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We will investigate the adaptive mixed finite element methods for parabolic optimal control prob-
lems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed
finite element spaces, and the control is approximated by piecewise constant elements. We derive
a posteriori error estimates of themixed finite element solutions for optimal control problems. Such
a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed
finite element method for the optimal control problems. Next we introduce an adaptive algorithm
to guide the mesh refinement. A numerical example is given to demonstrate our theoretical results.

1. Introduction

Optimal control problems are very important models in science and engineering numerical
simulation. Finite element method of optimal control problems plays an important role in
numerical methods for these problems. Let us mention two early papers devoted to linear
optimal control problems by Falk [1] and Geveci [2]. Knowles was concerned with standard
finite element approximation of parabolic time optimal control problems in [3]. In [4] Gunz-
burger and Hou investigated the finite element approximation of a class of constrained
nonlinear optimal control problems. For quadratic optimal control problem governed by
linear parabolic equation, Liu and Yan derived a posteriori error estimates for both the state
and the control approximation in [5]. Systematic introductions of the finite element method
for optimal control problems can be found in [6–10].

Adaptive finite element approximation was the most important means of boosting the
accuracy and efficiency of finite element discretization. The literature in this aspect was
huge, see, for example, [11, 12]. Adaptive finite element method was widely used in engi-
neering numerical simulation. There has been extensive studies on adaptive finite element
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approximation for optimal control problems. In [13], the authors have introduced some basic
concept of adaptive finite element discretization for optimal control of partial differential
equations. A posteriori error estimators for distributed elliptic optimal control problems were
contained in Li et al. [14]. Recently an adaptive finite element method for the estimation of
distributed parameter in elliptic equation was discussed by Feng et al. [15]. Note that all the
above works aimed at standard finite element method.

In many control problems, the objective functional contains the gradient of the state
variables. Thus, the accuracy of the gradient is important in numerical discretization of the
coupled state equations. When the objective functional contains the gradient of the state
variable, mixed finite element methods should be used for discretization of the state equation
with which both the scalar variable and its flux variable can be approximated in the same
accuracy. In [16–20] we have done some primary works on a priori error estimates and
superconvergence for linear optimal control problems by mixed finite element methods. We
considered a posteriori error estimates of mixed finite element methods for quadratic and
general optimal control problems in [21–23].

In [24], the authors discussed the mixed finite element approximation for general
optimal control problems governed by parabolic equation. And then, they derived a poste-
riori error estimates of mixed finite element solution. In this paper, we study the adaptive
mixed finite element methods for the parabolic optimal control problems. We construct the
mixed finite element discretization for the original problems and derive a useful posteriori
error indicators. Furthermore, we provide an adaptive algorithm to guide the multimesh
refinement. Finally, a numerical experiment shows that this algorithm works very well with
the adaptive multimesh discretization.

The plan of this paper is as follows. In the next section, we construct the mixed finite
element discretization for the parabolic optimal control problems. Then, we derive a poster-
iori error estimates for the mixed finite element solutions in Section 3. Next, we introduce an
adaptive algorithm to guide the mesh refinement in Section 4. Finally, a numerical example
is given to demonstrate our theoretical results in Section 5.

2. Mixed Methods of Optimal Control Problems

In this section, we investigate the mixed finite element approximation for parabolic optimal
control problems. We adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with
a norm ‖ · ‖m,p given by ‖v‖pm,p =

∑
|α|≤m ‖Dαv‖p

Lp(Ω), a seminorm | · |m,p given by |v|pm,p =
∑

|α|=m ‖Dαv‖p
Lp(Ω). We set Wm,p

0 (Ω) = {v ∈ Wm,p(Ω) : v|∂Ω = 0}. For p = 2, we denote

Hm(Ω) =Wm,2(Ω), Hm
0 (Ω) =Wm,2

0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2.
We denote by Ls(0, T ;Wm,p(Ω)) the Banach space of all Ls integrable functions from J

intoWm,p(Ω)with norm ‖v‖Ls(J ;Wm,p(Ω)) = (
∫T
0 ‖v‖s

Wm,p(Ω)dt)
1/s for s ∈ [1,∞) and the standard

modification for s = ∞. The details can be found in [25].
The parabolic optimal control problems that we are interested in are as follows:

min
u∈K⊂U

{∫T

0

(
g1(p) + g2

(
y
)
+ j(u)

)
dt

}

,

yt(x, t) + divp(x, t) = f + u(x, t), x ∈ Ω,
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p(x, t) = −A(x)∇y(x, t), x ∈ Ω,

y(x, t) = 0, x ∈ ∂Ω, t ∈ J, y(x, 0) = y0(x), x ∈ Ω,

(2.1)

where the bounded open set Ω ⊂ R
2 is a convex polygon with the boundary ∂Ω. Let K be

a closed convex set in U = L2(J ;L2(Ω)), f ∈ L2(J ;L2(Ω)), J = [0, T], y0(x) ∈ H1
0(Ω).

Furthermore, we assume that the coefficient matrix A(x) = (ai,j(x))2×2 ∈ L∞(Ω;R2×2) is
a symmetric 2 × 2-matrix and there is a constant c > 0 satisfying for any vector X ∈ R

2,
XtAX ≥ c‖X‖2

R2 . j ′ is positive, g ′
1, g

′
2, and j ′ are locally Lipschitz on L2(Ω)2, W , U, and that

there is a c > 0 such that (j ′(u) − j ′(ũ), u − ũ) ≥ c‖u − ũ‖0, for all u, ũ ∈ U.
Nowwewill describe the mixed finite element discretization of parabolic optimal con-

trol problems (2.1). Let

V = H(div;Ω) =
{

v ∈
(
L2(Ω)

)2
,divv ∈ L2(Ω)

}

, W = L2(Ω). (2.2)

The Hilbert space V is equipped with the following norm:

‖v‖div = ‖v‖H(div;Ω) =
(
‖v‖20,Ω + ‖div v‖20,Ω

)1/2
. (2.3)

We recast (2.1) as the following weak form: find (p, y, u) ∈ V ×W ×K such that

min
u∈K⊂U

{∫T

0

(
g1(p) + g2

(
y
)
+ j(u)

)
dt

}

, (2.4)

(
A−1p,v

)
−
(
y,div v

)
= 0, ∀v ∈ V, (2.5)

(
yt,w

)
+ (divp, w) =

(
f + u,w

)
, ∀w ∈W, (2.6)

y(x, 0) = y0(x), ∀x ∈ Ω. (2.7)

Similar to [26], the optimal control problems (2.4)–(2.7) have a unique solution (p,
y, u), and a triplet (p, y, u) is the solution of (2.4)–(2.7) if and only if there is a costate (q, z) ∈
V ×W such that (p, y,q, z, u) satisfies the following optimality conditions:

(
A−1p,v

)
−
(
y,div v

)
= 0, ∀v ∈ V, (2.8)

(
yt,w

)
+ (divp, w) =

(
f + u,w

)
, ∀w ∈W, (2.9)
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y(x, 0) = y0(x), ∀x ∈ Ω, (2.10)

(
A−1q,v

)
− (z,div v) = −

(
g ′
1(p),v

)
, ∀v ∈ V, (2.11)

−(zt,w) + (divq, w) =
(
g ′
2
(
y
)
, w

)
, ∀w ∈W, (2.12)

z(x, T) = 0, ∀x ∈ Ω, (2.13)

∫T

0

(
j ′(u) + z, ũ − u

)
Udt ≥ 0, ∀ũ ∈ K, (2.14)

where (·, ·)U is the inner product of U. In the rest of the paper, we will simply write the
product as (·, ·)whenever no confusion should be caused.

Let Th be regular triangulation of Ω. They are assumed to satisfy the angle condition
which means that there is a positive constant C such that, for all τ ∈ Th, C−1h2τ ≤ |τ | ≤ Ch2τ ,
where |τ | is the area of τ , hτ is the diameter of τ and h = maxhτ . In addition C or c denotes a
general positive constant independent of h.

Let Vh × Wh ⊂ V × W denote the Raviart-Thomas space [27] of the lowest order
associated with the triangulationTh ofΩ. Pk denotes the space of polynomials of total degree
at most k. Let V(τ) = {v ∈ P 2

0 (τ) + x · P0(τ)},W(τ) = P0(τ). We define

Vh := {vh ∈ V : ∀τ ∈ Th,vh|τ ∈ V(τ)},

Wh := {wh ∈W : ∀τ ∈ Th,wh|τ ∈W(τ)},

Kh := {ũh ∈ K : ∀τ ∈ Th, ũh|τ = constant}.

(2.15)

Themixed finite element discretization of (2.4)–(2.7) is as follows: compute (ph, yh, uh)
∈ Vh ×Wh ×Kh such that

min
uh∈Kh

{∫T

0

(
g1(ph) + g2

(
yh

)
+ j(uh)

)
dt

}

,

(
A−1ph,vh

)
−
(
yh,div vh

)
= 0, ∀vh ∈ Vh,

(
yht,wh

)
+ (divph,wh) =

(
f + uh,wh

)
, ∀wh ∈Wh,

yh(x, 0) = yh0 (x), ∀x ∈ Ω,

(2.16)

where yh0 (x) ∈ Wh is an approximation of y0. The optimal control problem (2.16) again has
a unique solution (ph, yh, uh), and a triplet (ph, yh, uh) is the solution of (2.16) if and only
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if there is a costate (qh, zh) ∈ Vh × Wh such that (ph, yh,qh, zh, uh) satisfies the following
optimality conditions:

(
A−1ph,vh

)
−
(
yh,div vh

)
= 0, ∀vh ∈ Vh,

(
yht,wh

)
+ (divph,wh) =

(
f + uh,wh

)
, ∀wh ∈Wh,

yh(x, 0) = y0(x), ∀x ∈ Ω,
(
A−1qh,vh

)
− (zh,div vh) = −

(
g ′
1(ph),vh

)
, ∀vh ∈ Vh,

−(zht,wh) + (divqh,wh) =
(
g ′
2
(
yh

)
, wh

)
, ∀wh ∈Wh,

zh(x, T) = 0, ∀x ∈ Ω,
(
j ′(uh) + zh, ũh − uh

)
≥ 0, ∀ũh ∈ Kh.

(2.17)

We now consider the fully discrete approximation for the semidiscrete problem. Let
Δt > 0,N = T/Δt ∈ Z, and ti = iΔt, i ∈ Z. Also, let

ψi = ψi(x) = ψ(x, ti), dtψ
i =

ψi − ψi−1

Δt
. (2.18)

For i = 1, 2, . . . ,N, construct the finite element spaces Vi
h
∈ V, Wi

h
∈ W (similar as Vh).

Similarly, construct the finite element spaces Ki
h ∈ Kh with the mesh Ti

h. Let h
i
τ denote

the maximum diameter of the element τi in Ti
h. Define mesh functions τ(·) and mesh size

functions hτ(·) such that τ(t)|t∈(ti−1,ti] = τi, hτ(t)|t∈(ti−1,ti] = hτi . For ease of exposition, we will
denote τ(t) and hτ(t) by τ and hτ , respectively.

The following fully discrete approximation scheme is to find (pih, y
i
h, u

i
h) ∈ Vi

h ×W
i
h ×

Ki
h
, i = 1, 2, . . . ,N, such that

min
ui
h
∈Ki

h

{
N∑

i=1

∫ ti

ti−1

(
g1
(
pih

)
+ g2

(
yih

)
+ j

(
uih

))
}

, (2.19)

(
A−1pih,vh

)
−
(
yih,div vh

)
= 0, ∀vh ∈ Vi

h, (2.20)

(
dty

i
h,wh

)
+
(
divpih, wh

)
=
(
f(x, ti) + uih,wh

)
, ∀wh ∈Wi

h, (2.21)

y0
h(x, 0) = y

h
0 (x), ∀x ∈ Ω. (2.22)

It follows that the optimal control problems (2.19)–(2.22) have a unique solution (pih, y
i
h, u

i
h),

i = 1, 2, . . . ,N, and that a triplet (pi
h
, yi

h
, ui

h
) ∈ Vi

h
× Wi

h
× Ki

h
, i = 1, 2, . . . ,N, is the
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solution of (2.19)–(2.22) if and only if there is a costate (qi−1h , zi−1h ) ∈ Vi
h × Wi

h such that
(pi

h
, yi

h
,qi−1

h
, zi−1

h
, ui

h
) ∈ (Vi

h
×Wi

h
)2 ×Ki

h
satisfies the following optimality conditions:

(
A−1pih,vh

)
−
(
yih,div vh

)
= 0, ∀vh ∈ Vi

h, (2.23)

(
dty

i
h,wh

)
+
(
divpih, wh

)
=
(
f(x, ti) + uih,wh

)
, ∀wh ∈Wi

h, (2.24)

y0
h(x, 0) = y

h
0 (x), ∀x ∈ Ω, (2.25)

(
A−1qi−1h ,vh

)
−
(
zi−1h ,div vh

)
= −

(
g ′
1

(
pih

)
,vh

)
, ∀vh ∈ Vi

h, (2.26)

−
(
dtz

i
h,wh

)
+
(
divqi−1h ,wh

)
=
(
g ′
2

(
yih

)
, wh

)
, ∀wh ∈Wi

h, (2.27)

zNh (x, T) = 0, ∀x ∈ Ω, (2.28)
(
j ′
(
uih

)
+ zi−1h , ũh − uih

)
≥ 0, ∀ũh ∈ Ki

h. (2.29)

For i = 1, 2, . . . ,N, let

Yh|(ti−1,ti] =
(
(ti − t)yi−1h + (t − ti−1)yih

)

Δt
,

Zh|(ti−1,ti] =
(
(ti − t)zi−1h

+ (t − ti−1)zih
)

Δt
,

Ph|(ti−1,ti] =
(
(ti − t)pi−1h + (t − ti−1)pih

)

Δt
,

Qh|(ti−1,ti] =
(
(ti − t)qi−1h + (t − ti−1)qih

)

Δt
,

Uh|(ti−1,ti] = u
i
h.

(2.30)

For any function w ∈ C(J ;L2(Ω)), let

ŵ(x, t)|t∈(ti−1,ti] = w(x, ti), w̃(x, t)|t∈(ti−1,ti] = w(x, ti−1). (2.31)

Then the optimality conditions (2.23)–(2.29) can be restated as.

(
A−1P̂h,vh

)
−
(
Ŷh,divvh

)
= 0, ∀vh ∈ Vi

h, (2.32)

(Yht,wh) +
(
div P̂h,wh

)
=
(
f̂ +Uh,wh

)
, ∀wh ∈Wi

h, (2.33)

Yh(x, 0) = yh0 (x), ∀x ∈ Ω, (2.34)
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(
A−1Q̃h,vh

)
−
(
Z̃h,div vh

)
= −

(
g ′
1

(
P̂h

)
,vh

)
, ∀vh ∈ Vi

h, (2.35)

−(Zht,wh) +
(
div Q̃h,wh

)
=
(
g ′
2

(
Ŷh

)
, wh

)
, ∀wh ∈Wi

h, (2.36)

Zh(x, T) = 0, ∀x ∈ Ω, (2.37)

(
j ′(Uh) + Z̃h, ũh −Uh

)
≥ 0, ∀ũh ∈ Ki

h. (2.38)

In the rest of the paper, we will use some intermediate variables. For any control fun-
ctionUh ∈ K, we first define the state solution (p(Uh), y(Uh),q(Uh), z(Uh))which satisfies

(
A−1p(Uh),v

)
−
(
y(Uh),div v

)
= 0, ∀v ∈ V, (2.39)

(
yt(Uh), w

)
+ (divp(Uh), w) =

(
f +Uh,w

)
, ∀w ∈W, (2.40)

y(Uh)(x, 0) = y0(x), ∀x ∈ Ω, (2.41)

(
A−1q(Uh),v

)
− (z(Uh),div v) = −

(
g ′
1(p(Uh)),v

)
, ∀v ∈ V, (2.42)

−(zt(Uh), w) + (divq(Uh), w) =
(
g ′
2
(
y(Uh)

)
, w

)
, ∀w ∈W, (2.43)

z(Uh)(x, T) = 0, ∀x ∈ Ω. (2.44)

3. A Posteriori Error Estimates

In this sectionwe study a posteriori error estimates of themixed finite element approximation
for the parabolic optimal control problems. Fixed given u ∈ K, let M1, M2 be the inverse
operators of the state equation (2.6), such that p(u) = M1u and y(u) = M2u are the solutions
of the state equations (2.6). Similarly, for given Uh ∈ Kh, Ph(Uh) = M1hUh, Yh(Uh) = M2hUh

are the solutions of the discrete state equation (2.33). Let

F(u) = g1(M1U) + g2(M2U) + j(u),

Fh(Uh) = g1(M1hUh) + g2(M2hUh) + j(Uh).
(3.1)
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It can be shown that

(
F ′(u), v

)
=
(
j ′(u) + z, v

)
,

(
F ′(Uh), v

)
=
(
j ′(Uh) + z(Uh), v

)
,

(
F ′
h(Uh), v

)
=
(
j ′(Uh) + Z̃h, v

)
.

(3.2)

It is clear that F and Fh are well defined and continuous on K and Ki
h
. Also the func-

tional Fh can be naturally extended on K. Then (2.4) and (2.19) can be represented as

min
u∈K

{F(u)}, (3.3)

min
Uh∈Ki

h

{Fh(Uh)}. (3.4)

In many application, F(·) is uniform convex near the solution u. The convexity of F(·)
is closely related to the second order sufficient conditions of the optimal control problems,
which are assumed in many studies on numerical methods of the problem. For instance, in
many applications, u → g1(M1U) and u → g2(M2U) are convex. Then there is a constant
c > 0, independent of h, such that

∫T

0

(
F ′(u) − F ′(Uh), u −Uh

)
U ≥ c‖u −Uh‖2L2(J ;L2(Ω)). (3.5)

Theorem 3.1. Let u andUh be the solutions of (3.3) and (3.4), respectively. Assume thatKi
h
⊂ K. In

addition, assume that (F ′
h(Uh))|τ ∈ Hs(τ), for all τ ∈ Th, (s = 0, 1), and there is a vh ∈ Ki

h such
that

∣
∣
(
F ′
h(Uh), vh − u

)∣
∣ ≤ C

∑

τ∈Th

hτ
∥
∥F ′

h(Uh)
∥
∥
Hs(τ)‖u −Uh‖sL2(τ). (3.6)

Then one has

‖u −Uh‖2L2(J ;L2(Ω)) ≤ Cη
2
1 + C

∥
∥
∥z(Uh) − Z̃h

∥
∥
∥
2

L2(J ;L2(Ω))
, (3.7)

where

η21 =
∫T

0

∑

τ∈Th

h1+sτ

∥
∥
∥j ′(Uh) + Z̃h

∥
∥
∥
1+s

H1(τ)
. (3.8)
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Proof. It follows from (3.3) and (3.4) that

∫T

0

(
F ′(u), u − v

)
≤ 0, ∀v ∈ K,

∫T

0

(
F ′
h(Uh), Uh − vh

)
≤ 0, ∀vh ∈ Ki

h ⊂ K.
(3.9)

Then it follows from assumptions (3.5), (3.6) and Schwartz inequality that

c‖u −Uh‖2L2(J ;L2(Ω))

≤
∫T

0

(
F ′(u) − F ′(Uh), u −Uh

)

≤
∫T

0

{(
F ′
h(Uh), vh − u

)
+
(
F ′
h(Uh) − F ′(Uh), u −Uh

)}

≤ C
∫T

0

{
∑

τ∈Th

h1+sτ

∥
∥F ′

h(Uh)
∥
∥1+s
Hs(τ) +

∥
∥F ′

h(Uh) − F ′(Uh)
∥
∥2
L2(Ω)

}

+
c

2
‖u −Uh‖2L2(J ;L2(Ω)).

(3.10)

It is not difficult to show

F ′
h(Uh) = j ′(Uh) + Z̃h, F ′(Uh) = j ′(Uh) + z(Uh), (3.11)

where z(Uh) is defined in (2.39)–(2.44). Thanks to (3.11), it is easy to derive

∥
∥F ′

h(Uh) − F ′(Uh)
∥
∥
L2(Ω) ≤ C

∥
∥
∥Z̃h − z(Uh)

∥
∥
∥
L2(Ω)

. (3.12)

Then by estimates (3.10) and (3.12) we can prove the requested result (3.7).

In order to estimate the a posteriori error of the mixed finite element approximation
solution, we will use the following dual equations:

−ϕt − div
(
A∇ϕ

)
= G, x ∈ Ω, t ∈ (0, T],

ϕ|∂Ω = 0, t ∈ J,

ϕ(x, T) = 0, x ∈ Ω,

(3.13)

ψt − div
(
A∗∇ψ

)
= G, x ∈ Ω, t ∈ (0, T],

ψ|∂Ω = 0, t ∈ J,

ψ(x, 0) = 0, x ∈ Ω.

(3.14)

The following well-known stability results are presented in [28].
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Lemma 3.2. Let ϕ and ψ be the solutions of (3.13), and (3.14), respectively. Then, for v = ϕ or v = ψ,

‖v‖L∞(J ;L2(Ω)) ≤ C‖G‖L2(J ;L2(Ω)),

‖∇v‖L2(J ;L2(Ω)) ≤ C‖G‖L2(J ;L2(Ω)),
∥
∥
∥D2v

∥
∥
∥
L2(J ;L2(Ω))

≤ C‖G‖L2(J ;L2(Ω)),

‖vt‖L2(J ;L2(Ω)) ≤ C‖G‖L2(J ;L2(Ω)),

(3.15)

where D2v = ∂2v/∂xi∂xj , 1 ≤ i, j ≤ 2.

Now, we are able to derive the main result.

Theorem 3.3. Let (Yh, Ph, Zh,Qh,Uh) and (y(Uh),p(Uh), z(Uh),q(Uh), Uh) be the solutions of
(2.32)–(2.38) and (2.39)–(2.44). Then,

∥
∥Yh − y(Uh)

∥
∥2
L2(J ;L2(Ω)) + ‖Ph − p(Uh)‖2L2(J ;L2(Ω)) ≤ Cη

2
2, (3.16)

where

η22 =
∥
∥
∥Yht + div P̂h − f̂ −Uh

∥
∥
∥
2

L2(J ;L2(Ω))

+
∥
∥
(
Yh − y(Uh)

)
(x, 0)

∥
∥2
L2(Ω) +

∥
∥
∥f̂ − f

∥
∥
∥
2

L2(J ;L2(Ω))

+
∥
∥
∥
(
Ŷh − Yh

)

t

∥
∥
∥
2

L2(J ;L2(Ω))
+
∥
∥
∥P̂h − Ph

∥
∥
∥
2

L2(J ;H(div;Ω))
.

(3.17)

Proof. Letting ϕ be the solution of (3.13)with G = Yh − y(Uh), we infer

∥
∥Yh − y(Uh)

∥
∥2
L2(J ;L2(Ω))

=
∫T

0

(
Yh − y(Uh), F

)
dt

=
∫T

0

(
Yh − y(Uh),−ϕt − div

(
A∇ϕ

))
dt

=
∫T

0

(((
Yh − y(Uh)

)
t, ϕ

)
−
(
Ph − p(Uh),∇ϕ

))
dt

+
∥
∥
(
Yh − y(Uh)

)
(x, 0)

∥
∥2
L2(Ω)

=
∫T

0

((
Yht − yt(Uh), ϕ

)
+
(
div(Ph − p(Uh)), ϕ

))
dt

+
∥
∥
(
Yh − y(Uh)

)
(x, 0)

∥
∥2
L2(Ω).

(3.18)
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Then it follows from (2.39)-(2.40) that

∥
∥Yh − y(Uh)

∥
∥2
L2(J ;L2(Ω))

=
∫T

0

((
Yht, ϕ

)
+
(
div P̂h, ϕ

)
−
(
yt(Uh), ϕ

)
−
(
divp(Uh), ϕ

)
+
(
div

(
Ph − P̂h

)
, ϕ

))
dt

+
∥
∥
(
Yh − y(Uh)

)
(x, 0)

∥
∥2
L2(Ω)

=
∫T

0

((
Yht + div P̂h − f̂ −Uh, ϕ

)
+
(
f̂ − f, ϕ

)
+
(
div

(
Ph − P̂h

)
, ϕ

))
dt

+
∥
∥
(
Yh − y(Uh)

)
(x, 0)

∥
∥2
L2(Ω)

=
∫T

0

((
Yht + div P̂h − f̂ −Uh, ϕ

)
+
(
f̂ − f, ϕ

)
+
(
div

(
Ph − P̂h

)
, ϕ

))
dt

+
∥
∥
(
Yh − y(Uh)

)
(x, 0)

∥
∥2
L2(Ω)

≤ C(δ)
∥
∥
∥Yht + div P̂h − f̂ −Uh

∥
∥
∥
2

L2(J ;L2(Ω))
+ C(δ)

∥
∥
∥f̂ − f

∥
∥
∥
2

L2(J ;L2(Ω))

+ C(δ)
∥
∥
∥P̂h − Ph

∥
∥
∥
2

L2(J ;H(div;Ω))
+ C(δ)

∥
∥
∥Ŷh − Yh

∥
∥
∥
2

L2(J ;L2(Ω))

+
∥
∥
(
Yh − y(Uh)

)
(x, 0)

∥
∥2
L2(Ω) + Cδ

∥
∥ϕ

∥
∥2
L2(J ;L2(Ω)),

(3.19)

where and after, δ is an arbitrary positive number, C(δ) is the constant dependent on δ−1.
Now, we are in the position of estimating the error ‖Ph − p(Uh)‖2L2(J ;L2(Ω)). First, we

derive from (2.32)-(2.33) and (2.39)-(2.40) the following useful error equations:

(
A−1

(
P̂h − p(Uh)

)
,vh

)
−
(
Ŷh − y(uh),div vh

)
= 0, (3.20)

((
Ŷh − y(Uh)

)

t
, wh

)
+
(
div

(
P̂h − p(Uh)

)
, wh

)
=
(
f̂ − f,wh

)
−
((
Yh − Ŷh

)

t
, wh

)
, (3.21)

where vh ∈ Vh, wh ∈ Wh. Choose vh = P̂h − p(Uh) and wh = Ŷh − y(Uh) as the test functions
and add the two relations of (3.20)-(3.21) such that

(
A−1

(
P̂h − p(Uh)

)
, P̂h − p(Uh)

)
+
((
Ŷh − y(Uh)

)

t
, Ŷh − y(Uh)

)

=
(
f̂ − f, Ŷh − y(Uh)

)
−
((
Yh − Ŷh

)

t
, Ŷh − y(Uh)

)
.

(3.22)
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Then, using ε-Cauchy inequality, we can find an estimate as follows:

c
∥
∥
∥P̂h − p(Uh)

∥
∥
∥
2

L2(Ω)
+
((
Ŷh − y(Uh)

)

t
, Ŷh − y(Uh)

)

≤ C
∥
∥
∥Ŷh − y(Uh)

∥
∥
∥
2

L2(Ω)
+ C

∥
∥
∥f̂ − f

∥
∥
∥
2

L2(Ω)
+ C

∥
∥
∥
(
Ŷh − Yh

)

t

∥
∥
∥
2

L2(Ω)
.

(3.23)

Note that

((
Ŷh − y(Uh)

)

t
, Ŷh − y(Uh)

)
=

1
2
∂

∂t

∥
∥
∥Ŷh − y(Uh)

∥
∥
∥
2

L2(Ω)
, (3.24)

then, using the assumption on A, we verify that

c
∥
∥
∥P̂h − p(Uh)

∥
∥
∥
2

L2(Ω)
+
1
2
∂

∂t

∥
∥
∥Ŷh − y(Uh)

∥
∥
∥
2

L2(Ω)

≤ C
∥
∥
∥Ŷh − y(Uh)

∥
∥
∥
2

L2(Ω)
+ C

∥
∥
∥f̂ − f

∥
∥
∥
2

L2(Ω)
+ C

∥
∥
∥
(
Ŷh − Yh

)

t

∥
∥
∥
2

L2(Ω)
.

(3.25)

Integrating (3.25) in time and since Ŷh(0)−y(Uh)(0) = 0, applying Gronwall’s lemma, we can
easily obtain the following error estimate:

∥
∥
∥P̂h − p(Uh)

∥
∥
∥
L2(J ;L2(Ω))

+
∥
∥
∥Ŷh − y(Uh)

∥
∥
∥
L∞(J ;L2(Ω))

≤ C
∥
∥
∥f̂ − f

∥
∥
∥
L2(J ;L2(Ω))

+ C
∥
∥
∥
(
Ŷh − Yh

)

t

∥
∥
∥
L2(J ;L2(Ω))

.

(3.26)

Using the triangle inequality and (3.26), we deduce that

‖Ph − p(Uh)‖L2(J ;L2(Ω))

≤ C
(∥
∥
∥f̂ − f

∥
∥
∥
L2(J ;L2(Ω))

+
∥
∥
∥
(
Ŷh − Yh

)

t

∥
∥
∥
L2(J ;L2(Ω))

+
∥
∥
∥P̂h − Ph

∥
∥
∥
L2(J ;L2(Ω))

)

.
(3.27)

Then letting δ be small enough, it follows from (3.18)–(3.27) that

∥
∥Yh − y(Uh)

∥
∥2
L2(J ;L2(Ω)) + ‖Ph − p(Uh)‖2L2(J ;L2(Ω)) ≤ Cη

2
2. (3.28)

This proves (3.16).

Similarly, letting ψ be the solution of (3.14)withG = Zh−z(Uh), with the aid of (2.26)-
(2.27), (2.42)-(2.43), we can conclude the following.



Mathematical Problems in Engineering 13

Theorem 3.4. Let (Yh, Ph, Zh,Qh,Uh) and (y(Uh),p(Uh), z(Uh),q(Uh), Uh) be the solutions of
(2.32)–(2.38) and (2.39)–(2.44). Then,

‖Zh − z(Uh)‖2L2(J ;L2(Ω)) + ‖Qh − q(Uh)‖2L2(J ;L2(Ω)) ≤ C
(
η22 + η

2
3

)
, (3.29)

where

η23 =
∥
∥
∥g ′

2

(
Ŷh

)
+ Zht − div

(
Q̃h

)∥
∥
∥
2

L2(J ;L2(Ω))

+
∥
∥
∥Z̃h − Zh

∥
∥
∥
2

L2(J ;L2(Ω))
+
∥
∥
∥
(
Z̃h − Zh

)

t

∥
∥
∥
2

L2(J ;L2(Ω))

+
∥
∥
∥Yh − Ŷh

∥
∥
∥
2

L2(J ;L2(Ω))
+
∥
∥
∥Q̃h −Qh

∥
∥
∥
2

L2(J ;H(div;Ω))
.

(3.30)

Let (p, y,q, z, u) and (Ph, Yh,Qh, Zh,Uh) be the solutions of (2.8)–(2.14) and (2.32)–
(2.38), respectively. We decompose the errors as follows:

p − Ph = p − p(Uh) + p(Uh) − Ph := ε1 + ε1,

y − Yh = y − y(Uh) + y(Uh) − Yh := r1 + e1,

q −Qh = q − q(Uh) + q(Uh) −Qh := ε2 + ε2,

z − Zh = z − z(Uh) + z(Uh) − Zh := r2 + e2.

(3.31)

From (2.8)–(2.13) and (2.39)–(2.44), we derive the error equations:

(
A−1ε1,v

)
− (r1,div v) = 0, ∀v ∈ V, (3.32)

(r1t, w) + (div ε1, w) = (u −Uh,w), ∀w ∈W, (3.33)

(
A−1ε2,v

)
− (r2,div v) = −

(
g ′
1(p) − g

′
1(p(Uh))v

)
, ∀v ∈ V, (3.34)

(r2t, w) + (div ε2, w) =
(
g ′
2
(
y
)
− g ′

2
(
y(Uh)

)
, w

)
, ∀w ∈W. (3.35)

Theorem 3.5. There is a constant C > 0, independent of h, such that

‖ε1‖L2(J ;L2(Ω)) + ‖r1‖L2(J ;L2(Ω)) ≤ C‖u −Uh‖L2(J ;L2(Ω)), (3.36)

‖ε2‖L2(J ;L2(Ω)) + ‖r2‖L2(J ;L2(Ω)) ≤ C‖u −Uh‖L2(J ;L2(Ω)). (3.37)
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Proof. Part I

Choose v = ε1 andw = r1 as the test functions and add the two relations of (3.32)-(3.33), then
we have

(
A−1ε1, ε1

)
+ (r1t, r1) = (u −Uh, r1). (3.38)

Then, using the Cauchy inequality, we can find an estimate as follows:

(
A−1ε1, ε1

)
+ (r1t, r1) ≤ C

(
‖r1‖2L2(Ω) + ‖u −Uh‖2L2(Ω)

)
. (3.39)

Note that

(r1t, r1) =
1
2
∂

∂t
‖r1‖2L2(Ω), (3.40)

then, using the assumption on A, we can obtain that

‖ε1‖2L2(Ω) +
1
2
∂

∂t
‖r1‖2L2(Ω) ≤ C

(
‖r1‖2L2(Ω) + ‖u −Uh‖2L2(Ω)

)
. (3.41)

Integrating (3.41) in time and since r1(0) = 0, applying the Gronwall’s lemma, we can easily
obtain the following error estimate

‖ε1‖2L2(J ;L2(Ω)) + ‖r1‖2L2(J ;L2(Ω)) ≤ C‖u −Uh‖2L2(J ;L2(Ω)). (3.42)

This implies (3.36).

Part II

Similarly, choose v = ε2 and w = r2 as the test functions and add the two relations of (3.34)-
(3.35), then we can obtain that

(
A−1ε2, ε2

)
+ (r2t, r2) =

(
g ′
2
(
y
)
− g ′

2
(
y(Uh)

)
, r2

)
−
(
g ′
1(p) − g

′
1(p(Uh)), ε2

)
. (3.43)

Then, using the Cauchy inequality, we can find an estimate as follows:

(
A−1ε2, ε2

)
+ (r2t, r2) ≤ C

(
‖r1‖2L2(Ω) + ‖r2‖2L2(Ω) + ‖ε1‖2L2(Ω)

)
+
c

2
‖ε2‖2L2(Ω). (3.44)

Note that

(r2t, r2) =
1
2
∂

∂t
‖r2‖2L2(Ω), (3.45)
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then, using the assumption on A, we verify that

‖ε2‖2L2(Ω) +
1
2
∂

∂t
‖r2‖2L2(Ω) ≤ C

(
‖r1‖2L2(Ω) + ‖r2‖2L2(Ω) + ‖ε1‖2L2(Ω)

)
. (3.46)

Integrating (3.46) in time and since r2(T) = 0, applying the Gronwall’s lemma, we can easily
obtain the following error estimate

‖ε2‖2L2(J ;L2(Ω)) + ‖r2‖2L2(J ;L2(Ω)) ≤ C‖u −Uh‖2L2(J ;L2(Ω)). (3.47)

Then (3.37) follows from (3.47) and the previous statements immediately.

Collecting Theorems 3.1–3.5, we can derive the following results.

Theorem 3.6. Let (p, y,q, z, u) and (Ph, Yh,Qh, Zh,Uh) be the solutions of (2.8)–(2.14) and
(2.32)–(2.38), respectively. In addition, assume that (j ′(Uh) + Z̃h)|τ ∈ Hs(τ), for all τ ∈ Th, (s =
0, 1), and that there is a vh ∈ Kh such that

∣
∣
∣
(
j ′(Uh) + Z̃h, vh − u

)∣
∣
∣ ≤ C

∑

τ∈Th

hτ
∥
∥
∥j ′(Uh) + Z̃h

∥
∥
∥
Hs(τ)

‖u −Uh‖sL2(τ). (3.48)

Then one has that, for all t ∈ (0, T],

‖u −Uh‖2L2(J ;L2(Ω)) +
∥
∥y − Yh

∥
∥2
L2(J ;L2(Ω)) + ‖p − Ph‖2L2(J ;L2(Ω))

+ ‖z − Zh‖2L2(J ;L2(Ω)) + ‖q −Qh‖2L2(J ;L2(Ω)) ≤ C
3∑

i=1

η2i ,

(3.49)

where η1, η2, and η3 are defined in Theorems 3.1–3.4.

4. An Adaptive Algorithm

In the section, we introduce an adaptive algorithm to guide the mesh refine process. A
posteriori error estimates which have been derived in Section 3 are used as an error indicator
to guide the mesh refinement in adaptive finite element method.

Now, we discuss the adaptive mesh refinement strategy. The general idea is to refine
the mesh such that the error indicator like η is equally distributed over the computational
mesh. Assume that an a posteriori error estimator η has the form of η2 =

∑
τi
η2τi , where τi is

the finite elements. At each iteration, an average quantity of all η2τi is calculated, and each η2τi
is then compared with this quantity. The element τi is to be refined if η2τi is larger than this
quantity. As η2τi represents the total approximation error over τi, this strategy makes sure that
higher density of nodes is distributed over the area where the error is higher.

Based on this principle, we define an adaptive algorithm of the optimal control prob-
lems (2.1) as follows.
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Starting from initial triangulations Th0 of Ω, we construct a sequence of refined trian-
gulationThj as follows. GivenThj , we compute the solutions (Ph, Yh,Qh, Zh,Uh) of the system
(2.32)–(2.38) and their error estimator

η2τ =
∫T

0

∑

τ∈Th

h1+sτ

∥
∥
∥j ′(Uh) + Z̃h

∥
∥
∥
1+s

H1(τ)
+
∥
∥
∥Yht + div P̂h − f̂ −Uh

∥
∥
∥
2

L2(J ;L2(τ))

+
∥
∥
(
Yh − y(Uh)

)
(x, 0)

∥
∥2
L2(τ) +

∥
∥
∥f̂ − f

∥
∥
∥
2

L2(J ;L2(τ))

+
∥
∥
∥
(
Ŷh − Yh

)

t

∥
∥
∥
2

L2(J ;L2(τ))
+
∥
∥
∥P̂h − Ph

∥
∥
∥
2

L2(J ;H(div;τ))

+
∥
∥
∥g ′

2

(
Ŷh

)
+ Zht − div

(
Q̃h

)∥
∥
∥
2

L2(J ;L2(τ))

+
∥
∥
∥Z̃h − Zh

∥
∥
∥
2

L2(J ;L2(τ))
+
∥
∥
∥
(
Z̃h − Zh

)

t

∥
∥
∥
2

L2(J ;L2(τ))

+
∥
∥
∥Yh − Ŷh

∥
∥
∥
2

L2(J ;L2(τ))
+
∥
∥
∥Q̃h −Qh

∥
∥
∥
2

L2(J ;H(div;τ))
,

Ej =
∑

τ∈Th

η2τ .

(4.1)

Then we adopt the following mesh refinement strategy. All the triangles τ ∈ Thj

satisfying η2τ ≥ (αEj/n) are divided into four new triangles in Thj+1 by joining the midpoints
of the edges, where n is the numbers of the elements of Thj , α is a given constant. In order to
maintain the new triangulation Thj+1 to be regular and conformal, some additional triangles
need to be divided into two or four new triangles depending on whether they have one or
more neighbor which have refined. Then we obtain the newmeshThj+1 . The above procedure
will continue until Ej ≤ tol, where tol is a given tolerance error.

5. Numerical Example

The purpose of this section is to illustrate our theoretical results by numerical example. Our
numerical example is the following optimal control problem:

min
u∈K⊂U

{
1
2

∫T

0

(
‖p − pd‖2 +

∥
∥y − yd

∥
∥2 + ‖u − u0‖2

)
dt

}

, (5.1)

yt + divp = f + u, p = −∇y, x ∈ Ω, y|∂Ω = 0, y(x, 0) = 0, (5.2)

−zt + divq = y − yd, q = −(∇z + p − pd), x ∈ Ω, z|∂Ω = 0, z(x, T) = 0. (5.3)
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In our example, we choose the domain Ω = [0, 1] × [0, 1]. Let Ω be partitioned into Th

as described Section 2. For the constrained optimization problem,

min
u∈K

F(u), (5.4)

where F(u) is a convex functional on U and K = {u ∈ L2(Ω) : u ≥ 0 a.e. in Ω × J}, the
iterative scheme reads (n = 0, 1, 2, . . .)

b
(
un+(1/2), v

)
= b(un, v) − ρn

(
F ′(un), v

)
, ∀v ∈ U,

un+1 = PbK
(
un+(1/2)

)
,

(5.5)

where b(·, ·) is a symmetric and positive definite bilinear form such that there exist constants
c0 and c1 satisfying

|b(u, v)| ≤ c1‖u‖U‖v‖U, ∀u, v ∈ U,

b(u, u) ≥ c0‖u‖2U,
(5.6)

and the projection operator PbKU → K is defined. For given w ∈ U find PbKw ∈ K such that

b
(
PbKw −w,PbKw −w

)
= min

u∈K
b(u −w,u −w). (5.7)

The bilinear form b(·, ·) provides suitable preconditioning for the projection algorithm. An
application of (5.5) to the discretized parabolic optimal control problem yields the following
algorithm:

b
(
un+(1/2), vh

)
= b(un, vh) − ρn

∫T

0
(un + zn, vh), ∀vh ∈ Uh,

∫T

0

(
(pn,vh) −

(
yn,divvh

))
= 0, ∀vh ∈ Vh,

∫T

0

((
ynt,wh

)
+ (divpn,wh)

)
+
(
yn(0), w(0)

)
=
∫T

0

(
f + un,wh

)
, ∀wh ∈Wh,

∫T

0
((qn,vh) − (zn,div vh)) = −

∫T

0
(pn − pd, vh), ∀vh ∈ Vh,

∫T

0
(−(znt,wh) + (divqn,wh)) + (zn(T), wh(T)) =

∫T

0

(
yn − yd,wh

)
, ∀wh ∈Wh,

un+1 = PbK
(
un+(1/2)

)
, un+(1/2), un ∈ Uh.

(5.8)

The main computational effort is to solve the four state and costate equations and to compute
the projection PbKun+(1/2). In this paper we use a fast algebraic multigrid solver to solve the
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state and costate equations. Then it is clear that the key to saving computing time is how to
compute PbKun+(1/2) efficiently. If one uses theC0 finite elements to approximate to the control,
then one has to solve a global variational inequality, via, for example, semismooth Newton
method. The computational load is not trivial. For the piecewise constant elements, Kh =
{uh : uh ≥ 0} and b(u, v) = (u, v)U, then

PbKun+(1/2)|τ = max
(
0, avg

(
un+(1/2)

)
|τ
)
, (5.9)

where avg(un+(1/2))|τ is the average of un+(1/2) over τ .
In solving our discretized optimal control problem, we use the preconditioned projec-

tion gradient method with b(u, v) = (u, v)U and a fixed step size ρ = 0.8. We now briefly
describe the solution algorithm to be used for solving the numerical examples in this section.

5.1. Algorithm

(1) Solve the discretized optimization problem with the projection gradient method on
the current meshes, and calculate the error estimators ηi.

(2) Adjust the meshes using the estimators, and update the solution on newmeshes, as
described.

Now, we present a numerical example to illustrate our theoretical results.

Example 5.1. We choose the state function by

y(x1, x2) = sinπx1 sinπx2 sinπt (5.10)

and the function f(x1, x2) = yt + divp − uwith

p(x1, x2) = −(π cosπx1 sinπx2 sinπt, π sinπx1 cosπx2 sinπt),

q(x1, x2) = pd(x1, x2) = p(x1, x2).
(5.11)

The costate function can be chosen as

z(x1, x2) = sinπx1 sinπx2 sinπt. (5.12)

It follows from (5.2)-(5.3) that

yd(x1, x2) = y + zt − divq. (5.13)
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Table 1: Numerical results on uniform and adaptive meshes.

On uniform mesh On adaptive mesh
u y z u y z

Nodes 8097 8097 8097 1089 1393 1393
Sides 23968 23968 23968 2825 3819 3819
Elements 15872 15872 15872 6348 2423 2423
Dofs 15872 15872 15872 6348 2423 2423
Total L2 error 6.915e − 03 4.065e − 3 4.018e − 3 6.527e − 03 4.346e − 3 4.323e − 3
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Figure 1: The profile of the control solution u at t = 0.25.

We assume that

λ =

⎧
⎨

⎩

0.5, x1 + x2 > 1.0,

0.0, x1 + x2 ≤ 1.0,

u0(x1, x2) = 1 − sin
πx1
2

− sin
πx2
2

+ λ.

(5.14)

Thus, the control function is given by

u(x1, x2) = max(u0 − z, 0). (5.15)

In this example, the optimal control has a strong discontinuity, introduced by u0.
The exact solution for the control u is plotted in Figure 1. The control function u is dis-
cretized by piecewise constant functions, whereas the state (y,p) and the costate (z,q) were
approximation by the lowest-order Raviart-Thomas mixed finite elements. In Table 1, numer-
ical results of u, y, and z on uniform and adaptive meshes are presented. It can be
founded that the adaptive meshes generated using our error indicators can save substantial
computational work, in comparison with the uniform meshes. At the same time, for the
discontinuous control variable u, the accuracy has been improved obviously from the
uniform meshes to the adaptive meshes in Table 1.
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Figure 2: The adaptive meshes of the control solution u at t = 0.25.

In Figure 2, the adaptive mesh for u at t = 0.25 is shown. In the computing, we use
η1 − η3 as the error indicators in the adaptive finite element method. It can be founded that
the mesh adapts well to be neighborhood of the discontinuity, and a higher density of node
points is indeed distributed along them.
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