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In 1773 Laplace obtained two fundamental semi-invariants, called Laplace invariants, for scalar
linear hyperbolic partial differential equations (PDEs) in two independent variables. He utilized
this in his integration theory for such equations. Recently, Tsaousi and Sophocleous studied semi-
invariants for systems of two linear hyperbolic PDEs in two independent variables. Separately, by
splitting a complex scalar ordinary differential equation (ODE) into its real and imaginary parts
PDEs for two functions of two variables were obtained and their symmetry structure studied.
In this work we revisit semi-invariants under equivalence transformations of the dependent
variables for systems of two linear hyperbolic PDEs in two independent variables when such
systems correspond to scalar complex linear hyperbolic equations in two independent variables,
using the above-mentioned splitting procedure. The semi-invariants under linear changes of the
dependent variables deduced for this class of hyperbolic linear systems correspond to the complex
semi-invariants of the complex scalar linear (1 + 1) hyperbolic equation. We show that the adjoint
factorization corresponds precisely to the complex splitting. We also study the reductions and the inverse
problem when such systems of two linear hyperbolic PDEs arise from a linear complex hyperbolic
PDE. Examples are given to show the application of this approach.

1. Introduction

In the study of scalar linear second-order partial differential equations (PDEs) in two inde-
pendent variables, x and y,
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whereA to G are C2 functions in some domain and ux = ∂u/∂x and so forth, it is well known
that there are three canonical forms, namely, hyperbolic, parabolic, and elliptic (see, e.g. [1]),
according to the sign of the discriminant Δ = B2 − AC. Here we focus on the hyperbolic
canonical form, which can be written as

uxy + a
(
x, y

)
ux + b

(
x, y

)
uy + c

(
x, y

)
u = 0, (1.2)

with a, b, and c smooth functions in some region of the x, y space.
One of the earliest studies of (1.2) is contained in Laplace’s [2] memoir. Laplace

deduced two fundamental quantities, called semi-invariants, for it:

h = ax + ab − c,

k = by + ab − c,
(1.3)

which were used for an integration theory of these equations. They remain invariant under
point-wise scaling transformations of the dependent variable

u = σ
(
x, y

)
u, σ /= 0, (1.4)

but not under general transformations. They are also referred to in the literature as “Laplace
invariants”. They have also been used by Ovsiannikov [3] in the group classification of (1.2),
where the determining equations for the symmetries of (1.2) were written in terms of h and
k.

The equivalence problem for scalar linear (1 + 1) hyperbolic PDEs was solved
separately in [4, 5]. These works gave rise to further invariants apart from the Ovsiannikov
invariants. Tsaousi and Sophocleous [6] obtained the analogue of the Laplace invariants
for systems of two linear hyperbolic PDEs in two independent variables. They used the
infinitesimal method, and it was shown that there are four differential invariants and five
semi-invariants of order one (under changes of the dependent variables).

A method was developed for studying systems of two PDEs or ordinary differential
equations (ODEs) by considering a complex scalar ODE and splitting it into its real and
imaginary parts [7, 8]. This was called “complex symmetry analysis” (CSA). These systems
have fewer arbitrary coefficients than their classical analogues. The reduction is obtained
because not all pairs of PDEs can be written as scalar complex PDEs since the coefficients
satisfy the Cauchy-Riemann PDEs. It has been shown that such systems have operators that
are inequivalent to those determined by the classical Lie approach [9].

In this work we revisit the study of semi-invariants of systems of two linear hyperbolic
in two independent variables under dependent variable transformations using CSA. These
are subclasses of systems of the form considered by Tsaousi and Sophocleous [6]. The
motivation for this study is many fold. Firstly we deduce semi-invariants under linear
changes of the dependent variables which correspond to the complex semi-invariants of the
complex scalar linear (1 + 1) hyperbolic PDE. These are shown to be special systems that
arise from the scalar linear (1 + 1) hyperbolic equations. We give precise conditions (see
the Corollary) in terms of the coefficients and semi-invariants when the general system is
reducible to scalar complex linear (1 + 1) hyperbolic equations. The semi-invariants now are
four and the eight Kis of [6] reduce to four semi-invariants h1, h2, k1, and k2. This solves
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the inverse problem of when such systems arise from the base complex scalar linear (1 + 1)
hyperbolic equations. Secondly we demonstrate that the special linear hyperbolic system
which arises from a complex splitting of the scalar equation is factorizable if and only if
its adjoint system is factorizable. We explicitly prove that this does not occur for the general
system investigated in [6]. These results are contained in Theorems 3.4 and 3.5. New insights
on factorization and reductions (Theorems 3.2 and 3.3) are obtained from here. We compare
the semi-invariants obtained here with those of [6], including some examples. Thirdly the
construction of the mappings that relate the two systems of hyperbolic PDEs of the class
considered is easily done using the explicit dependent variable change for the scalar complex
case which is in terms of the coefficients of the original and target PDEs (see Theorem 3.1).
This is not the case for the general system studied in [6] as these explicit formulas are not as
yet known for the general case.

The outline of this work is as follows. In the next section we look at equivalence
transformations under dependent variables that relate two scalar linear (1 + 1) hyperbolic
PDEs and the special linear hyperbolic systems as a consequence. In Section 3 we study semi-
invariants for our special system that arise by analytic continuation. Herein we also mention
results on the factorization of the system and its adjoint as well as uncoupling. Mention
is made of the inverse problem and when general hyperbolic systems arise from scalar
hyperbolic PDEs. Our results are compared to those of [6]. Section 4 deals with examples
that illustrate our approach. Finally we present a discussion of our results.

2. Equivalence Transformations under Dependent Variables

Equivalence transformations of a family of PDEs with arbitrary elements map the family into
itself. We consider equivalence transformations of (1.2) under (1.4), which yield

uxy + a
(
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ux + b
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)
uy + c
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)
u = 0, (2.1)

where
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σy

σ
,

b = b +
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σ
,
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σ

,

(2.2)

L being the linear operator

L =
∂2

∂x∂y
+ a

∂

∂x
+ b

∂

∂y
+ c (2.3)

so that (1.2) can be written compactly as Lu = 0.



4 Mathematical Problems in Engineering

Now consider the linear hyperbolic system

vxy = a1vx + b1wx + c1vy + d1wy + f1v + g1w,

wxy = a2vx + b2wx + c2vy + d2wy + f2v + g2w,
(2.4)

where ai to gi are arbitrary continuous functions of x and y. Such systems were considered in
[6]. It was shown there that the equivalence transformations of the dependent variables for
system (2.4) are

v = ρ1
(
x, y

)
v + ρ2

(
x, y

)
w,

w = ρ3
(
x, y

)
v + ρ4

(
x, y

)
w,

(2.5)

in which ρi are functions of x and y. The new coefficients can be written in terms of the ρs
and the old coefficients.

For the complex function

u
(
x, y

)
= v

(
x, y

)
+ iw

(
x, y

)
, (2.6)

the ODE

u′′ +A(z)u′ + B(z)u = 0, (2.7)

where z = x + iy, becomes a system of two linear second-order PDEs for v and w involving
four arbitrary functions of x and y [7]. This is obviously a subclass of (2.4). Here we study a
bigger subclass of (2.4), which comes from the complex split of (1.2). Thus we arrive at the
special linear hyperbolic system

L1v − L2w ≡ vxy + a1vx − a2wx + b1vy − b2wy + c1v − c2w = 0,

L1w + L2v ≡ wxy + a1wx + a2vx + b1wy + b2vy + c1w + c2v = 0,
(2.8)

corresponding to a special class of equations obtainable by CSA for the complex operator

L = L1 + iL2 (2.9)

in (2.3) with

L1 =
∂2

∂x∂y
+ a1

∂

∂x
+ b1

∂

∂y
+ c1,

L2 =
∂2

∂x∂y
+ a2

∂

∂x
+ b2

∂

∂y
+ c2.

(2.10)
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The subclass of equivalence transformations of the dependent variables (2.5) is
derived by using the complex scaling function

σ
(
x, y

)
= σ1

(
x, y

)
+ iσ2

(
x, y

)
(2.11)

in (1.4) to arrive at

v = σ1v − σ2w,

w = σ2v + σ1w.
(2.12)

That this is a subclass of the more general transformations (2.5) is clear as there are only
two arbitrary functions σ1 and σ2, whereas (2.5) has four arbitrary functions ρi. This subclass
(2.12) transforms the system of linear PDEs (2.8) into

L1v − L2w = 0,

L1w + L2v = 0,
(2.13)

in which L1 and L2 are as in (2.10) with the ai to ci in new coordinates (and thus with bars
over them). Thus the linear transformations (2.12) are equivalence transformations of (2.8)
provided

a1 = a1 +
σ1σ1y + σ2σ2y

σ2
1 + σ2

2

,
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σ1σ2y − σ2σ1y

σ2
1 + σ2

2

,
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σ1σ1x + σ2σ2x

σ2
1 + σ2

2

,

b2 = b2 +
σ1σ2x − σ2σ1x

σ2
1 + σ2

2

,

c1 =
σ1(L1σ1 − L2σ2) + σ2(L1σ2 + L2σ1)

σ2
1 + σ2

2

,

c2 =
σ1(L1σ2 + L2σ1) − σ2(L1σ1 − L2σ2)

σ2
1 + σ2

2

(2.14)

The hyperbolic system (2.8) is a subclass of the system (2.4) considered in [6]. In (2.8) there
are six arbitrary coefficients whereas in system (2.4) there are twelve. The special system (2.8)
is uncoupled if the coefficients a2 to c2 are zero. One has

vxy + a1vx + b1vy + c1v = 0,

wxy + a1wx + b1wy + c1w = 0,
(2.15)
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while the special coupled system is

vxy − a1wx − b2wy − c2w = 0,

wxy − a2vx + b2vy − c2v = 0.
(2.16)

We return to (2.15) in the next section.
In the following section we study the semi-invariants under the dependent variables

changes (2.12) for the system (2.8). Furthermore we prove interesting properties on
uncoupling, factorization, adjoint factorization, and the inverse problem.

3. Semi-Invariants, Factorization, Adjoint Equations

Laplace [2] stated the following theorem involving his semi-invariants (1.3).

Laplace’s Theorem

The scalar linear hyperbolic PDE (1.2) is equivalent via (1.4) to the transformed hyperbolic
PDE (2.1) if and only if

h = h, k = k, (3.1)

where h and k are given by

h = ax + ab − c,

k = by + ab − c.
(3.2)

The construction of σ in (1.4) is via the equations

a − a =
σy

σ
,

b − b =
σx

σ
.

(3.3)

Clearly, one needs to know the coefficients of the target PDE (2.1) apart from the coefficients
of the given equation. Note that the compatibility of this system (3.3) gives rise to a Laplace
invariant.

We now determine the semi-invariants of the special linear hyperbolic system (2.8)
which are invariant under the linear changes (2.12). Since it is obtained from the scalar
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hyperbolic PDE (1.2) considered as a complex PDE by the complex transformation (2.6), we
can thus deduce the semi-invariants of (2.8) under (2.12) by setting

h = h1 + ih2,

h = h1 + ih2,

k = k1 + ik2,

k = k1 + ik2.

(3.4)

The insertion of (3.4) into (1.3), (3.1), and (3.2) results in

h1 = h1,

h2 = h2,

k1 = k1,

k2 = k2,

(3.5)

where

h1 = a1x + a1b1 − a2b2 − c1,

h2 = a2x + a1b2 + a2b1 − c2,

k1 = b1y + a1b1 − a2b2 − c1,

k2 = b2y + a1b2 + a2b1 − c2,

(3.6)

and converts (3.6) to barred coordinates.
We can thus state the following theorem.

Theorem 3.1. The linear system of hyperbolic PDEs (2.8):

L1v − L2w = 0,

L1w + L2v = 0,
(3.7)

is equivalent via (2.12)

v = σ1v − σ2w,

w = σ2v + σ1w
(3.8)
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to the transformed PDE system in barred coordinates (2.13) if and only if

h1 = h1, h2 = h2,

k1 = k1, k2 = k2,
(3.9)

where

h1 = a1x + a1b1 − a2b2 − c1,

h2 = a2x + a1b2 + a2b1 − c2,

k1 = b1y + a1b1 − a2b2 − c1,

k2 = b2y + a1b2 + a2b1 − c2.

(3.10)

The σ1 and σ2 in (3.8) can be obtained from

a1 − a1 =
σ1σ1y + σ2σ2y

σ2
1 + σ2

2

,

a2 − a2 =
σ1σ2y − σ2σ1y

σ2
1 + σ2

2

,

b1 − b1 =
σ1σ1x + σ2σ2x

σ2
1 + σ2

2

,

b2 − b2 =
σ1σ2x − σ2σ1x

σ2
1 + σ2

2

.

(3.11)

The proof of this result follows easily from the preceding discussion.

We note that for uncoupled systems, a2 to c2 in (2.8) are zero. Thus we have the result.

Theorem 3.2. The linear system of hyperbolic PDEs (3.7) is reducible via (3.8) to the uncoupled
system

vxy + a1vx + b1vy + c1v = 0,

wxy + a1wx + b1wy + c1w = 0
(3.12)

if and only if

h1 = h1, h2 = h2 = 0,

k1 = k1, k2 = k2 = 0.
(3.13)

We next review the idea of factorization and its implications for our system. These
occur for normal and adjoint factorization.
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It is known from the works of Laplace [2] that the scalar hyperbolic PDE (1.2) is
factorizable in terms of first-order linear operators if and only if h = 0 or k = 0. That is,
the PDE (1.2) can be written as

(
∂

∂x
+ b

)(
∂

∂y
+ a

)
u = 0 (3.14)

if h = 0 and

(
∂

∂y
+ a

)(
∂

∂x
+ b

)
u = 0 (3.15)

if k = 0. If both h and k are zero, then the factors commute and (1.2) in this case is reducible
via dependent variable transform (1.4) to the simplest wave equation uxy = 0. We translate
these results to the special system of PDEs (3.7).

We therefore have the next theorem.

Theorem 3.3. The hyperbolic system (3.7), by analytic continuation, corresponds to the scalar
factorizable PDE (3.14) or (3.15) if and only if h1 = h2 = 0 or k1 = k2 = 0. In the case h1 = h2 = 0,
the linear hyperbolic system

vxy + (a1v)x − (a2w)x + b1vy + a1b1v − b1a2w − b2wy − a1b2w − a2b2v = 0,

wxy + (a1w)x + (a2v)x + b1wy + a1b1w + b1a2v + b2vy + a1b2v − a2b2w = 0,
(3.16)

corresponds to (3.14). For k1 = k2 = 0 the system

vxy + (b1v)y − (b2w)y + a1vx + a1b1v − a1b2w − a2wx − a2b1w − a2b2w = 0,

wxy + (b1w)y + (b2w)x + a1wx + a1b1w + a1b2w + a2vx + b1a2v − a2b2w = 0,
(3.17)

corresponds to (3.15).

We now state and prove a result that is apparently not known in the literature on
adjoint equations which is important in the construction of the Riemann function. Riemann’s
method for (1 + 1) linear hyperbolic PDEs utilizes the adjoint equation to arrive at the exact
solution of an initial value problem (see, e.g [1]). In this approach the solution depends on the
adjoint equation with specified boundary conditions being solved. Hence it of significance to
have properties of adjoint hyperbolic equations. We thus have the following result.

Theorem 3.4. The hyperbolic PDE (1.1) is factorizable in terms of first-order linear operators if and
only if its adjoint equation, namely,

uxy − aux − buy +
(
c − ax − by

)
u = 0, (3.18)

is factorizable.
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Proof. The proof follows by noting that if h and k are semi-invariants of (1.1) and if h or k is
zero, then the adjoint equation (3.18) has Laplace invariants h′ = k and k′ = h, one of which
is zero. The converse similarly applies.

It should be mentioned that this property of adjoint factorization does not in general
apply to (1 + 1) linear parabolic equations

ut = auxx + bux + cu, (3.19)

where a to c are smooth functions. This PDE (3.19) has semi-invariants, under linear change
of dependent variable, a and K (see [10, 11]). The adjoint equation to (3.19) is

ut = −auxx + (b − 2ax)ux + (bx − axx − c)u. (3.20)

It is clear that the semi-invariant a becomes −a. Also the expression for K in (3.20)
is more complicated and not the same as K. These can be more easily appreciated via some
telling examples.

It is interesting that the adjoint factorization property when the parent equation is
factorizable can be transferred to our special system. Indeed we have the following theorem.

Theorem 3.5. The special linear hyperbolic system (2.8) is factorizable if and only if its adjoint
system, namely,

vxy − a1vx + a2wx − b1vy + b2wy +
(
c1 − a1x − b1y

)
v − (

c2 − a2x − b2y
)
w = 0,

wxy − a1wx − a2vx − b1wy − b2vy +
(
c1 − a1x − b1y

)
w +

(
c2 − a2x − b2y

)
v = 0,

(3.21)

is factorizable.

Proof. The proof follows from noting that the adjoint condition is invariant under the complex
split. For the analytic continuation of the adjoint scalar PDE (3.20) defined in the complex
domain gives rise to (3.21) which is precisely the adjoint system of the special class (2.8).
Thus the factorization property of Theorem 3.4 applies due to the complex split.

It is now opportune to recall the results of [6]. In this paper, inter alia, it was shown
that the system (2.4) has the Laplace-type invariants

I1 = K1 +K4,

I2 = K5 +K8,

I3 = K1K4 −K2K3,

I4 = K5K8 −K6K7,

I5 = K5K1 +K2K7 +K3K6 +K4K8,

(3.22)
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where

K1 = a1c1 + a2d1 − a1x + f1,

K2 = a1c2 + a2d2 − a2x + f2,

K3 = b1c1 + b2d1 − b1x + g1,

K4 = b1c2 + b2d2 − b2x + g2,

K5 = a1c1 + b1c2 − c1y + f1,

K6 = a2c1 + b2c2 − c2y + f2,

K7 = a1d1 + b1d2 − d1y + g1,

K8 = a2d1 + b2d2 − d2y + g2.

(3.23)

It is not difficult to see that for our system (2.8), K1 to K8 reduce to just the four semi-
invariants we obtained above, namely, h1 to k2. Hence the semi-invariants (3.22) can be
written in terms of just four quantities h1 to k2 as

I1 = 2h1,

I2 = 2k1,

I3 = h2
1 + h2

2,

I4 = k2
1 + k2

2 ,

I5 = 2h1k1 − 2h2k2.

(3.24)

A similar theorem to Theorem 3.5 does not apply to the more general system (2.4)
considered in [6]. This can be seen as follows. The adjoint system to (2.4) is

vxy = −a1vx − b1wx − c1vy − d1wy −
(
a1x + c1y − f1

)
v − (

b1x + d1y − g1
)
w,

wxy = −a2vx − b2wx − c2vy − d2wy −
(
a2x + c2y − f2

)
v − (

b2x + d2y − g2
)
w.

(3.25)

This system has the values of K’s given by

K1 = a1c1 + a2d1 − c1y + f1,

K2 = a1c2 + a2d2 − c2y + f2,

K3 = b1c1 + b2d1 − d1y + g1,

K4 = b1c2 + b2d2 − d2y + g2,
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K5 = a1c1 + b1c2 − a1x + f1,

K6 = a2c1 + b2c2 − a2x + f2,

K7 = a1d1 + b1d2 − b1x + g1,

K8 = a2d1 + b2d2 − b2x + g2.

(3.26)

Only I1 and I2 remain the same for the adjoint system (3.25). They just become
interchanged. The semi-invariants I3 to I5 are in general not preserved (the extreme case
in which they are the same is when the system is self-adjoint which occurs if and only if the
fs and gs are nonzero with the remaining coefficients zero). So indeed Theorem 3.5 is a special
property only enjoyed by systems that arise from the complex split of a scalar linear hyperbolic PDE.

Corollary 3.6. The general system (2.4) arises from the complex continuation of the scalar linear
(1+1) hyperbolic PDE (1.1) if and only if its coefficients are precisely of the form (2.8) or equivalently
if (2.4) has quantities Kis which are written solely in terms of the semi-invariants h1, h2, k1, and k2
as

K1 = h1, K2 = h2, K3 = −h2, K4 = h1, K5 = k1, K6 = k2,

K7 = −k2, K8 = k1.
(3.27)

This Corollary also solves the inverse problem of when systems of the form (2.4) arise from a
scalar linear (1 + 1) hyperbolic PDE defined in the complex plane.

4. Illustrative Examples

We present a few illustrative examples some of which are taken from [6] for comparison.
(1) The uncoupled system is

vxy + (xv)x + yvy + xyv = 0,

wxy + (xw)x + ywy + xyw = 0,
(4.1)

which has h1 = h2 = 0 = k1 = k2 and is reducible to the simplest system vxy = 0 = wxy = 0 by
means of the linear transformation

v = v exp
(−xy),

w = w exp
(−xy).

(4.2)

Note that Theorem 1 of [6] also applies here. However, this system arises from a complex
hyperbolic PDE.
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(2) Consider now the coupled system

vxy + (xv)x + yvy + xyv − xwy − x2w = 0,

wxy + (xw)x + ywy + xyw + xvy + x2v = 0.
(4.3)

This system has semi-invariants h1 = h2 = 0 = k1 = k2 and hence can be again transformed to
the simplest system. the transformation that does the reduction is

v = exp
(−xy)

(
v cosx2

2
+
w sinx2

2

)

,

w = exp
(−xy)

(

−v sinx2

2
+
w cosx2

2

)

.

(4.4)

A similar comment as in example (1) can be made here too.
(3) The system of linear hyperbolic PDEs

vxy + xvx − ywx + yvy − xwy + xyv = 0,

wxy + xwx + yvx + ywy + xvy + xyw = 0
(4.5)

can be reduced via

v = exp
(−xy)

[

v cos

(
x2

2
+
y2

2

)

+w sin

(
x2

2
+
y2

2

)]

,

w = exp
(−xy)

[

−v sin

(
x2

2
+ y2

)

+w cos

(
x2

2
+
y2

2

)] (4.6)

to the simpler system

vxy +
(
xy − 1

)
v +

(
x2 + y2)w = 0,

wxy +
(
xy − 1

)
w − (

x2 + y2)w = 0,
(4.7)

since h1 = 1 − xy = k1 and h2 = x2 + y2 = k2.
(4) The system

vxy + (xv)x −
(
yw

)
x + xvy + x2v + ywy + y2v = 0,

wxy + (xw)x +
(
yv

)
x + xwy + x2w − yvy + y2w = 0

(4.8)

has semi-invariants h1 = 0 = h2 and k1 = −1 = k2. Therefore it is factorizable as

(
∂

∂x
+ x − iy

)(
∂

∂y
+ x + iy

)
u = 0. (4.9)
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This last PDE can be treated as a system of two linear first-order PDEs for its solution. Here
we have I1 = I3 = I5 = 0 so that Theorem 4 of [6] is satisfied too. Thus this system can be
factorizable in two ways. One is via the scalar complex factored PDE (4.9) and the other as
factorization of each of the two equations comprising the system as in Theorem 4 of [6].

(5) The system

2vxy + (x + 1)vx − (x − 1)wx + 2yvx +
(
yx + y + 1

)
v − (

yx − y + 1
)
w = 0,

2wxy − (x − 1)vx + (x + 1)wx + 2ywy −
(
yx − y + 1

)
v +

(
yx + y + 1

)
w = 0

(4.10)

was considered in [6] for factorization. However, it is not of the form (2.8) (the Corollary
does not apply here), and hence it cannot be reducible to a complex scalar hyperbolic PDE.

5. Discussion

In this work we have used complex splitting of the scalar linear (1 + 1) hyperbolic equation
to transform it into a system of two linear hyperbolic equations by a complex split. The
equivalence transformations of the dependent variable that maps the scalar complex linear
(1 + 1) hyperbolic PDE to itself also transform the system that arises from the complex scalar
PDE to itself. Usually the algebraic properties do not transfer to systems by complex splitting
[9]. The Laplace-type invariants were then found for this special system. These four Laplace-
type invariants arise from the two Laplace invariants of the scalar linear (1 + 1) hyperbolic
PDE. We then focused on reductions to simpler systems using these semi-invariants (see
Theorems 3.2 and 3.3). In particular we considered uncoupling and factorization of systems
for which we obtained new results in the sense that they relate to scalar base equations.

We found that our special system has adjoint equations which are factorizable in terms
of the scalar PDE from which it arises if the parent equation is factorizable as well (see
Theorems 3.4 and 3.5). It was shown that this property of adjoint factorization does not hold
for more general systems as in [6] but precisely those that arise from the complex linear hyperbolic
PDE. This is not surprising as a self-adjoint operator is Hermitian and that is what is required
for the real system to correspond to a complex scalar base equation.

We also pointed out how our system fits into the more general system considered
in [6]. As a consequence we have provided the answer to the inverse problem of when
linear hyperbolic systems of two equations in two independent variables arise from a scalar
complex linear (1+1) hyperbolic PDE as given in the Corollary. Moreover the transformation
that relates the special systems are easily constructible (see Theorem 3.1) by using the base
transformations which are in terms of the coefficients of the original and target PDEs. This is
not as yet known for general systems as in [6]. Many examples were given to illustrate our
method. Some of these were also related to the examples given in [6].
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