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The dam-reservoir system is divided into the near field modeled by the finite element method,
and the far field modeled by the excellent high-order doubly asymptotic open boundary (DAOB).
Direct and partitioned coupled methods are developed for the analysis of dam-reservoir system.
In the direct coupled method, a symmetric monolithic governing equation is formulated by
incorporating the DAOB with the finite element equation and solved using the standard time-
integration methods. In contrast, the near-field finite element equation and the far-field DAOB
condition are separately solved in the partitioned coupled methodm, and coupling is achieved
by applying the interaction force on the truncated boundary. To improve its numerical stability
and accuracy, an iteration strategy is employed to obtain the solution of each step. Both coupled
methods are implemented on the open-source finite element code OpenSees. Numerical examples
are employed to demonstrate the performance of these two proposed methods.

1. Introduction

The coupled analysis of dam-reservoir interaction has great significance for the design
and safety evaluation of concrete dams under earthquakes. The finite element method and
substructure method are often applied for the analysis of dam-reservoir system (Figure 1).
The dam structure as well as the near-field reservoir with irregular geometry is discretized
with finite elements. The remaining part of the reservoir, called the far field, is simplified as
a semi-infinite layer with constant depth. On the truncated boundary, which separates the
near and far field, the equations of motion and continuity should be satisfied simultaneously.
In the early studies, frequency-domain analysis methods [1, 2] are often used for linear
problems. However, for a nonlinear analysis of the dam-reservoir system, it is necessary to
develop a direct time domain analysis. Zienkiewicz and Bettess [3] as well as Küçükarslan
et al. [4] studied fluid-structure interaction in the time domain by imposing the Sommerfeld
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Figure 1: A typical dam-reservoir system.

radiation condition [5]. Tsai and his coworkers [6–8] established the time-domain models
for the dynamic interaction analysis of dam-reservoir system by using the transmitting
boundary. This approach is temporally global; that is, it requires the evaluation of convolution
integrals. Boundary element method is undoubtedly a powerful numerical tool for analysis
of problems involving unbounded domain. When the boundary element method [9–13] is
applied to the direct time-domain analysis of dam-reservoir interaction, the formulation
is temporally and spatially global. As a result, great numerical effort is required to solve
the transient problems. This hinders its application to long-time analysis of large-scale
engineering problems. The scaled boundary finite elementmethod is a semianalytical method
which is efficient for the analysis of dam-reservoir interaction. Details of this approach are
given, for example, by Li et al. [14] and Lin et al. [15].

The high-order open boundaries are promising alternatives for the simulation of semi-
infinite reservoir in the analysis of dam-reservoir system. The high-order open boundaries
[16, 17] are of increasing accuracy as the order of approximation increases. Moreover, the
formulations are temporally local so that they are computationally efficient. As demonstrated
by Prempramote et al. [18], these high-order open boundaries are singly asymptotic at the
high-frequency limit and are appropriate for the radiative fields, where virtually all of the
field energy is propagating out to infinity [19]. However, in some classes of application,
such as a semi-infinite reservoir with constant depth (also known as a wave guide), a cutoff
frequency exists. When the excitation frequency is close to or below the cutoff frequency,
the wave field is largely nonradiative. In such cases, the high-order transmitting boundaries
break down at late times in a time domain analysis [18]. To model an unbounded domain
with the presence of nonradiative wave fields, one advance is the introduction of the
doubly asymptotic boundaries [19–22]. Thus, the dynamic stiffness is exact at both the high-
frequency and the low-frequency limit (i.e., statics), with its formulation spatially global.
However, the highest order denoting the accuracy reported in the literature is three [23].

Recently, a novel high-order doubly asymptotic open boundary for one-dimensional
scalar wave equation is proposed by Prempramote et al. [18] by extending the work in [24].
This high-order doubly asymptotic open boundary is capable of accurately mimicking the
unbounded domain over the entire frequency (i.e., from zero to infinity). This open boundary
condition is constructed by using the continued fraction solution of dynamic stiffness matrix
without explicitly evaluating its solution at discrete frequencies. When applied for a semi-
infinite layer with a constant depth, the constants of the continued fraction solutions with
any order are determined explicitly and recursively. Excellent accuracy and stability for long-
time transient analysis are reported.
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Wang et al. [25] extend the high-order doubly asymptotic open boundary condition
by Prempramote at al. [18] to the analysis of the hydrodynamic pressure of a semi-
infinite reservoir with constant depth. By applying the sequential staggered implicit-implicit
partition algorithm, the high-order doubly asymptotic open boundary is coupled with the
general purpose finite element software ABAQUS to analyze the gravity dam-reservoir
interaction system. Numerical examples demonstrate the high accuracy and long-time
stability of this proposed technique.

Givoli et al. [26] proposed a new finite element scheme for the solution of time-
dependent semi-infinite wave-guide problems by incorporating with a high-order open
boundary. Two versions of finite element formulation, namely, the augmented version and the
split version, are proposed. Good performance of this scheme is demonstrated in numerical
examples, but the global mass and stiffness matrices of the augmented formulation are
nonsymmetric.

In this paper, two coupled numerical methods for dam-reservoir interaction analysis
based on the excellent high-order doubly asymptotic open boundary [25] are proposed. In
the direct coupled method, the high-order doubly asymptotic open boundary is directly
incorporated with the near-field finite element equation. A monolithic governing equation
for the whole dam-reservoir system is formulated with sparse and symmetric coefficients
matrices, which can be solved using the standard time-integrationmethods. In the partitioned
coupled method, the near-field finite element equation and the far-field high-order doubly
asymptotic boundary condition are separately solved. The high-order doubly asymptotic
open boundary is split into two parts. The first part is proved to be the Sommerfeld radiation
boundary, which can be included in the damping matrix of the near-field finite element equa-
tion. The second part includes all the high-order terms and is governed by a system of first-
order ordinary differential equations. These two sets of equations are solved by a sequential
staggered implicit-implicit partition algorithm. To improve the stability and accuracy of this
partitioned coupled method, an iteration strategy is employed to obtain the solution of each
step. Both of these two coupled methods are numerically implemented on the open-source
finite element code OpenSees to analyze the gravity dam-reservoir and arch dam-reservoir
interaction.

This paper is organized as follows. In Section 2, the finite element formulation of
dam-reservoir system is addressed. In Section 3, the scaled boundary finite element method
is applied to 3-dimensional semi-infinite layer with constant depth. The governing equation
on the truncated boundary is obtained. In Section 4, the scaled boundary finite element
equation is decoupled by modal decomposition. Based on the continued fraction solutions
of the dynamic stiffness, a high-order doubly asymptotic open boundary is constructed by
introducing auxiliary variables. In Section 5, two coupled numerical methods are presented:
the direct coupled method and the partitioned coupled method. Both numerical methods
are implemented on the open source finite element code OpenSees. In Section 6, numerical
examples of a gravity dam and an arch dam are presented. In the final section, conclusions are
stated.

2. Modeling of Dam-Reservoir System

A typical dam-reservoir system is shown in Figure 1. The reservoir is divided into two parts:
the near field with irregular geometry and the far field extending to the infinity with constant
depth. The dam structure and near field reservoir are dicretized with finite elements, and the
far field reservoir is modeled with high-order doubly asymptotic boundary.
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The hydrodynamic pressure is denoted as p = p(x,y, z, t), and the acceleration of
water particle is denoted as {ü} = {ü(x,y, z, t)}. Assuming the water in the reservoir to be
compressible, inviscid, and irrotational with small amplitude movements, the hydrodynamic
pressure p in the reservoir satisfies the scalar wave equation

1
c2

∂2p

∂t2
= Δp, (2.1)

where Δ is the Laplace operator and c is the compression wave velocity

c =

√
K

ρ
, (2.2)

where K is the bulk modulus of water and ρ is the mass density. On the dam-reservoir
interface (S1), p satisfies the following boundary condition

∂p

∂n
= −ρün, (2.3)

where n stands for the outward normal of the boundary. At the reservoir bottom (S2), the
following boundary condition

∂p

∂n
= 0 or ün = 0 (2.4)

applies. Neglecting the effect of surface waves, on the free surface (S3),

p = 0 (2.5)

applies. At infinity (S4), A Sommerfeld-type radiation boundary condition should be
satisfied; namely,

∂p

∂n
= − ṗ

c
. (2.6)

Without considering the material damping, the finite element formulation for dam-
reservoir system can be partitioned as

⎡
⎢⎢⎣

[Ms] 0 0

−[Qfs

] [
Mff

] [
Mfb

]
0

[
Mbf

]
[Mbb]

⎤
⎥⎥⎦
⎧⎨
⎩

{üs}{
p̈f
}{

p̈b
}
⎫⎬
⎭ +

⎡
⎢⎢⎣
[Ks]

[
Qsf

]
0

0
[
Kff

] [
Kfb

]
0

[
Kbf

]
[Kbb]

⎤
⎥⎥⎦
⎧⎨
⎩

{us}{
pf
}{

pb
}
⎫⎬
⎭ =

⎧⎨
⎩
{
fs
}{

ff
}

−{r}

⎫⎬
⎭, (2.7)

where [M], [K], and [Q] are the mass matrix, static stiffness matrix, the coupling matrix
between structure and acoustic fluid, respectively, and {f} is the external force vector.
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Subscript s denotes the degrees of freedom of the dam structure; subscript b denotes the
degrees of freedom on the truncated boundary; subscript f denotes the degrees of freedom of
the near-field water except for those on the truncated boundary. The interaction load applied
to the semi-infinite reservoir (far field) by the near-field reservoir is denoted as {r}, so the
external load applied to the near-field reservoir on the truncated boundary is equal to −{r}.
The mass and stiffness matrices of water treated as acoustic fluid are expressed as

[
Mf

]
=
∫
Vf

1
K
[N]T [N]dV,

[
Kf

]
=
∫
Vf

1
ρ

(
∂[N]T

∂x

∂[N]
∂x

+
∂[N]T

∂y

∂[N]
∂y

+
∂[N]T

∂z

∂[N]
∂z

)
dV,

[
ff
]
=
∫
Sf

1
ρ
[N]

∂[N]
∂n

dS,

(2.8)

where [N] denotes the shape function of finite elements.
To solve (2.7) for the dam-reservoir system, the relationship between the interaction

load {r} and the hydrodynamic pressure {p} of the semi-infinite reservoir is formulated in
the following section.

3. Summary of the Scaled Boundary Finite Element Method for
Semi-Infinite Reservoir with Constant Depth

The scaled boundary finite element method is a semianalytical method developed to
model unbounded domains with arbitrary shape [27]. The scaled boundary finite element
formulation for the two-dimensional semi-infinite reservoir with constant depth was
described in detailed [25]. For the sake of completeness, a brief summary of the equations
necessary for the interpretation of high-order doubly asymptotic open boundary for
hydrodynamic pressure is presented in this section.

To facilitate the coupling with the finite elements of the near-field reservoir, the
truncated boundary is discretized by elements that have the same nodes and shape function
as the finite elements. The derivation is summarized for three-dimensional semi-infinite
reservoir with a vertical boundary (Figure 2). Streamlined expressions are presented as
follows.

For an acoustic fluid, the relationship between acceleration and hydrodynamic
pressure is equivalent to that between stress and displacement in stress analysis and is
expressed as

{L}p + ρ{ü} = 0, (3.1)

where {L} = {∂/∂x ∂/∂y ∂ /∂z} is the differential operator. The equation of continuity
without considering the volumetric stress-strain relationship of compressible water is written
as

{L}T{ü} = − 1
K

∂2p

∂t2
. (3.2)
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Figure 2: Semidiscretization of the truncated boundary.

The vertical truncated boundary of the semi-infinite reservoir is specified by a constant
coordinate xb. It is discretized by two-dimensional elements (Figure 2(a)). A typical element
is shown in Figure 2(b). The geometry of an element is interpolated using the shape functions
[N(η, ζ)] formulated in the local coordinates η and ζ as

yb

(
η, ζ

)
=
[
N
(
η, ζ

)]{
yb

}
, zb

(
η, ζ

)
=
[
N
(
η, ζ

)]{zb}. (3.3)

The Cartesian coordinates of a point (x, y, z) and inside the semi-infinite reservoir
are expressed as

x(ξ) = xb + ξ,

y
(
ξ,η, ζ

)
= yb

(
η, ζ

)
=
[
N
(
η, ζ

)]{
yb

}
,

z
(
ξ,η, ζ

)
= zb

(
η, ζ

)
=
[
N
(
η, ζ

)]{zb},
(3.4)

where the coordinate ξ is equal to 0 on the vertical boundary. The Jacobian matrix for
coordinate transformation from (x,y, z) to (ξ,η, ζ) is expressed as

[
J
(
η, ζ

)]
=

⎡
⎢⎢⎣
x,ξ y,ξ z,ξ

x,η y,η z,η

x,ζ y,ζ z,ζ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0

0 yb,η zb,η

0 yb,ζ zb,ζ

⎤
⎥⎥⎦. (3.5)

For a three-dimensional problem,

dV = |J |dξdηdζ, (3.6)

where |J | is the determinant of the Jacobian matrix. The partial differential operator defined
in (3.1) is expressed as

{L} =
[
J
(
η, ζ

)]−1[ ∂

∂ξ

∂

∂η

∂

∂ζ

]T
=
{
b1
} ∂

∂ξ
+
{
b2
} ∂

∂η
+
{
b3
} ∂

∂ζ
, (3.7)
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with

{
b1
}
=

⎧⎨
⎩
1
0
0

⎫⎬
⎭,

{
b2
}
=

1
|J |

⎧⎨
⎩

0
zb,ζ
−yb,ζ

⎫⎬
⎭,

{
b3
}
=

1
|J |

⎧⎨
⎩

0
−zb,η
yb,η

⎫⎬
⎭. (3.8)

Along horizontal lines passing through a node on the boundary, the nodal
hydrodynamic pressure functions {p} = {p(ξ, t)} are introduced. On the boundary, the
nodal hydrodynamic pressure follows as {pb} = {p(ξ = 0, t)}. One isoparametric element
Se is shown in Figure 2. The hydrodynamic pressure field p = p(ξ,η, ζ, t) is obtained by
interpolating the nodal hydrodynamic pressure functions

p =
[
N
(
η, ζ

)]{
p
}
. (3.9)

Substituting (3.9) and (3.7) into (3.1), the fluid particle acceleration {ü} = {ü(ξ,η, ζ)}
is expressed as

{ü} = −1
ρ

([
B1
]{
p
}
,ξ +

[
B2
]{
p
})

, (3.10)

with

[
B1
]
=
{
b1
}[

N
(
η, ζ

)]
,

[
B2
]
=
{
b2
}[

N
(
η, ζ

)]
,η +

{
b3
}[

N
(
η, ζ

)]
,ζ. (3.11)

Applying Galerkin’s weighted residual technique in the circumferential directions η, ζ
to (3.2), the scaled boundary finite element equation for the three-dimensional semi-infinite
reservoir with constant depth is obtained as

[
E0
]{
p
}
,ξξ −

[
E2
]{
p
} − 1

c2

[
E0
]{
p̈
}
= 0, (3.12)

where [E0], [E2], and [M0] are coefficient matrices

[
E0
]
=
∫
Sξ

[
B1
]T 1

ρ

[
B1
]
|J |dη dζ =

∫
Sξ

[
N
(
η, ζ

)]T 1
ρ

[
N
(
η, ζ

)]|J |dη dζ,
[
E2
]
=
∫
Sξ

[
B2
]T 1

ρ

[
B2
]
|J |dη dζ,

[
M0

]
=
∫
Sξ

[
N
(
η, ζ

)]T 1
K

[
N
(
η, ζ

)]|J |dη dζ = 1
c2

[
E0
]
.

(3.13)

The coefficient matrices of (3.12) are evaluated by standard numerical integration
techniques in the finite element method. Similar to the static stiffness and mass matrices
in the finite element method, both of the coefficients [E0] and [E2] are sparse and positive
definite. This formulation is the same as that of two-dimensional case [25]. It is applicable for
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3-dimensional case with vertical truncated boundary of arbitrary geometry, such as the arch
dam-reservoir system.

The acoustic nodal load vector r = {r(ξ, t)} on a vertical boundary with a constant ξ is
obtained based on virtual work principle and is expressed as

{r} =
[
E0
]
{P},ξ. (3.14)

Assuming the time-harmonic behavior {p(ξ, t)} = {P(ξ, ω)}e+iωt and {r(ξ, t)} =
{R(ξ, ω)}e+iωt (ω is the excitation frequency) with the amplitudes of the hydrodynamic
pressure {P} = {P(ξ, ω)}, (3.12) is transformed into the frequency domain as

[
E0
]
{P},ξξ −

[
E2
]
{P} + ω2

c2

[
E0
]
{P} = 0, (3.15)

and the amplitudes of the acoustic nodal load {R} = {R(ξ, ω)} are expressed as

{R} = −
[
E0
]
{P},ξ. (3.16)

4. High-Order Doubly Asymptotic Open Boundary for
Hydrodynamic Pressure

The derivation of high-order doubly asymptotic open boundary for hydrodynamic pressure
is implemented based on the modal expression of (3.15). The streamlined expressions in [25]
are summarized in this section.

4.1. Modal Decomposition of Scaled Boundary Finite Element Equation

Following the procedure in detailed [25], the system of ordinary differential equations in
(3.15) can be decoupled by a modal transformation. The modes are obtained from the
following generalized eigenvalue problem (〈·〉 stands for a diagonal matrix):

[
E2
]
[Φ] =

[
E0][Φ]

〈
λ2j

〉
h2

, (4.1)

where 〈λ2j 〉 is the diagonal matrix of positive eigenvalues, h is a characteristic length (e.g., the
depth of the semi-infinite layer) to nondimensionlize the eigenvalues, and [Φ] are the matrix
of eigenvectors representing the modes, which are normalized as

[Φ]T
[
E0
]
[Φ] = [I]. (4.2)
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As a result, the inverse of the eigenvector matrix can be obtained by the matrix
multiplication

[Φ]−1 = [Φ]T
[
E0
]
. (4.3)

Premultiplying (4.1)with [Φ]T results in

[Φ]T
[
E2
]
[Φ] =

〈
λ2j

〉
h2

. (4.4)

The relationship between amplitudes of the hydrodynamic pressure and amplitudes
of the modal hydrodynamic pressure {P̃} = {P̃(ξ, ω)} is defined as

{P} = [Φ]
{
P̃
}
. (4.5)

Substituting (4.5) into (3.15) premultiplied with [Φ]T and using (4.2) and (4.3) lead to
a system of decoupled equations

P̃j,ξξ +
1
h2

(
a2
0 − λ2j

)
P̃j = 0, (4.6)

with the dimensionless frequency

a0 =
ωh

c
, (4.7)

where index j indicates the modal number. Substituting (4.5) into (3.16), the acoustic nodal
force vector is expressed as

{R} = −
[
E0
]
[Φ]

{
P̃
}
,ξ
. (4.8)

The amplitude of the modal nodal force vector {R̃} = {R̃(ξ, ω)} is defined as

{
R̃
}
= −h

{
P̃
}
,ξ

or R̃j = −hP̃j,ξ. (4.9)

Premultiplying (4.8) and using (4.2) and (4.9) yield

{
R̃
}
= h[Φ]T{R}. (4.10)
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This equation transforms the amplitude of the acoustic nodal force vector to the
amplitude of the modal force vector. Themodal dynamic stiffness coefficient S̃j(a0) is defined
as

R̃j = S̃j(a0)P̃j . (4.11)

By eliminating R̃j and P̃j from (4.6), (4.9), and (4.11), an equation for the modal
dynamic stiffness coefficient is derived as

(
S̃j(a0)

)2
+ a2

0 − λ2j = 0. (4.12)

4.2. Doubly Asymptotic Continued Fraction Solution for
Modal Dynamic Stiffness

Based on a doubly asymptotic solution of the modal dynamic stiffness coefficient S̃j(a0), a
temporally local open boundary [18] is constructed for a single mode of wave propagation.
The solution of (4.12) is expressed as a doubly asymptotic continued fraction. An order MH

high-frequency continued fraction is constructed first as

S̃j(a0) = (ia0) − λ2j

(
Ỹ

(1)
j (a0)

)−1
,

Ỹ
(i)
1 (a0) = (−1)i2(ia0)Ỹ

(i)
1,j − λ2j

(
Ỹ

(i+1)
j (a0)

)−1
(i = 1, 2, . . . ,MH).

(4.13)

It is demonstrated by Prempramote et al. [18] that the high-frequency continued
fraction solution does not converge when the excitation frequency is below the cutoff
frequency. To determine a valid solution over the whole frequency range, an ML order
low-frequency continued fraction solution is constructed for the residual term Ỹ

(MH+1)
j (a0).

Denoting the residual term for mode j as

ỸL,j(a0) = Ỹ
(MH+1)
j (a0). (4.14)

The continued fraction solution for ỸL,j(a0) at the low frequency limit is expressed as

ỸL,j(a0) = (−1)MH+1λj + (−1)MH+1(ia0) − (ia0)2
(
Ỹ

(1)
L,j (a0)

)−1
,

Ỹ
(i)
L,j(a0) = (−1)MH+i+12λj − (ia0)2

(
Ỹ

(i+1)
L,j (a0)

)−1
(i = 1, 2, . . . ,ML) .

(4.15)
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The doubly asymptotic continued fraction solution is constructed by combining the
high-frequency continued fraction solution in (4.13)with the low-frequency solution in (4.15)
using (4.14).

4.3. High-Order Doubly Asymptotic Open Boundary

Following the procedure developed for the modal space [18], the acoustic force-pressure
relationship in the time domain is formulated by using the continued fraction solution
of the dynamic stiffness coefficient and introducing auxiliary variables. A system of first-
order ordinary differential equations with symmetric coefficient matrices is obtained, which
represents a temporally local open boundary condition.

Substituting the continued fraction solution of the modal dynamic stiffness coefficient
(4.13)–(4.15) into (4.11) and applying the inverse Fourier transform, the time-domain high-
order doubly asymptotic open boundary in the modal space is expressed as

1
h
r̃j =

1
c
˙̃pj −

1
h
λjp̃

(1)
j , (4.16)

0 = − 1
h
λjp̃j − 2

c
˙̃p
(1)
j − 1

h
λjp̃

(2)
j , (4.17)

0 = − 1
h
λjp̃

(i−1)
j + (−1)i 2

c
˙̃p
(i)
j − 1

h
λjp̃

(i+1)
j (i = 2, 3, . . . ,MH), (4.18)

0 = − 1
h
λjp̃

(MH)
j + (−1)MH+1 1

h
λjp̃

(0)
L,j + (−1)MH+1 1

c
˙̃p
(0)
L,j −

1
c
˙̃p
(1)
L,j , (4.19)

0 = −1
c
˙̃p
(i−1)
L,j + (−1)MH+i+1 2

h
λjp̃

(i)
L,j −

1
c
˙̃p
(i+1)
L,j (i = 1, 2, . . . ,ML), (4.20)

where {p̃(i)} (i = 1, 2, . . . ,MH) and {p̃(i)L } (i = 0, 1, 2, . . . ,ML) are the auxiliary variables
defined in modal space.

For an order MH = ML doubly asymptotic continued fraction solution, the residual
term p̃

(ML+1)
L,j = 0 applies. Equations (4.16)–(4.20) constitute a system of first order ordinary

differential equations relating the interaction load {r̃j}, hydrodynamic pressure {p̃j} and the
modal auxiliary variables p̃(1)j , . . . , p̃

(MH )
j , p̃

(0)
L,j , p̃

(1)
L,j , . . . , p̃

(ML)
L,j in the modal space. This system

of ordinary differential equations is a temporally local high-order doubly asymptotic open
boundary condition for the semi-infinite reservoir with constant depth, which is directly
established on the nodes of a vertical boundary. This boundary condition can be coupled
seamlessly with finite element method.

5. Coupled Numerical Methods for Dam-Reservoir
Interaction Analysis

Based on the high-order doubly asymptotic open boundary, two coupled numerical methods
will be presented in this section: the direct coupled method and the partitioned coupled
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method. Both coupled numerical methods are implemented on the open-source object-
oriented finite element code OpenSees, that is, the open system for earthquake engineering
simulation.

5.1. The Direct Coupled Method

In the direct coupled method, by incorporating the high-order doubly asymptotic open
boundary with the near-field finite element equation, a monolithic governing equation for the
near-field structure and auxiliary variables representing the far-field reservoir is formulated.

To derive a symmetric monolithic formulation, modal transform is applied to the
auxiliary variables defined in modal space {p̃(i)} and {p̃(i)L } as

{
p(i)

}
= [Φ]

{
p̃(i)

}
(i = 1, 2, . . . ,MH),

{
p
(i)
L

}
= [Φ]

{
p̃
(i)
L

}
(i = 0, 1, 2, . . . ,ML),

(5.1)

where {p(i)} and {p(i)L } are the auxiliary variables defined in real space.
Using (4.5), (4.10), (5.1), and left-multiplying (4.16)–(4.20) by [Φ]−T yield

{r} =
1
c

[
E0
]{
ṗ
} − [A]

{
p(1)

}
, (5.2)

{0} = −[A]
{
p
} − 2

c

[
E0
]{

ṗ(1)
}
− [A]

{
p(2)

}
, (5.3)

{0} = −[A]
{
p(i−1)

}
− (−1)i 2

c

[
E0
]{

ṗ(i)
}
− [A]

{
p(i+1)

}
(i = 2, 3, . . . ,MH), (5.4)

{0} = −[A]
{
p(MH)

}
+ (−1)MH+1[A]

{
p
(0)
L

}
+ (−1)MH+1 1

c

[
E0
]{

ṗ
(0)
L

}
− 1
c

[
E0
]{

ṗ
(1)
L

}
, (5.5)

{0} = −1
c

[
E0
]{

ṗ
(i−1)
L

}
+ (−1)MH+i+12[A]

{
p
(i)
L

}
− 1
c

[
E0
]{

ṗ
(i+1)
L

}
(i = 1, 2, . . . ,ML) (5.6)

with the symmetric and positive definite matrix

[A] =
1
h
[Φ]−T

[
λj
]
[Φ]−1. (5.7)

The residual term [E0]{ṗ(ML+1)
L }/c in (5.6) is setting to zero. Substituting (5.2)–(5.6)

into (2.7) leads to a global linear system of ordinary differential equations in the time-domain

[
Mg

]{
üg

}
+
[
Cg

]{
u̇g

}
+
[
Kg

]{
ug

}
=
{
fg
}
. (5.8)
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Here, subscript g denotes global. [Mg], [Cg], and [Kg] are the global mass matrix,
global damping matrix, and global stiffness matrix, which are expressed as

[
Mg

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ms 0 0
−Qfs Mff Mfb

0 Mbf Mbb 0

0 0
. . .

. . . . . . 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[
Cg

]
=

1
c

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 C∞ 0

0 Y(1)
1

. . .

. . . . . . 0

0 Y(MH )
1 0

0 Y(0)
L1 −C∞

−C∞ 0
. . .

. . . . . . −C∞

−C∞ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[
Kg

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ks Qsf 0

0 Kff Kfb

0 Kbf Kbb −A

−A 0
. . .

. . . . . . −A
−A 0 −A

−A Y(0)
L0 0

0 Y(1)
L0

. . .

. . . . . . 0

0 Y(ML)
L0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.9)

with the block matrices

C∞ =
[
E0], Y

(0)
L0 = (−1)MH+1[A], Y

(0)
L1 = (−1)MH+1[E0],

Y
(i)
1 = (−1)i2[E0] (i = 1, 2, . . . ,MH),

Y
(i)
L0 = (−1)MH+i+12[A] (i = 1, 2, . . . ,ML).

(5.10)
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The global load vector [fg] and unknowns [ug] are expressed as (the semicolon “;”
stands for the vertical concatenation of vectors)

{
ug

}
=
[
{us}T ;

{
pf
}T ; {pb}T ;{p(1)}T

; · · · ;
{
p
(ML)
L

}T
]T

,

{
fg
}
=
[
{rs}T ;

{
rf
}T ; {0}T ; {0}T ; · · · ; {0}T]T .

(5.11)

This system of linear equations describes the complete dam-reservoir system taking
account of the influence of the semi-infinite reservoir. Similar to the near-field finite element
formulation (2.7), the coefficient matrices of this formulation are sparse and symmetric.
This dynamic system can be solved using a standard time-integration method, such as the
Newmark family schemes.

Equation (5.8) is of orderNs +Nf +Nfb +(MH +ML +2)Nfb, whereNs is the number
of degrees of freedom of dam structure, Nf is the number of degrees of freedom of near-
field reservoir except for those of the truncated boundary, and Nfb is the number of degrees
freedom of truncated boundary. Compared with the near-field finite element equation (2.7),
additional auxiliary (MH +ML + 1)Nfb degrees of freedom are introduced in (5.8). From the
point view of numerical implementation, (5.8) can be implemented on existing finite element
code without any special treatment and solved by existing finite element solver. The block
coefficient matrices [E0] and [A] in (5.10) are evaluated only once in the analysis. However,
the formulation of the direct coupled method involves additional auxiliary variables, which
requires more computational effort and memory to solve this dynamic system.

5.2. The Partitioned Coupled Method

In the partitioned coupled method, the near-field finite element equation and the far-field
high-order doubly asymptotic boundary condition are separately solved. They are coupled
by the interaction force on the truncated boundary. The deviation of the partitioned coupled
method is detailed in [25]. Streamlined expressions are presented as follows.

Using (4.3) and (4.10), (4.16) left-multiplied by [Φ]−T is rewritten as

{r} =
1
c

[
E0
]{
ṗ
} − 1

h
[Φ]−T

〈
λj
〉{

p̃(1)
}
. (5.12)

Substituting (5.12) into (2.7), the finite element formulation of the dam-reservoir
system considering the interaction between the near-field and the semi-infinite reservoir is
expressed as ⎡

⎢⎢⎣
[Ms] 0 0

−[Qfs

] [
Mff

] [
Mfb

]
0

[
Mbf

]
[Mbb]

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

{üs}{
p̈f
}

{
p̈b
}
⎫⎪⎪⎬
⎪⎪⎭ +

1
c

⎡
⎢⎢⎣
0 0 0

0 0 0

0 0
[
E0]

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

{u̇s}{
ṗf
}

{
ṗb
}
⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣
[Ks]

[
Qsf

]
0

0
[
Kff

] [
Kfb

]
0

[
Kbf

]
[Kbb]

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

{us}{
pf
}

{
pb
}
⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
fs
}

{
ff
}

[Φ]−T
〈
λj
〉{
p̃(1)

}
h

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(5.13)
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The high-order doubly asymptotic open boundary is split into two parts. The first
part is the additional damping term on left-hand side of (5.13), which is equivalent to the
Sommerfeld radiation boundary as demonstrated in [25]. The second part is the coupling
term [Φ]−T〈λj〉{p̃(1)}/h on the right-hand side of (5.13) representing the contribution of
the high-order terms of the doubly asymptotic boundary. It can be regard as an external
load acted on the truncated boundary. For efficiency consideration in the numerical
implementation, the coupling term [Φ]−T〈λj〉{p̃(1)}/h is evaluated in the modal space.

Assembling (4.17)–(4.20) multiplied by h/λj , a system of ordinary differential
equation for the modal auxiliary variables is formulated as

[KA]
{
zA,j(t)

}
+

h

cλj
[CA]

{
żA,j(t)

}
=
{
fA,j(t)

}
, (5.14)

where the coefficient matrices are expressed as

[KA] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

1
. . . . . .

. . . 0 1

1 (−1)MH 0

0 (−1)MH+12
. . .

. . . . . . 0

0 (−1)MH+ML2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[CA] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)02 0

0
. . . . . .

. . . (−1)MH−12 0

0 (−1)MH 1

1 0
. . .

. . . . . . 1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.15)

The unknown vector {zA,j(t)} consists of the modal auxiliary variables of mode j (the
semicolon “;” stands for the vertical concatenation of vectors)

{
zA,j(t)

}
=
{
p̃
(1)
j ; · · · ; p̃(MH)

j ; p̃(0)L,j ; p̃
(1)
L,j ; · · · ; p̃

(ML)
L,j

}
. (5.16)
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The only nonzero entry on the right-hand side is the modal hydrodynamic pressure p̃j
obtained from (4.5)

{
fA,j(t)

}
=
{−p̃j ; 0; · · · ; 0; 0; 0; · · · ; 0}. (5.17)

It is demonstrated by Wang et al. [25] that (5.14) is stable up to the order MH = ML =
100 at least.

Equations (5.13) for the near field and (5.14) for the far field are coupled by the
auxiliary variables {p̃(1)} defined in themodal space. Using the same time integration scheme,
such as the trapezoidal rule, these two sets of equations are solved by a sequential staggered
implicit-implicit partitioned procedure proposed in [28, 29]. The value of the modal auxiliary
variables {p̃(1)} at time station tn+1 is determined by the last-solution extrapolation predictor
[28, 29]

{
p̃(1)

}p

n+1
=
{
p̃(1)

}
n
. (5.18)

The auxiliary variables {p̃(1)} are obtained by integrating (5.14) for prescribed
hydrodynamic pressure {p}. The algorithm proposed in [25] to solve (5.13) and (5.14)
proceeds as follows.

Step 1. Initialize variables {u}0 and {p}0 in (5.13) and {zA,j}0 = 0 for each mode in (5.14).

Step 2. Extract {p̃(1)}n from {zA,j}n = 0 of each mode and assigned to {p̃(1)}pn+1 in (5.18).

Step 3. Form the right-hand term of (5.13), compute {u}n+1 and {p}n+1 by using an implicit
method.

Step 4. Calculate modal hydrodynamic pressure {p̃}n+1 and form the right-hand term of
(5.14).

Step 5. Compute {zA,j}n+1 for each mode by using an implicit method.

Step 6. Increment n to n + 1 and go to Step 2.

Since the predicted vector {p̃(1)}pn+1 has been used rather than {p̃(1)}n+1 in solving (5.13)
and (5.14), this algorithm may lead to a numerical instability or poor accuracy. To avoid
these, the solution algorithm for the partitioned coupled method in this paper is modified.
The solution process within one step given by Step 2 to Step 5 is repeated a number of times
in an iterative manner [26]. In each additional cycle, {p̃(1)}pn+1 in Step 2 is extracted by the last
computed {zA,j}n+1 in Step 5. Numerical experiments demonstrate that stability and accuracy
are improved by performing a few additional iterations.

The order of (5.14) is only MH + ML + 1, and little computational effort is required
to solve (5.14). Consequently, additional memory required for the solution of partitioned
method is less than that of the direct coupled method.

This partitioned coupled method and the sequential staggered implicit-implicit
partition algorithm [25] are both implemented in the open-source finite element code
OpenSees rather than ABAQUS; as a result, the computational efficiency is greatly improved
without any time costing restart analysis in ABAQUS.
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Figure 3: A gravity dam-reservoir system with irregular near field: (a) Geometry; (b) Mesh.

6. Numerical Examples

Two numerical examples are analyzed to evaluate the accuracy and efficiency of the two
present coupled numerical methods. The first example is a gravity dam with an irregular
near field reservoir. The open boundary is employed to represent the regular semi-infinite
reservoir of a constant depth. The time integration for these two coupled numerical methods
is performed by the trapezoidal integration.

It is demonstrated by Wang et al. [25] that an orderMH = ML = 10 high-order doubly
asymptotic open boundary condition is of excellent accuracy. So, the order MH = ML = 10
open boundary condition is chosen for these two numerical examples.

6.1. Gravity Dam

A typical gravity dam-reservoir system with an irregular near field is shown in Figure 3(a),
which is the same as the flexible dam example in [25]. The dam body has a modulus
of elasticity E = 35GPa, Posisson’s ration v = 0.2, and mass density ρ = 2400 kg/m3.
The water in the reservoir has a pressure wave velocity c = 1438.7m/s and mass density
ρ = 1000 kg/m3.

The finite elementmesh is shown in Figure 3(b). The system is divided into three parts:
the dam body, the near-field reservoir, and the far-field semi-infinite reservoir with constant
depth. The dam body is discretized with eight-node solid elements, the near-field reservoir
with 156 eight-node acoustic fluid elements, and the dam-reservoir interface with 13 three-
node interface elements. The far-field reservoir is modeled by 13 three-node quadratic line
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Figure 5: Hydrodynamic pressure at heel of the gravity dam under El Centro ground motion with a time
step of 0.002 s.

elements on the truncated boundary, which share the same nodes and are compatible with
those of the near-field acoustic fluid elements. The total number of nodes of the whole model
is 653.

To verify the results, an extended mesh covering a far-field reservoir region of 7200m
is analyzed. The size of extended mesh is sufficiently large to avoid the pollution of the
dam response by the waves reflected on the truncated boundary for a time duration of
2 × 7200/1438.7 ≈ 10 s.

The El Centro earthquake ground motion (see Figure 4) is imposed as the horizontal
acceleration at the base of the dam. The time step is chosen as 0.002 s during which the
pressure wave travels about one third of the distance between two adjacent nodes. The
partitioned coupled method is performed without any additional iteration; that is, the
solution process is the same as that in [25]. The responses of hydrodynamic pressure at heel
of the gravity dam of the first 20 s are plotted in Figure 5. Excellent agreement between the
solutions of both coupled numerical methods and the extended mesh solution is observed
during the first 10 s.
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Figure 6: Hydrodynamic pressure at heel of the gravity dam under El Centro ground motion with a time
step of 0.02 s.

Table 1: Computer time for the gravity dam example.

Time step (sec) Extended mesh Direct coupled
method

Partitioned
coupled method Algorithm in [25]

0.002 2980 s 242 s 241 s \
0.02 219 s 25 s 46 s 25 s

To demonstrate the improvement of the modified solution algorithm for partitioned
coupled method, the time step is increased to 0.02 s. The responses of the first 20 s are plotted
in Figure 6. As it is shown, the results of the solution algorithm proposed by Wang et al. [25]
tend to be divergent and inaccurate. However, both the solutions of direct coupled method
and partitioned coupled method agree with the solution of extended mesh very well. The
number of additional iterations within each step for partitioned coupled method recorded is
usually one and no more than four in this example.

The computer time for the gravity dam example list in Table 1 is recorded on a PC
with a 2.93GHz Intel Core i7 CPU. High computational efficiency of both coupled methods
is observed. The computer time of the direct coupled method is about one tenth of that of
the extended mesh. The computational effort of the partitioned coupled method is directly
associated with the number of additional iterations. When there is no additional iteration, the
computer time of the partitioned coupled method is nearly equal to that of the direct coupled
method.

6.2. Arch Dam

An arch dam-reservoir system is shown in Figure 7. The physical properties of dam body and
water are the same as that in the example of gravity dam. The arch dam is of a height of 22m
and the near-field reservoir covers a region of the dam height. The dam body is discretized
with 272 twenty-node hexahedron solid elements, the near-field reservoir with 1088 twenty-
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Figure 8:Hydrodynamic pressure at heel of the arch dam under El Centro ground motion with a time step
of 0.02 s.

node hexahedron acoustic fluid elements, and the dam-reservoir interface with 136 eight-
node interface elements. The far-field reservoir is modeled by 136 eight-node quadratic ele-
ments on the truncated boundary, which share the same nodes and are compatible with those
of the near-field acoustic fluid elements. The total number of nodes of the whole model is
6652. To verify the results, a similar extended mesh covering the region of 7200m is analyzed.

Similar to the gravity dam example, the El Centro earthquake ground motion is
imposed as the horizontal (Y direction) acceleration at the base of the arch dam. The time
step is chosen as 0.02 s. The responses of the hydrodynamic pressure at the heel of the arch
dam are plotted in Figure 8. The solution of the direct coupledmethod agrees with solution of
the extended mesh and is long time stable. However, as for the partitioned coupled method,
numerical divergence is observed at the early time of the analysis. Numerical instability
of such coupling strategy is also reported in [12]. It can be expected as the partitioned
coupled method is conditional stable; that is, the integration time step is limited by stability
limits. When the time step is greater than the stability limit, numerical instability may occur,
for example, the results of the arch dam example. As the dam-reservoir system is quite
complicated, it is difficult to determine the stability limits of different application cases. When
the partitioned coupled method is applied, smaller time step should be used.
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The computer time of the direct coupled method recorded is 1463 s, which is about
one ninth of that of the extended mesh, that is, 12547 s. It also demonstrates the high
computational efficiency of the direct coupled method.

7. Conclusions

Two coupled numerical methods were developed for the dam-reservoir interaction analysis
by incorporating the finite element method with the excellent high-order doubly asymptotic
open boundary. The dam-reservoir system is divided into the near-field with irregular
geometry and the far-field by the truncated boundary. In the direct coupled method, a global
monolithic equation for the whole dam-reservoir system is formulated with sparse and sym-
metric coefficient matrices, which can be solved by the standard finite element solver. In the
partitioned coupled method, the near-field finite element equation and the high-order open
boundary condition are separately solved. They are coupled by the interaction force applied
on the truncated boundary. The partitioned coupledmethod is achieved by using a sequential
staggered implicit-implicit procedure. To improve the numerical stability and accuracy of the
algorithm, an iteration strategy was employed to obtain the solution of each step.

Both of the two coupled numerical methods are implemented on the open-source
finite element code OpenSees. Numerical experiments demonstrated the high efficiency and
accuracy of both coupled numerical methods. The memory required for the solution of the
partitioned method is less than that of the direct coupled method. Although the numerical
stability and accuracy of the partitioned coupled method can be improved by additional
iterations within each step, the partitioned coupled method is conditionally stable yet. Its
stability is also related to the predictor. Further research should be carried out to improve
the stability of the partitioned coupled method. In contrast, the direct coupled method is
unconditionally stable if only an unconditionally stable time integration algorithm such as
trapezoidal integration is chosen. Consequently, larger time steps can be used in the direct
coupled method than that in the partitioned coupled method.
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