1: (a) A gray-level image taken from the Coil-20 database. (b) A binary image taken from the
DPEG-7 database. (c) GC derived from (a). (c) GC derived (b).

where θk ∈ [0, 2π), k = 0, 1, 2, . . . ,N − 1.

Definition 2.1. For an angle θ ∈ R, g(θ) is given in (2.4), then (θ, g(θ)) denotes a point in the
plane of R2. Let θ go from 0 to 2π , then {(θ, g(θ)) | θ ∈ [0, 2π)} forms a closed curve. We call
this closed curve the general contour (GC) of the object.

For an object �, we denote the GC extracted from it as ∂�. By discrete form (2.5), the
discrete GC of the object

{(
θk, g(θk)

) | θk ∈ [0, 2π), k = 0, 1, 2, . . . ,N − 1
}

(2.6)

can be derived. For example, Figure 1(a) is a gray-scale image taken from the well-known
Columbia Coil-20 database [22], and Figure 1(b) shows the image of a binary image taken
from the MPEG-7 database. Figures 1(c) and 1(d) show the GCs of Figures 1(a) and 1(b),
respectively.



Mathematical Problems in Engineering 5

2.2. The Properties of GC

The GC of an object has the following properties: single contour, affine invariant, and robust
to noise.

Single Contour

By (2.4), a single value is correspond to an angle θ ∈ R. Consequently, a single closed
curve (GC) can be derived from any object. For instance, see the GCs of Figures 1(a) and
1(b) in Figures 1(c) and 1(d). Those objects have been concentrated into a integral pattern.
In real life, many objects consist of several separable components. Contour-based methods
are unapplicable to these objects. By performing projection along lines with different polar
angles, a single closed curve can be derived, and contour-based methods can be applied to
any object. Consequently, shape representation based on GC of the object may provide better
data reduction than some region-based methods.

Affine Invariant

Affine maps parallel lines onto parallel lines, intersecting lines into intersecting lines. Based
on these facts, it can be proved that the GC extracted from the affine transformed object is also
an affine transformed version of GC extracted from the original object. Figure 2(a) shows
an affine transformed version of Figure 1(a), and Figure 2(c) shows the GC derived from
Figure 2(a). Observing GCs in Figures 1(c), 2(c), 1(d), and 2(d), we can see that GC of an
object is affine invariant.

Robustness to Noise

It is shown in [23] that Radon transform is quite robust to noise. We can similarity show that
GC derived from the object is robust to additive noise as a result of summing pixel values to
generate GC.

3. Features Extraction by Cutting Object into Slices

To extract affine invariant features, we cut the object into slices. These slices are regions
enclosed by affine invariant closed curves which are derived based on the GC of the object.
A slice derived from the affine transformed object is the same affine transformed version of
slice derived from the original object.

3.1. Cutting Object into Slices

Prior cutting the object into slices, we should derive affine invariant closed curves which are
called division curves of the object.

Definition 3.1. For an object F, suppose that ∂F is its GC, and O is the centroid of the object
as defined in (2.1). If O and C superpose each other, the point P is selected as the centroid O.
Otherwise, the point P is selected on the line segment connected the centroid O and point C



6 Mathematical Problems in Engineering

(a) (b)

−3 −2 −1 0 1 2 3
×104

×104

−2

−1.5

−1

−0.5
0

0.5

1

1.5

4

(c)

−80
−60

−40

−20

0

20

40

60

−100 −50 0 50 100 150

(d)

Figure 2: (a) An affine transformation version of Figure 1(a). (b) An affine transformation version of
Figure 1(b). (c) GC derived from (a). (d) GC derived from (b).

on the GC such that the following equation is satisfied. That is,

|OP |
|OC| = τ, (3.1)

where τ is a constant. As C going along the GC, the locus of point P formed a closed curve.
We denote this closed curve as ∂Fτ , which is called the τ-division curve of the object.

As the constant τ varied, different division curves will be obtained. Figure 3 shows
division curves of Figures 1(a) and 2(a). We can observed that division curves extracted from
the affine transformed object are also affine transformed version of division curves extracted
from the original object.

We denote the region enclosed by two different division curves τ1-division curve and
τ2-division curve as DFτ1τ2 , which is called τ1τ2-slice of the object F. Figure 4 shows some
slices of the object in Figure 1(a).

3.2. Affine Invariant Descriptors

By different division curves, the object can be cut into a number of slices. We can employ
some well-knownmethods such as AMIs [13] andMSA [19] to extract affine invariant feature
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Figure 3: Division curves: (a) division curves of Figure 1(a), (b) division curves of Figure 2(a).

(a) (b) (c) (d)

Figure 4: Some slices of the object in Figure 1(a).

vectors from a piece of these slices. Consequently, the object is recognized by composing these
feature vectors into a united vector. However, the moment-based method is very sensitive to
noise, andMSA has large computational complexity. In this paper, we extract affine invariant
features by summing up gray values associated with points in region of the derived slices. It
will be shown that these features are very robust to noise.

Choose a series of numbers {τ0, τ1, . . . , τn} such that τ0 < τ1 < τ2 < · · · < τn = M. For an
object F, we denote MDFτiτj as the mass of τiτj -slice of the object F; that is,

MDFτiτj =
∫∫

DFτiτj

f
(
x, y
)
dxdy, (3.2)

We denote Si as follows:

Si =
MDFτiτi+1

MDFτ0τ1
, i = 0, 1, . . . n. (3.3)

We will prove that Si(i = 0, 1, . . . n) are affine invariants. In the experiments of this paper,
the objects are cut equally into N parts. If we set the maximum τn = M, then the numbers
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{τ0, τ1, . . . τn} are set to

τi =
(i + 1)M

N
, i = 0, 1, . . . ,N − 1. (3.4)

In this paper,M is set to 4.

Theorem 3.2. For an object F, Si(i = 0, 1, . . . n) as given in (3.3) are affine invariants.

Proof. As aforementioned, GC derived from the affine transformed object is the same affine
transformed version of GC derived from the original object. In addition, affine transform
preserves the ratios of distances along a line. Consequently, the τ-division curve derived
from the affine transformed object is the same affine transformed version of τ-division curve
derived from the original object. As a result, the τ1τ2-slice derived from the affine transformed
object Fα is the same affine transformed version of τ1τ2-slice derived from the original object
F.

Affine maps have mass relative invariance property, which states that the mass of
an affinely transformed object is equal to the product of its original object mass times the
determinant of the transformation matrix. In other word, the slice of the original objectDFτ1τ2

and the slice of the affinely transformed object DFτ1τ2
α satisfy the following equation:

∫∫

DFτ1τ2
α

Iα
(
x, y
)
dx dy = |A|

∫∫

DFτ1τ2

I
(
x, y
)
dxdy. (3.5)

It follows that

MDFτ1τ2
α = |A|MDFτ1τ2 . (3.6)

Hence,

MDFτiτi+1
α

MDFτ0τ1
α

=
MDFτiτi+1

MDFτ0τ1
, i = 0, 1, . . . n. (3.7)

Therefore, Si(i = 0, 1, . . . n) are affine invariants.

We call Si(i = 0, 1, . . . n) given in (3.3) as affine invariant descriptors.

3.3. Robustness to Noise

In this section, we study the noise robustness of the affine invariant descriptors given in (3.3).
Let I(x, y) be the original image whose intensity values are random variables with mean μI

and variance σ2
I . Suppose that the image is noised by noise with zero mean and variance σ2

n.
Since the affine invariant descriptors defined in (3.3) are the integral of gray values of

the slices for the continuous case, the integral of noise in the slice is constant and is equal to
the mean value of the noise which is assumed to be zero. Therefore, zero-mean white noise
has no effect on the descriptors of the image in this situation.
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In practice, the image is stored by a finite number of pixels. As aforementioned,we add
up intensity values of the pixels in a slice DFτiτi+1 to calculate the affine invariant descriptors.
Assume that we add up R pixels of I(x, y) to calculate MDFτiτi+1 , where R is the number of
pixels inDFτiτi+1 . Suppose thatE denotes the expected values and thatD denotes the variance.
Therefore,

E{MDFτiτi+1} = Rμ,

D{MDFτiτi+1} = Rσ2.
(3.8)

Then, the expected value of [MDFτiτi+1]2 is

E
{
(MDFτiτi+1)2

}
= D{MDFτiτi+1} + {E(MDFτiτi+1)}2

= Rσ2 + R2μ2,

(3.9)

Equations (3.8) and (3.9) indicates the relations of descriptors value and the mean the
variance of the original image.

After introducing the noise with zero mean and variance σ2 to the image, the signal-
to-noise ratio (SNR) of the image is

SNRimage =
σ2
I + μ2

I

σ2
n

. (3.10)

It follows from (3.9) that the SNR of the affine invariant descriptors can be given as follows:

SNRMDFτiτi+1 =
Rσ2

I + R2μ2
I

Rσ2
n

= SNRimage + (R − 1)
μ2
I

σ2
n

.

(3.11)

This means the SNR is increased by μ2
I/σ

2
n. Due to the fact that in many practical situation

σ2
I ≤ μ2

I , we may alternatively write

SNRimage =
μ2
I

σ2
n

. (3.12)

Hence,

SNRMDFτiτi+1 ≈ RSNRimage. (3.13)

This shows that SNR has been increased by a factor of R, which is practically a large
quantity. As a result, the affine invariant descriptors are very robust to additive noise.
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Figure 5: Columbia Coil-20 image database.

4. Experiments

In this section, some experiments are carried out to illustrate the performance of the proposed
method. The gray-scale images utilized in our experiments are taken from the well-known
Columbia Coil-20 database [22], which contains 20 different objects shown in Figure 5. The
Coil-20 database includes some sets of similar objects, such as three toy cars, ANACIN, and
TYLENOL packs. They can be easily misclassified due to their similarity.

In the experiments, affine transformations are generated by the following transforma-
tion matrix [7]:

A = k

(
cos θ − sin θ

sin θ cos θ

)
⎛

⎜
⎝

a b

0
1
a

⎞

⎟
⎠, (4.1)

where k, θ denote the scaling, rotation transformation, respectively, and a, b denote the
skewing transformation. To each image, the affine transformations are generated by setting
the parameters in (4.1) as follows: k ∈ {0.8, 1.2}, θ ∈ {0, 72◦, 144◦, 216◦, 288◦}, b ∈
{−3/2, −1, −1/2, 0, 1/2, 1, 3/2}, and a ∈ {1, 2}.

In this paper,M is set to 4, and the classification accuracy is defined as

η =
Number of correctly classified images

The total number of images applied in the test
× 100%. (4.2)
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4.1. Implement Issues

In practice, the objects are not available as continuous functions. We only have some amount
of discrete samples. The digital image are represented as N1 × N2 matrix. With the affine
transforms, the position of each point changes, and it is possible that number of points in any
region changes too. Hence, the GC should be parameterized to establish one-to-one points
correspondence between GC and its affine transformed version.

Several parameterizations have been reported. In this paper, we adopt a curve
normalization approach proposed by Yang et al. [24], which is called EAN. The EANmethod
mainly composes of the following steps.

(i) For the discrete GC {(x(θk), y(θk)) : k = 0, 1, 2, . . . , Ñ − 1}, compute the total area of
the GC by the following formula:

S =
1
2

Ñ−1∑

k=0

∣∣x(θk)y(θk+1) − x(θk+1)y(θk)
∣∣. (4.3)

Let the number of points on the contour after EAN be Ñ too. Denote Spart = S/Ñ.

(ii) Select the starting point on GC as the starting point P0(x′(θ0), y′
0(θ0)) of the

normalized curve. From P0(x′(θ0), y′(θ0)) on GC, search a point P1(x′(θ1), y′(θ1))
along GC, such that the area of each closed zone, namely the polygon P0OP1 equals
to Spart, where O denotes the centroid of the object.

(iii) Using the same method, from point P1(x′(θ1), y′(θ1)), calculate all the points
Pi(x′(θi), y′(θi)), i ∈ {1, 2, . . . , Ñ − 1} along GC.

This normalization provides a one-to-one relation between the points of original GC and
transformed GC. For more information of EAN, refer to [24].

Consequently, the τ-division curve can be constructed to establish one-to-one points
correspondence between τ-division curves and its affine transformed version. Finally, the
region enclosed by two different division curves forms the slice of the object.

4.2. Comparison with AMIs and MSA

In this experiment, we compare the proposedmethod withMSA and AMI. The AMIsmethod
is implemented as discussed in [13], and 3 AMIs invariants are used. The MSA method is
implemented as discussed in [19], and 29 MSA invariants are used. As aforementioned, the
Coil-20 database is employed. Each image is transformed 140 times. That is to say, the test
is repeated 2800 times using every method. In this experiment, our method is performed for
N = 10. The classification accuracies of the proposed method, AMIs, and MSA are 98.59%,
100%, and 95.31%, respectively. The results indicate that AMIs perform best in this test, and
the proposed method is a little outperforms over MSA.

We firstly add the salt and pepper noise with intensities varying from 0.005 to 0.03
to the transformed images. Figure 6 shows the classification accuracies of all methods in
the corresponding noise degree. We can observe that the classification accuracy of AMIs
decreases rapidly from noise free condition to small noise degree. The classification accuracy
decreases from 100% to less than 50% when the noise intensity is 0.005. MSA performs much
better than AMIs, but the results are not satisfying. The drop of classification associated with
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Figure 6:Classification accuracies of AMIs,MSA, and the proposedmethod in case of affine transformation
and different intensities of salt and pepper noise.

the proposed method is even less than three percents. To large noise degrees, the proposed
method keeps high accuracies all the time.

We add the Gaussian noise with zero mean and different variance varying from
0.5 × 10−3 to 4 × 10−3 to the transformed images. Figure 7 plots the classification accuracies
of all methods in the corresponding noise degree. The results indicate that AMIs and MSA
are much more sensitive to Gaussian noise than salt and pepper noise. Their classification
results fall quickly once the image is suffered fromGaussian noise. However, the classification
accuracies of the the proposed method greatly outperform AMIs and MSA in every noise
degree.

4.3. The Affection of Slice Size

The affine invariant descriptors are constructed by cutting the object into slices. We test the
performance of the proposed method with different slice sizes in this experiment. The slice
sizes is affected by N in (3.4). With big N, the object is cut into small slices with large
computational complexity. On the other hand, if N is small, the object is cut into big slices
with low computational complexity.

The gray-scale images of Coil-20 database are employed. These images are trans-
formed as aforementioned; that is to say, the test is repeated 2800 times. These transformed
images are classified according to their affine invariant descriptors by comparing their
distance (Euclidean distance) to that of the training images. The accuracies are shown in
Table 1. As N increasing, fine details of the object can be carried by small size slices. Hence,
high accuracy can be achieved (e.g., 99.55% accuracy for N = 50).

The images are always noise for reasons in real-life situations. So, we also test the
robustness of the proposed method in this experiment. Every test image is added Gaussian
noise with different intensities. The intensity level σ2 is set to 0.005, 0.015, 0.020, 0.025. The
accuracies are also shown in Table 1. We can observe that the accuracies decreased with



Mathematical Problems in Engineering 13

0

0.2

0.4

0.6

0.8

1

1.2

Noise power

A
cc
ur
ac
y

AMIs
MSA
Ourmethod

0 0.5 1 1.5 2 2.5 3
×10−3

Figure 7:Classification accuracies of AMIs,MSA, and the proposedmethod in case of affine transformation
and different intensities of Gaussian noise.

Table 1: Classification rates under different degrees of Gaussian noise with different slice sizes.

σ2 N = 10 N = 20 N = 30 N = 40 N = 50
0 0.9859 0.9897 0.9927 0.9943 0.9955
0.005 0.7567 0.7725 0.7818 0.7591 0.7478
0.010 0.6387 0.6509 0.6845 0.6607 0.6624
0.015 0.5378 0.5772 0.6057 0.5923 0.5945
0.020 0.4689 0.5202 0.5466 0.5313 0.5375
0.025 0.4180 0.4685 0.4943 0.4827 0.4964

increasing noise level. Furthermore, under noisy conditions, although fine details of the object
can be carried by small size slices, discrete error will affect the accuracy. For instance, the
accuracy of N = 40 is lower than it of N = 30 all the time.

4.4. Discussions

In this study, we cut object into slices, and the affine invariant features are derived by
summing up gray value associated with every pixels in each slices. Experimental results
show that the proposed method is very robust to conventional Gaussian noise. However,
conventional Gaussian noise is never enough. Recently, people are more interested in
fractional Gaussian noise (fGn) than conventional one. For more details, see [25–28]. The
simulation of fGn was discussed in [25, 29]. Multiscaled fGn can be found in [25, 30–32]. Our
future research is to consider fGn in the proposed scheme.
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5. Conclusions

In this paper, we describe a novel approach for the extraction of affine invariant features
by cutting object into slices. Firstly, the general contour (GC) is derived from the object
by performing projection along lines with different polar angles. Consequently, some affine
invariant curves, which is called division curves are derived from the object based on the
derived GC. Then, a slice is formed by points fallen in the region between two adjacent
division curves. The affine invariant features are derived by summing up gray value
associated with every pixels in each slices. These features are very robust to additive noise
as a result of summing pixel values to generate these features. In comparison with AMIs and
MSA, the proposed method is more robust to noise in the background.

As for our future work, some characteristics of slices associated with an object will be
deeply studied, and more experimental results will be reported.
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