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We study tubular surfaces in Euclidean 3-space satisfying some equations in terms of the Gaussian
curvature, the mean curvature, the second Gaussian curvature, and the second mean curvature.
This paper is a completion of Weingarten and linear Weingarten tubular surfaces in Euclidean
3-space.

1. Introduction

Let f and g be smooth functions on a surface M in Euclidean 3-space E*. The Jacobi function
@(f, g) formed with f, g is defined by

(f,8) =det<fs ft>, (1.1)
s 8t

where f; = 0f/0s and f; = Of/0t. In particular, a surface satisfying the Jacobi equation
@ (K, H) = 0 with respect to the Gaussian curvature K and the mean curvature H on a surface
M is called a Weingarten surface or a W-surface. Also, if a surface satisfies a linear equation
with respect to K and H, thatis, aK + bH =c¢, (a,b,c) #(0,0,0), a,b,c € IR, then it is said to
be a linear Weingarten surface or a LW-surface [1].

When the constant b = 0, a linear Weingarten surface M reduces to a surface with
constant Gaussian curvature. When the constant a = 0, a linear Weingarten surface M reduces
to a surface with constant mean curvature. In such a sense, the linear Weingarten surfaces can
be regarded as a natural generalization of surfaces with constant Gaussian curvature or with
constant mean curvature [1].
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If the second fundamental form II of a surface M in E° is nondegenerate, then it is
regarded as a new pseudo-Riemannian metric. Therefore, the Gaussian curvature Kj; is the
second Gaussian curvature on M [1].

For a pair (X,Y), X #Y, of the curvatures K, H, Ky and Hy of M in E®, if M satisfies
D(X,Y) = 0 by aX + bY = ¢, then it said to be a (X, Y)-Weingarten surface or (X, Y)-linear
Weingarten surface, respectively [1].

Several geometers have studied W-surfaces and LW-surfaces and obtained many
interesting results [1-9]. For the study of these surfaces, Kiithnel and Stamou investigated
ruled (X,Y)-Weingarten surfaces in Euclidean 3-space E> [7, 9]. Also, Baikoussis and
Koufogiorgos studied helicoidal (H, Ki)-Weingarten surfaces [10]. Dillen, and sodsiri, and
Kiihnel, gave a classification of ruled (X,Y)-Weingarten surfaces in Minkowski 3-space ES,
where (X,Y) € {K,H, Ky} [2-4]. Koufogiorgos, Hasanis, and Koutroufiotis investigated
closed ovaloid (X, Y)-linear Weingarten surfaces in E® [11, 12]. Yoon, Blair and Koufogiorgos
classified ruled (X, Y)-linear Weingarten surfaces in E® [8, 13, 14]. Ro and Yoon studied tubes
in Euclidean 3-space which are (K, H), (K, Ky), (H, Kir)-Weingarten, and linear Weingarten
tubes, satisfying some equations in terms of the Gaussian curvature, the mean curvature, and
the second Gaussian curvature [1].

Following the Jacobi equation and the linear equation with respect to the Gaussian
curvature K, the mean curvature H, the second Gaussian curvature Kjj, and the second mean
curvature Hy;, an interesting geometric question is raised: classify all surfaces in Euclidean 3-
space satisfying the conditions

DO(X,Y) =0,
(1.2)
aX +bY =¢,

where X, Y € {K, H, KH,HH}, X;’f Y and (a, b, C) # (0,0,0)
In this paper, we would like to contribute the solution of the above question by
studying this question for tubes or tubular surfaces in Euclidean 3-space E>.

2. Preliminaries

We denote a surface M in E° by
M(S/ t) = (ml (S/ t)/ mZ(S/ t)/ m3(sl t)) (21)

Let U be the standard unit normal vector field on a surface M defined by

Mg N M,

u=-*"Z
[ Ms A M|

(2.2)

where Mg = OM(s,t)/0s. Then, the first fundamental form I and the second fundamental
form II of a surface M are defined by, respectively,

I = Eds® + 2Fds dt + Gdt?,
(2.3)
Il = eds® + 2fds dt + gdt?,
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where

E= (M, M,), F=(M,M,), G-=(M;,M,y),
€= _<MSIUS> = <M551u>r f = _<M51ut> = <Mstru>r 8= _<Mt/ut> = <Mtt/u>/

(2.4)
[14]. On the other hand, the Gaussian curvature K and the mean curvature H are
)
K-8 1
EG - F?
(2.5)
_Eg-2Ff +Ge
- 2(EG-F?) '’

respectively. From Brioschi’s formula in a Euclidean 3-space, we are able to compute Ky and
Hi of a surface by replacing the components of the first fundamental form E, F, and G by the
components of the second fundamental form e, f, and g, respectively [14]. Consequently, the
second Gaussian curvature Ky of a surface is defined by

1 1
1 1 1 1 Ze —
) _Eett+fs,lt_§gss zes fs—zet 10 Zet ng
Ky = ————31 ft—58s e fol-lze e f | (2:6)
(lesl-£2) 12 f
\ 28 foos 58 f 8]

and the second mean curvature Hy of a surface is defined by
HH:H—;Zi(Mdet II|Li7i<1n\/| |>> (2.7)
2\/ |det II| i,j aul 6u]

where ' and w/ stand for “s” and “0 = t”, respectively, and L/ = (Li]-)_l, where L;; are the
coefficients of the second fundamental form [3, 4].

Remark 2.1. 1t is well known that a minimal surface has a vanishing second Gaussian
curvature, but that a surface with the vanishing second Gaussian curvature need not to be
minimal [14].

3. Weingarten Tubular Surfaces

Definition 3.1. Let a : [a,b] — E° be a unit-speed curve. A tubular surface of radius A > 0
about a is the surface with parametrization

M(s,0) = a(s) + A[N(s) cos 0 + B(s) sinf], (3.1)
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a < s < b, where N(s), B(s) are the principal normal and the binormal vectors of a, respec-
tively [1].

The curvature and the torsion of the curve a are denoted by «, 7. Then, Frenet formula
of a(s) is defined by

T 0 « O[T
N'l=|-«x 0 7| |N|, (3.2)
B’ 0 -7 0] |B

[1]. Furthermore, we have the natural frame { M5, My} given by

Mg =(1-AxcosO)T — AtsinON + At cos OB,

(3.3)
Mg =-AsinON + AcosOB.
The components of the first fundamental form are
E = \*7% + 0%, F = A’1, G=1? (3.4)
where 0 =1 - Axcos 6.
On the other hand, the unit normal vector field U is obtained by
M N Mg .
U=———-=-ccosON —¢esin0B. 3.5
TV, A Mol &)

As A > 0, ¢ is the sign of o such that if 0 < 0, then € = -1 and if 0 > 0, then ¢ = 1. From
this, the components of the second fundamental form of M are given by

e = elr? - ex cos 00, f=elr, g =€k (3.6)

If the second fundamental form is nondegenerate, eg — f2 #0, that is, x, 0 and cos 0
are nowhere vanishing. In this case, we can define formally the second Gaussian curvature
Kj and the second mean curvature Hy on M. On the other hand, the Gauss curvature K, the
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mean curvature H, the second Gaussian curvature Ky and the second mean curvature Hy
are obtained by using (2.5), (2.6) and (2.7) as follows:

K cos 0
o’
£(1 = 2\x cos0)
H=———#64/4/
2\o ’
ex(cos?0 — 6xAcos’d + 4x?A2cos?O + 1)

4 cosOo

1 6 ,
Hy=——" c0s'0 ),
I C8edk3cos3007 <§ 8icos >

K=-

(3.7)
Ky =-

4

and where the coefficients g; are
0 = 3%k 72,
g1 = 2Ak(KksT — KT5) SN O — <1 + 6)LZT2>K3,
D= 202K (KTs — dcsT) Sin O + )L<3(KS)2 + 3t — 2ucregs — K2T2>,
= 2)L21<<21c27'2 — 13 + KKy — 3(K5)2> - %3, (3.8)
Q= 16A%4,

g5 = —20A%x2,

96 = 8A3k°.

Differentiating K, Ky, H, and Hy with respect to s and 0, after straightforward
calculations, we get,

Ks COS O K sin 0

K, = K= snt 3.9
£Ks cos B £k sin 0
H, =050 g o ) 1
20? 0 20? (3-10)
x5 (81313080 — 184%K?c0s*6 + 12Axcos’0 — cos?6 — 1)
(Kn)s = 5 , (3.11)
4 cos 0o

ex sin 0 (8A3x3cos°0 — 1814%x%cos*0 + 12Axcos>0 + sin?6 — 2Ax cos 0)

(K)o = - 4cos2002 o G

1 6 :
(HH)s —< f,‘COSle>, (313)
0

8extcos30ot \ &
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and where f; are

fo = 3K°T (KT — 2KT),

f1 =2K(2Ks(KksT — KTs) — KKssT) SIiN O + (3kTs — ZKST)6)LK3T,

fo= 2052 (9% (KTs — KsT) + 2KKgsT) SIN O + 6)LZK4T(3K5T —2KTs) + Ky <9(1cs)2 - 101c1<ss>
+ K27 (2K T, — KsT),

f3= 20213 (k5 (16K T — 7KT,) — 4KTKs) Sin O

+ 2/\1{(]51(1(51(55 - (15(1<s)2 + K4>KS + k27 (27K — 5KT5)>,

fa= 20%%? <51cs <3(1c5)2 - 21c1c55> + 2KZT(2KTS —37Ks) + 1<41<S> - 2xtxs,

fs5= 6K K,
fo = -4\ %,
(3.14)
1 6 :
(Hi)o = 5557 <l§ hic08’9>, (3.15)

and where the coefficients h; are
ho = —9Ax>7?sin 6,
hy = 2«3 <1 + 15.}L2T2> sin 0 + 4Ak(KTs — K5T),
hy = )L<2K1C55 — 8kt + K2T2<1 - 30.)L2K2> - 3(1<S)2> sin 6 + 6/\21{2(31(577 - 2KTy),
hs = 4:.)LzK<2K'4 — k272 = DKkgs + 3(1<s)2> sin @ + 2k (KST - KTs + 4/\21c2(1c"r5 - 4KST)),
hy = 203 <3)L2 <21<7'2 -3+ KSS> + K) sin 0 + 2A0%x? <4(KTS - TKg) — 9/\(1(5)3),
hs = 6A%x3 <)L(4KST — KTs) — K% sin 9),

he = 413%° sin 6.
(3.16)

Now, we consider a tubular surface M in E° satisfying the Jacobi equation ®(K, Hy) =
0. By using (3.9), (3.13), and (3.15), we obtain ®(K, Hy) in the following form:

4

—¢ ,

Ks(Hu)g — Ko(Hn)y = ——5—=——== ) u;jcos'6, (3.17)
$ 4A2x305cos30 g;‘



Mathematical Problems in Engineering 7

with respect to the Gaussian curvature K and the second mean curvature Hy, where

Uy = =3ATK? (KT + KTs) sin 6,
u = x> ((6)372 + 1>1<s + 6/\2KTTS> Sin 0 — Ak KgsT + A Tss,
Uy = A(KZKSSS — AkKokes — 3K K + 3(1c5)3 + K3TTS> sin 0 + 12K3(3KSTS + 4KssT — KTss),
Uz = )uc{ (7)uc1cs1css — M ges — 6)»(1<S)3 + 2t — 4)LK3TTS> sin 0
+<1c1css7' + KKsTs — (KS)ZT - K2T55> },

Uy = —AZK2{4KKSTS - 47‘(1cs)2 — 12T + KKSST}.
(3.18)

Then, by ®(K, Hy) =0, (3.17) becomes

4
Z u;cos'0 = 0. (3.19)
i=0

Hence, we have the following theorem.

Theorem 3.2. Let M be a tubular surface defined by (3.1) with nondegenerate second fundamental
form. M is a (K, Hyr)-Weingarten surface if and only if M is a tubular surface around a circle or a
helix.

Proof. Let us assume that M is a (K, Hy)-Weingarten surface, then the Jacobi equation (3.19)
is satisfied. Since polynomial in (3.19) is equal to zero for every 0, all its coefficients must be
zero. Therefore, the solutions of ug =u; =up =us=us=0arex; =0,7=0and x;, =0, 7, =0
that is, M is a tubular surface around a circle or a helix, respectively.

Conversely, suppose that M is a tubular surface around a circle or a helix, then it is
easily to see that @(K, Hy) = 0 is satisfied for the cases both ks =0, 7 = 0 and x; = 0, 75 = 0.
Thus M is a (K, Hy)-Weingarten surface.

We suppose that a tubular surface M with nondegenerate second fundamental form
in E% is (H, Hi)-Weingarten surface. From (3.10), (3.13), and (3.15), ®(H, Hy) is

1 4 ,
Hs(Hu)y - Ho(Hu)y = —————= >, v;cos'6, (3.20)
8Ax305cos30 %

with respect to the variable cos 6, where

vy = 3ATK? (KTs + K,T) sin 6,

v = -k (Ks + 6.)LZT(KST + KTS)> sin @ + .)LKZ(KSST — KTss),
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Uy = .)L<3K4K5 - 3(1cs)3 + AKKsKgs — KOTTg — K2K555> sin 6
2.3
+ A7k (KTss — 35T — 4KsT),
- )2 3, .2 4 3 :
U3 = Ak (6(Ks)” + K Kgss — 7TKKsKss — 2K Kg + 4K°TT, ) sin 0
2 2
+ )uc(;c Tos + (Ks) T — KKgsT — KKSTS>,

vy = =\ 22 <1c27'ss —AKKgsT — AKK T + 4(K5)2T>.

(3.21)
Then, by ®(H, Hyr) = 0, (3.22) becomes in following form:
4 .
Z v;c08'0 = 0. (3.22)
i=0
Thus, we state the following theorem. O

Theorem 3.3. Let M be a tubular surface defined by (3.1) with nondegenerate second fundamental
form. M is a (H, Hy)-Weingarten surface if and only if M is a tubular surface around a circle or a
helix.

Proof. Considering ®(H, Hy) = 0 and by using (3.13), one can obtaine the solutions x5 = 0,
7 =0,and ks = 0, 75 = 0 of the equations vy = v1 = v, = v3 = v4 = 0 for all 0. Thus, it is easly
proved that M is a (H, Hy)-Weingarten surface if and only if M is a tubular surface around a
circle or a helix. O

We consider a tubular surface M is (Ky;, Hyr)-Weingarten surface with nondegenerate
second fundamental form in E>. By using (3.11), (3.12), (3.13), and (3.15), @(Ky, H) is

-1

K Hp), — (K Hy), = —————
( II)s( II)e ( II)G( H)s 16A1305c0s?0

9
> wicos'6, (3.23)
i=0

where
wo = 3ATK? (kT — 2K,T) Sin 6,
_ .3 2 . 2
w =K <1<S + 18\ (5T — 2KT5)> sin 0 + Ak <4K5(KTS — KsT) + KKgsT — K Tss>,
wy = { <6KKSS — 18024 7% — 3kt — 6(1cs)2 - 2K272>)u<s + 4<3)L2 2 1>)LK3TTS - szxsss} sin 0

+3A0%%2 <1<s (6KsT — BKTs) — 2KKssT + 1c27'55>,
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w3 = { <K2 + 38021272 + 407K — 230 %Kk + 24)L2(K5)2>KK5 + 4802k Ty + 3.)LZK3KSSS} sin 6
- )uc{2<)u2 2 1>1C2Tss + (32)L2K2 - 3) (KS)ZTS - <14A2K2 - 3>KKSTS
+2<1 - 4A2K2>KKSST},
Wy = —/\{ <2A2K2 - 1>1<21css + 4(1 - 5)Lz1c2>1c1cs1css + <134)LZ1<2 - 1>K3TTS
+ (3(10)3;8 - 1) (k)% + (2 <57T2 + xz)ﬁ + 13)1(4)1(5} sin O
+ A 252 (22K1C55T + 17KKTs — 14(1<S)2T - 16K2TSS>,

ws = V{55, + 4(330%2 - 4) 1077, +2(66A77% + 25 ), — (13%2 + 42 ) oo, } sin 0

- )LK{ <50)L2 2 _ 1>K1€STS + (1 - 32)L2K2) (KS)ZT + (1 - 32)LZK2>K2TSS

+<74.A,2 2 1>KKSST},

we = 21312 (63(1cs)3 — 240 %, T2 — Alxcti, + 3313 TT, — 78Kk Kss — 2402 K0T + 15K2Ksss> sin 0

+ %2 (16(1(5)27' — 260K Ty — 16KKssT + 1362 Tss — 16Kk Ts + 54N K KT, + 80)L2K3K55T>,
wy = 2043 (301<41cs — 1362 Kgs — 40K3TTs + 79K Kss — 60(1<5)3> sin 0+

—24%8 (33(1(75)2’1'5 — 33Kk Ts — AN K s + 120215 KT + 1582 s + 1602 K7 Ko T — 33KKSST>,
wg = -8\°x* (—6(1<5)3 + 2K s — AT T, + 7KK K5 — Kszss) sin 0

+ 2044 (131c2‘rSS + 4(1cs)27' — 40K (KssT + KSTS)>,

Wy = 8)L5K5{4KKSTS - 4(1(5)2’1' — 12T + 4KK55T}.

(3.24)

Since @ (K, Hy) = 0, then (3.23) becomes in following form:

9
Z wicos'0 = 0. (3.25)
i=0

Hence, we have the following theorem.

Theorem 3.4. Let M be a tubular surface defined by (3.1) with nondegenerate second fundamental
form. M is a (Ku, Hu)-Weingarten surface if and only if M is a tubular surface around a circle or a
helix.

Proof. It can be easly proved similar to Theorems 3.2 and 3.3. O

Consequently, we can give the following main theorem for the end of this part.



10 Mathematical Problems in Engineering
Theorem 3.5. Let (X,Y) € {(K, Hnu), (H, Kir), (Hu, Ki) }, and let M be a tubular surface defined

by (3.1) with nondegenerate second fundamental form. M is a (X,Y)-Weingarten surface if and only
if M is a tubular surface around a circle or a helix.

Thus, the study of Weingarten tubular surfaces in 3-dimensional Euclidean space is
completed with [1].

4. Linear Weingarten Tubular Surfaces

In last part of this paper, we study on (K, Hy), (H, Hn), (Hu, Ki), (K, H, Hn), (K, H, Ky),
(H,Kn, Hu), (K, Ky, Hy), and (K, H, Ky, Hy) linear Weingarten tubular surfaces in
E°. (K, H), (K, Ky), and (H, Ky) linear Weingarten tubes are studied in [1].

Let a1, ay, as, as, and b be constants. In general, a linear combination of K, H, Kj; and
Hj; can be constructed as

oK+ aH + a3KH +a4Hyp = b. (41)

By the straightforward calculations, we obtained the reduced form of (4.1)

8
8br’e0’cos>0 + Z picos'0 =0, (4.2)
i=0

where the coefficients are
po = a2,
P1 = 44K <2./\(KST — KTs) sin 0 — k2 (6)@7‘2 + 1>),

p2 = asd <2.)LK2(KTS —4KsT)sin 0 + ©2 <3K2 - T2> — 2KKgs + 31cs2> +2a3\x?,

p3 = a41<<2)u2 <KKSS -t + 26272 - 31<52> - 51<2> —4ayk® — daz\*x®,

4.3
Pa= 8aext + 16a,1x* + 2a3)uc4<1 + )L2K2> +17as\x?, (4.3)

ps = —16a1e\x — 2040255 — 16a30%1° — 20a,02°,
Ps = 8a1eAx® +8az A’k + 34az 1’
p7 = —28a3\*x’,
ps = 8az \°«®.

Then, po, p1, p2, p7, and ps are zero for any b € IR. If a4 #0 or a3 #0, from pg = p1 =
p7 = ps = 0, one has « = 0. Hence, we can give the following theorems.
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Theorem 4.1. Let (X,Y) € {(K,Hpu), (H, Hy), (Ky, Hy)}. Then, there are no (X,Y)-linear We-
ingarten tubular surfaces M in Euclidean 3-space defined by (3.1) with nondegenerate second
fundamental form.

Theorem 4.2. Let (X/ Y/ Z) € { (H/ KH/ HH)/ (K/ KH/ HH), (Kr H/ HH)/ (K/ Hr KH) } Thenr
there are no (X, Y, Z)-linear Weingarten tubular surfaces M in Euclidean 3-space defined by (3.1)
with nondegenerate second fundamental form.

Theorem 4.3. Let M be a tubular surface defined by (3.1) with nondegenerate second fundamental
form. Then, there are no (K, H, Ky, Hyr)-linear Weingarten surface in Euclidean 3-space.

Consequently, the study of linear Weingarten tubular surfaces in 3-dimensional
Euclidean space is completed with [1].
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