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The emission of carbon dioxide (CO2) is closely associated with oxygen (O2) depletion, and
thermal decomposition in a reacting stockpile of combustible materials like fossil fuels (e.g.,
coal, oil, and natural gas). Moreover, it is understood that proper assessment of the emission
levels provides a crucial reference point for other assessment tools like climate change indicators
and mitigation strategies. In this paper, a nonlinear mathematical model for estimating the
CO2 emission, O2 depletion, and thermal stability of a reacting slab is presented and tackled
numerically using a semi-implicit finite-difference scheme. It is assumed that the slab surface
is subjected to a symmetrical convective heat and mass exchange with the ambient. Both
numerical and graphical results are presented and discussed quantitatively with respect to various
parameters embedded in the problem.

1. Introduction

Studies relating to transient heating of combustible materials due to exothermic oxidation
chemical reactions are extremely important and have awide range of applications in industry,
engineering, and environmental science [1]. For instance, fossil fuels (coal, oil, and natural
gas) account for 85% of world’s primary energy supply, 70% of worlds electricity and heat
generation and over 94% of energy for transportation [2]. The production and use of these
combustible materials contribute up to 80% of CO2 emission. Given expected increases in
global population, economic growth, and energy demand, a continuous rise in emissions
is expected unless fundamental technology changes occur in global energy systems which
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Figure 1: Geometry of the problem.
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Figure 2: Transient and steady-state temperature profiles.

are currently dominated by fossil fuels. The CO2 pollution is the principal human cause
of global warming and climate change [3]. Meanwhile, for proper assessment of the CO2

emission and O2 depletion levels together with their impact on both the environment and
life on Earth, knowledge of the mathematical models of these complex chemical systems
is essential. These provide crucial reference points for other assessment tools like thermal
stability of the materials, climate change indicators, and mitigation strategies. It may also
help in developingmedium to long-term action plans for climate change research and reliable
design of the systems [4].

An extensive review of detailed chemical kinetic models for the heating-up of
combustible materials is given by Simmie [5]. His review considered post-1994 work
and focuses on the modeling of hydrocarbon fuel oxidation in the gas phase by detailed
chemical kinetics and those experiments which validate them.Moreover, thermal combustion
analysis has received much attention in the literature [6–8]. Several studies have been
directed towards obtaining critical conditions for thermal ignition to occur in the form of
a critical value for the Frank-Kamenetskii parameter [9]. Usually, chemical processes include
many, up to a several hundred, intermediate elementary reactions [10]. For example, in
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Figure 3: Transient and steady state oxygen profiles.
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Figure 4: Transient and steady state carbon dioxide profiles.

combustion science, it is very common to use complex multistep reaction mechanisms to
predict the oxidation of hydrocarbons [11]. However, the use of one-step decomposition
kinetics clearly simplifies the complicated chemistry involved in the problem but is both
practical and necessary without additional information about the individual decomposition
reaction steps [12, 13]. Meanwhile, analytical solutions of the partial differential equations
governing transient heating of the combustible material undergoing oxidation reactions are
usually impossible or extremely difficult to obtain. The exothermic nature of such reactions
leads to complex nonlinear transient interaction of heat conduction, mass diffusion, and
chemical reactions, resulting in steep concentration and temperature gradients [14]. In such
circumstances, a better understanding of the system behavior can only be accomplished by
conducting numerical simulations to capture the frontal behavior of the processes.

The basic objective of this study is to provide a numerical estimate for the thermal
stability together with the rate of CO2 emission and O2 depletion in transient heating of a
slab of combustible material in the presence of convective heat and mass exchange with the
ambient at the slab surface. The mathematical formulation of the problem is established in
section two. In section three, the semi-implicit finite difference technique is implemented
to tackle the problem. Both numerical and graphical results are presented and discussed
quantitatively with respect to various parameters embedded in the system in Section 4.
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Figure 5: Effects of n on temperature.
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Figure 6: Effects of n on O2.

2. Mathematical Model

We consider a stockpile of combustible material in a rectangular slab. It is assumed that
the slab is undergoing an nth-order oxidation chemical reaction, and its surface is subjected
to a symmetrical convective heat and mass exchange with the ambient (see Figure 1). The
complicated chemistry involved in this problem can be simplified by assuming a one-step
finite-rate irreversible reaction between the combustible material (hydrocarbon) and the
oxygen of the air; that is,

CiHj +
(
i +

j

4

)
O2 −→ iCO2 +

j

2
H2O +Heat. (2.1)

Following [1, 5, 6, 12, 14], the nonlinear partial differential equations describing temperature,
oxygen, and carbon dioxide concentration in the combustible material can be written as
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Figure 7: Effects of n on CO2.
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Figure 8: Effects ofm on temperature.
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with initial and boundary conditions as follows:
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Figure 9: Effects of m on O2.
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Figure 10: Effects of m on CO2.
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(2.3)

where T is the absolute temperature, C is the (depletion) oxygen concentration, P is
the carbon dioxide emission concentration, Ta is the ambient temperature, Ca is the
oxygen concentration in the surrounding air, Pa is the carbon dioxide concentration in the
surrounding air, t is the time, T0 is the slab initial temperature, the initial depletion of oxygen
in the slab is zero, ρ is the density, cp specific heat at constant pressure, k is the thermal
conductivity of the reacting slab,D is the diffusivity of oxygen in the slab, γ is the diffusivity
of carbon dioxide in the slab, Q is the exothermicity, A is the rate constant, E is the activation
energy, R is the universal gas constant, l is the Planck number, K is the Boltzmann constant,
ν is the vibration frequency, a is the slab half width, y is the distance measured transverse
direction, h1 is the coefficient of heat transfer between the slab and its surroundings, h2 is the
coefficient of oxygen transfer between the slab and its surroundings, h3 is the coefficient of
carbon dioxide transfer between the slab and its surroundings, n is the order of exothermic
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Figure 11: Effects of Bi1 on temperature.
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Figure 12: Effects of Bi1 on O2.

chemical reaction, and m is the numerical exponent such that m ∈ {−2, 0, 0.5}. The three
values taken by the parameter m represent the numerical exponent for sensitized, Arrhenius
and Bimolecular kinetics, respectively, (see [1, 6]). We introduce the following dimensionless
variables into (2.2)-(2.3):
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Figure 13: Effects of Bi1 on CO2.
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Figure 14: Effects of Bi2 on temperature.

and we obtain the dimensionless governing equations as
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The corresponding initial and boundary conditions then become
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Figure 15: Effects of Bi2 on O2.
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Figure 16: Effects of Bi2 on CO2.
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(2.6)

where λ, ε, β1, β2, α, σ, Bi1, Bi2, and Bi3 represent the Frank-Kamenetskii parameter,
activation energy parameter, oxygen consumption rate parameter, carbon dioxide emission
rate parameter, oxygen diffusivity parameter, carbon dioxide diffusivity parameter, the
thermal Biot number, oxygen Biot number, and carbon dioxide Biot number, respectively.
A body of material releasing heat to its surroundings may achieve a safe steady state where
the temperature of the body reaches some moderate value and stabilizes. However, when
the rate of heat generation in the material exceeds the rate of heat loss to the surroundings,
then ignition can occur. In the following sections, (2.5)-(2) are solved numerically using a
semi-implicit finite difference scheme.



10 Mathematical Problems in Engineering

0.1
0.5

1
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

1

2

3

4

5

6

7

Ψ

Bi3 =
Bi3 =

Bi3 =
Bi3 =

Figure 17: Effects of Bi3 on CO2.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

θ

λ = 0.1
λ = 0.5

λ = 1
λ = 1.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

Figure 18: Effects of λ on temperature.
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Figure 19: Effects of λ on O2.

3. Numerical Solution

Our numerical algorithm is based on the semi-implicit finite difference scheme [15–18]. The
implicit terms are taken at the intermediate time level (N + ξ)where 0 ≤ ξ ≤ 1. The algorithm
employed in [18] uses ξ = 1/2, we will, however, follow the formulation in [15–17] and take
ξ = 1 in this paper so that we can use larger time steps. In fact being nearly fully implicit,
our numerical algorithm presented in this paper is conjectured to work for any value of the
time step! The discretization of the governing equations is based on a linear Cartesian mesh
and uniform grid on which finite differences are taken. We approximate both the second and
first spatial derivatives with second-order central differences. The equations corresponding to
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Figure 20: Effects of λ on CO2.
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Figure 21: Effects of β1 on temperature.

the first and last grid points are modified to incorporate the boundary conditions. The semi-
implicit schemes for the temperature, O2 concentration, and CO2 concentration, respectively,
read
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Figure 22: Effects of β1 on O2.
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Figure 23: Effects of β1 on CO2.

The equations for θ(N+1), Φ(N+1), and Ψ(N+1), thus, become
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Figure 25: Effects of ε on temperature.
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(3.2)

where r = Δt/Δy2. The solution procedures reduce to inversion of tridiagonal matrices. The
schemes (3.2) were checked for consistency. For ξ = 1, these are first-order accurate in time
but second order in space. The schemes in [18] have ξ = 1/2 which improves the accuracy in
time to second order. We use ξ = 1 here so that we are free to choose larger time steps and
still converge to the steady solutions. As already conjectured, our algorithm works for any
value of the time step! The code was checked for both spatial and temporal convergence. In
particular, solutions calculated from, say Δt = 1, using 200 time steps are exactly the same as
those after 40 time steps with Δt = 5 or those after 20,000 time steps with Δt = 0.01. Similarly
solutions usingΔy = 0.02 converge to the same results as those say forΔt = 0.025 orΔt = 0.05,
and so forth. Our code, thus, runs extremely fast, and; hence, we can easily obtain and, thus,
present all our results at steady state using nearly insignificant computational times.
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Figure 27: Effects of ε on CO2.

4. Results and Discussion

Unless otherwise stated, we employ the parameter values:

m = 0.5, n = 1, θa = 0.1, α = 1, σ = 1,

β1 = 1, β2 = 1, Bi1 = 1, Bi2 = 1, Bi3 = 1,

ε = 0.1, Δy = 0.01, Δt = 1, t = 200.

(4.1)

These will be the default values in this work, and; hence, in any graph where any of these
parameters is not explicitly mentioned, it will be understood that such parameters take on
the default values.

4.1. Transient and Steady Flow Profiles

We display the transient solutions in Figures 2, 3, and 4. At the given parameter values,
Figure 2 shows a transient increase in temperature until a steady-state is reached. A similar
scenario obtains in Figure 4 in which a transient increase of carbon dioxide emission is
observed until a steady state is reached. An opposite situation is noticed in Figure 3 where
a decrease in oxygen concentration is observed with increasing time until a steady-state
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concentration is attained. These results are consistent with intuition regarding exothermic
oxidation reactions.

4.1.1. Parameter Dependance of Solutions in Steady State

It is understood from Figures 2–4 that, at the default parameter values, solutions have reached
steady state at, say, times t ≥ 40. All the solutions at t = 200 given below will, thus, be
understood to be steady solutions. The dependence of solutions on parameter n is illustrated
in Figures 5, 6, and 7. As n increases, the results show a decrease in both the temperature and
the CO2 emission. The reduced oxidation reactions mean lower oxygen consumption, hence,
lead to a corresponding increase in O2 concentration.

The dependence of solutions on parameter m is illustrated in Figures 8, 9, and 10. As
m increases, the results show an increase in both the temperature and the CO2 emission. The
increased oxygen consumption from higher oxidation reactions correspondingly decreases
O2 concentration.

The dependence of solutions on parameter Bi1 is illustrated in Figures 11, 12, and
13. As Bi1 increases, the results show a decrease in both the temperature and the CO2

emission. The reduced oxidation reactions mean lower oxygen consumption, hence, lead to a
corresponding increase in O2 concentration.

The dependence of solutions on parameter Bi2 is illustrated in Figures 14, 15,
and 16. An increase in Bi2 directly corresponds to an increase in O2 concentration. This
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Figure 30: Effects of α on CO2.
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Figure 31: Effects of σ on CO2.

correspondingly increases the oxidation reactions and, hence, increases the temperature and,
hence, the CO2 emission.

The dependence of CO2 emission on Bi3 is shown in Figure 17. An increase in Bi3
decreases the CO2 emission. No noticeable effects are observed in the temperature and the
O2 concentration.

The dependence of solutions on the reaction parameter λ is illustrated in Figures 18,
19, and 20. An increase in λ directly corresponds to an increase in the (exothermic) oxidation
reactions and, hence, increases the temperature and, hence, the CO2 emission. The increased
oxidation reactions increase oxygen consumption and thus decrease O2 concentration.

The dependence of solutions on parameter β1 is shown in Figures 21, 22, and 23. An
increase in β1 directly corresponds to a decrease in O2 concentration. This correspondingly
decreases the oxidation reactions and, hence, decreases the temperature and also CO2

emission.
The dependence of CO2 emission on β2 is shown in Figure 24. An increase in β2

increases the CO2 emission. No noticeable effects are observed in the temperature and the
O2 concentration.

The dependence of solutions on the parameter ε is illustrated in Figures 25, 26, and
27. An increase in ε decreases the temperature and the CO2 emission. The reduced oxygen
consumption leads to an increase in O2 concentration.
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Figure 32: Effects of variation of n on the thermal criticality or blowup in the system.
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Figure 33: Effects of variation of m on the thermal criticality or blowup in the system.

The dependence of solutions on the parameter α is shown in Figures 28, 29, and 30. An
increase in α directly corresponds to an increase in O2 concentration. This correspondingly
increases the oxidation reactions and hence increases the temperature and also CO2 emission.

The dependence of CO2 emission on σ is shown in Figure 31. An increase in σ
decreases the CO2 emission. No noticeable effects are observed in the temperature and O2

concentration.

4.2. Thermal Stability and Blowup

In Figures 32, 33, 34, and 35, we plot θy(1, t) against λ for varying values of n, m, Bi1, and
Bi2, respectively. The solutions are given up to the values of λ at which the onset of blowup
in temperature is observed. We notice that parameters that increase the temperature (θ)
correspondingly increase θy(1, t). The results also show that early onset of blowup (and,
hence, thermal instability) can be delayed by using higher values of n, lower values of m,
higher values of Bi1, lower values of Bi2, and so forth.
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Figure 34: Effects of Bi1 variation on the thermal criticality or blowup in the system.
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Figure 35: Effects of Bi2 variation on the thermal criticality or blowup in the system.

5. Conclusion

We develop an unconditionally stable (works for any time step size) and convergent semi-
implicit finite-difference scheme and utilize it to computationally investigate the transient
dynamics of CO2 emission, O2 depletion, and thermal decomposition in a reacting slab. The
solutions show that those processes that increase the oxidation reactions lead to enhanced
oxygen depletion as well as increased carbon dioxide emission. The results also show that
enhanced thermal stability and reduced carbon dioxide emission are best achieved by cutting
down on those processes that would otherwise increase the oxidation reactions.
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