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The 2-DOF controllable close-chain linkage mechanism is investigated in this paper. Based on the
characteristics of the multi-DOF nonlinear coupling dynamic equation of the system established
by the finite element method, an analytic method of multiple-scales Newmark is presented after
thinking about the method of perturbation and the method of numerical analysis. Firstly, the first-
order approximate solution of the dynamic responses of the system at the time of t is calculated by
the multiple scales method. Then, taken the first-order approximate solution as the initialization of
the generalized coordinate of the system, the stable dynamic response of the system is obtained by
the implicit Newmark method. The simulation and experimental results are given in the end. The
studies indicate that the method of multiple-scales Newmark is correct and practicable to study
the dynamic characteristics of such kind of multi-DOF nonlinear coupling system.

1. Introduction

Multi-DOF controllable linkage mechanism, which can accurately actualize the given
trajectory, velocity, and acceleration, will has a wide outlook of application in robots, au-
tomatic production lines, and so on [1–5]. The dynamic equation of such kind of linkage
mechanism is nonlinear coupling time-variant from the dynamics modeling process of the
linkage system. The numerical Newmark method can calculate the dynamic responses, but
that method could not analyze internal relation between the dynamic characteristics and
scale and electromagnetism parameters. Though the multiple-scales method can analyze the
vibratory mechanism, it usually adopts first approximations and quadratic or higher order
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Figure 1: Diagram of the 2-DOF close-chain linkage mechanism.
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Figure 2: Diagram of the controllable motor element.

approximation is very complex [6–10]. An evolutionary analytic method of multiple-scales-
Newmark method is firstly presented to study the dynamic characteristics of such kind
of multi-DOF coupling system synthetically using the property that the implicit Newmark
method can calculate the unconditioned stable solution when the Newmark parameters are
specific constants the features of the multiple scales method.

2. Nonlinear Dynamic Equation of System

The 2-DOF controllable close-chain linkage mechanism is investigated in this paper. The
analysis diagram of system is shown in Figure 1. Based on the air-gap field of nonuniform
airspace of controllable motors of the linkage mechanism caused by the eccentricity of rotor,
the controllable motor element [11] as shown in Figure 2, which defined the transverse
vibration and torsional vibration of the controllable motors as its nodal displacement, was
established. In the diagram, numbers 1, 2, 3, and 4 denote four nodes of the element. So
the transverse vibration and the torsional vibration can be expressed by the generalized
coordinate vector u1 = [U1 U2 U3 U4]

T , and XYZ is the coordinate system of controllable
motor element.

According to the mechatronics analysis dynamics, the air-gap eccentric vibration is
shown in Figure 3, where point O is the inner circle geometric center of the motor stator, point
O1 is the outer circle geometric center of the rotor journal, point O2 is the outer circle center
of the journal under the deformation of shaft or bearing, the coordinate of point O3 (x, y) is
the outer circle geometric center of the rotor, δ is the length of air gap, and e1 is the air-gap
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Figure 3: Diagram of air-gap eccentric vibration of controllable motor.

eccentricity. e01 =
√
e211 + e

2
12 is the static eccentricity, which is caused by the rotor gravity

and mismachining tolerance of motor. ε01 is the rotational eccentricity, which is caused by
centering error between the outer circle center of the journal and the outer circle geometric
center of the rotor. The static eccentricity and the rotational eccentricity are considered at
the same time in this paper. The static and rotational eccentricities also can be ignored, and
only the eccentricity caused by rotor vibration can be considered in engineering application

latterly. Then, e1 =
√
x2 + y2,

x = U1 + e11 + ε01 cos β1,

y = U2 + e12 + ε01 sin β1,
(2.1)

where u1 and u2 are the components of vibration eccentricity in the x and y direction, and

e0 =
√
u21 + u

2
2. β1 = (1 − s1)ω01t is the rotational angle of rotor with respect to the stator of

controllable motor. ω01 is the synchronous speed of rotation of controllable motor. s1 is the
slide ratio.

According to the theory of electromechanics and electromechanical analysis dynamics,
as far as controllable motor is concerned, the voltage and current between the two windings
are asymmetric, that is to say, the controllable motor works in elliptic magnetic field.
According to this real running state of controllable motor, the kinetic energy and potential
energy of controllable motor can be obtained as follows:

T1 =
1
2

∫ l
0
m1(x)

[
Ẇ1(x, t)

]2
dx +

1
2

∫ l
0
J01(x)

[
V̇1(x, t)

]2
dx =

1
2
u̇T1M1u̇1, (2.2)

V1 =
1
2
uT1
(
K11 +K12

)
u1 + eT1

(
K11 +K12

)
u1 +

1
2
eT1
(
K11 +K12

)
e1

+ (e1 + u1)k01 +
pR01L01Λ01

2

∫2π

0

[
F+s cos

(
ω01t − pα

)

+ F−s cos
(
ω01t + pα

)
+ F+r cos

(
ω01t − pα − ϕ10

)

+F−r cos
(
ω01t + pα − ϕ20

)]2
dα,

(2.3)
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where W1(x, t) and V1(x, t) the transverse displacements and the angle of elastic torsion of
any points in the controllable motor element, respectively (see the appendix), and l = l1+l2+l3
is the length of controllable motor shaft (see the appendix); m1(x), including the rotor
mass m0 which is at x = l1, is the mass distribution function of the controllable motor
shaft; J01(x), including the moment of inertia of rotor J0 which is at x = l1, is the moment
of inertia distribution function of the controllable motor shaft. R01 is the inner radius of the
controllable motor stator, L01 is the effective length of the rotor, Λ01 = μ0/σ is the even
air gap permeance of the controllable motor, μ0 is the magnetic permeability coefficient
of air, σ = kμδ0, kμ is saturation, δ0 is the uniform air-gap size, kμ = 1 + δFe/k1δ0, k1
is the calculation air-gap coefficient of the even air gap, δFe is the equivalent air-gap of
ferromagnetic materials, ϕ10 is the phase angle of the positive-sequence current of rotor
lagging behind the positive-sequence current of stator, and ϕ20 is the phase angle of the
negative-sequence current of rotor lagging behind the negative-sequence current of stator.
F+s, F−s, F+r , and F−r are the positive-sequence and negative-sequence components of the
magnetomotive amplitude of stator and rotor respectively (see the appendix).M1 is the mass
4 × 4 matrix of controllable motor element, K11 is the stiffness 4 × 4 matrix of controllable
motor element in connection with the structural parameters of the rotor, K12 is the stiffness
4× 4 matrix of controllable motor element in connection with the electromagnetic parameters
of the rotor, and k01 is the 4-order vector in connection with the eccentric motor (see the
appendix). e = [e11 + ε01 cos β1 e12 + ε01 sin β1 0 0]T is a matrix in connection with the static
and rotary eccentricity of the controllable motor.

In general, the links of the 2-DOF controllable linkagemechanism are slim bars, so they
are adapted to be simulated using beam element as shown in Figure 4. In dynamic analysis
of the beam element, the coupling terms of the elastic motion and the rigid body motion in
the Coriolis acceleration and transport acceleration are neglected in studying the absolute
acceleration of any point in the beam element. In calculation of strain energy, the shearing
deformation energy and yield deformation energy are also omitted. The material of the link
is adopted as metal. Therefore, the kinetic energy and potential energy, respectively, are as
follows:

T3 =
1
2

∫L
0
ρA(x)

([
V̇3(x, t)

]2 + [Ẇ3(x, t)
]2)

dx =
1
2
u̇T3M3u̇3, (2.4)

V3 =
1
2

∫L
0
EJ(x)

[
W ′′

3 (x, t)
]2
dx +

1
2

∫L
0
EA(x)

[
V ′
3(x, t)

]2
dx

+
1
2

∫L
0

{
EA(x)

[
V ′
3(x, t) +

1
2
[
W ′

3(x, t)
]2}[

W ′
3(x, t)

]2
dx

=
1
2
u̇T3K3u̇3 +

1
2

∫L
0

{
EA(x)

[
V ′
3(x, t) +

1
2
[
W ′

3(x, t)
]2}[

W ′
3(x, t)

]2
dx,

(2.5)

where ρ is the average mass density of beam element,A(x) is the cross-section area function,
and V3(x, t) andW3(x, t) are, respectively, the longitudinal displacement and the transversal
displacement of any point in the beam element (see the appendix). E is the modulus of
elasticity, J(x) is the moment of inertia distribution function of the element. M3 and K3 are
the mass matrix and stiffness matrix of the beam element, respectively, and they are 8 × 8
matrix (see the appendix).
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Figure 4: Beam element model of linkage mechanism.
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Figure 5: Diagram of finite element analysis of mechanism.

We regard the links BC and CD as two beam elements, respectively, and regard
the crank AB and DE as one element respectively as shown in Figure 1. �3 , �4 , �5 , �6 ,
�7 and �8 are the serial number of the beam element as shown in Figure 5.U11,U12, U15, U16,
U19, U20, U23, U24, U27, and u28 are elastic displacement, U9, U13, U14, U17, U21, U22, U25,
U29,U30, and u31 are elastic rotational angle, u10, u18, u26, and u32 are the curvature. The serial
numbers of the controllable motor elements are �1 and �2 .

The global coordinate system is established, and the system elastic displacement
vector in the global coordinate system is defined as u. Assume that Ri is the transformation
matrix of the ith element between the element coordinates and the global coordinates, and
Bi is the coordinate matrix of the ith element between the local numbering and the system
numbering (see the appendix).

The linear viscous damper damping is adopted in this paper, according to the second
Lagrange equation

d

dt

(
∂T

∂u̇i

)
− ∂T

∂ui
+
∂V

∂ui
= P +Q. (2.6)

The electromechanical coupling nonlinear dynamic equation of the system can be
obtained as

Mü + Cu̇ + (K +K0)u = P −Mür −
(
Ke

1 +Ke
2

)
e − k0 + ε, (2.7)

where u is the generalized coordinates array of the system, M and C are, respectively, the
n×nmass matrix and damping matrix of the system,K andKe

1 are the n×n stiffness matrixes
in connection with the structural parameters of system, K0 and Ke

2 are the n × n stiffness
matrixes in connection with the electromagnetic parameters of system, k0 is the n orders
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array in connection with the electromagnetic parameters of system, P is the external force
array of the system, ür is the rigid acceleration array of system in the global coordinates, e is
an array in connection with the eccentricity of rotor, ε is the nonlinear term and also is a small
parameter, and

ε =
8∑
n=1

uTGnKnu +
1
2

8∑
n=1

uTKnuGn

+
1
2

∑
g

∑
l

uTGgluKglu +
1
2

∑
g

∑
l

GgluuTKglu,
(
g, l = 2, 3, 4, 6, 7, 8

)
,

(2.8)

Gn,Kn,Gkl and Kkl are the n × nmatrixes in connection with the structural parameters of the
linkage mechanism,

M =
n∑
i=1

BTi R
T
i MiRiBi, K = Ke

11 +Ke
21 +

n∑
i=3

BTi R
T
i K3RiBi, K0 = Ke

12 +Ke
22,

Ke
1 = Ke

11 +Ke
12, Ke

2 = Ke
21 +Ke

22, Ke
11 = BT1R

T
1K11R1B1, Ke

12 = BT1R
T
1K12R1B1,

Ke
21 = BT2R

T
2K21R2B2, Ke

22 = BT2R
T
2K22R2B2, e = BT1R

T
1 e1 + BT2R

T
2 e2,

e1 =
[
e11 + ε01 cos β1 e12 + ε01 sin β1 0 0

]T
,

e2 =
[
e21 + ε02 cos β2 e22 + ε02 sin β2 0 0

]T
, k0 = BT1R

T
1k01 + BT2R

T
2k02,

Gn =
n∑
i=3

BTi R
T
i gn

(
gn
)
i = 1, (i = 1, 2, . . . , 8), Kn =

n∑
i=3

BTi R
T
i

[∫L
0
EAgTngKadx

]
RiBi,

g =
[
− 1
L

0 0 0
1
L

0 0 0
] T

,
(
Ka

)
ij
= γ ′i γ

′
j , i, j = 2, 3, 4, 6, 7, 8,

Ggl =
n∑
i=3

BTi R
T
i GglRiBi,

(
Ggl

)
gl
=
(
Ggl

)
lg
= 1, g, l = 2, 3, 4, 6, 7, 8,

Kgl =
n∑
i=3

BTi R
T
i KglRiBi,

(
Kgl

)
ij
=
(
Kgl

)
ji
=
∫L
0
EAγ ′gγ

′
l γ

′
i γ

′
jdx, i, j = 2, 3, 4, 6, 7, 8,

(2.9)

n is the number of the elements, and here n = 8. γi are the shape functions (see the appendix).
In (2.7), −Mür − (Ke

1 +Ke
2)e − k0 are periodic terms. They can be expanded to the form

of Fourier series as follows [12]:

(
Ff
)
i
=

m∑
k=1

Ffki cos
(
kvf t + τfki

)
,

(
f = 1, 2, . . . 8

)
, (2.10)

where v1 is the working frequency of rotor of controllable motor 1, v2 is the working
frequency of rotor of controllable motor 2, and v3 is the smallest common multiple of v1
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and v2. v4 = v1, v5 = v2, v6 is the rotation frequency of magnetic field of stator of the
controllable motor 1, v7 is the rotation frequency of magnetic field of stator of the controllable
motor 2, v5 is the smallest common multiple of v6 and v7, and v8 is the smallest common
multiple of v1, v2, v6, and v7. Ffki express the amplitude values, τfki are the corresponding
phase angles, andm is the number of terms of the Fourier expansion formula.

3. First Approximate Solutions

Substituting (2.10) into (2.7) and assuming that the linear transfer functions are

u = φη, (3.1)

where φ is the modal transfer matrix, η is the modal coordinate vector corresponding to φ.
Substituting (3.1) into (2.7), and premultiply the equation by φT , then (2.7) can be transferred
as

η̈ +ω2η = P0 +
8∑
f=1

F0f + ε

[
−K00η +

8∑
n=1

ηTG0nK0nη +
1
2

8∑
n=1

ηTK0nηG0n +
1
2

∑
g

∑
l

ηTG0glηK0glη

+
1
2

∑
g

∑
l

G0glηη
TK0glη − C0η̇

]
,

(
g, l = 2, 3, 4, 6, 7, 8

)

(3.2)

where

ω2 =

⎡
⎢⎢⎢⎢⎢⎣

ω2
1 · · · 0

...
ω2

2

. . .

...

0 · · · ω2
n

⎤
⎥⎥⎥⎥⎥⎦
, C0 =

⎡
⎢⎢⎢⎢⎢⎣

2ζ1ω1 · · · 0

...
2ζ2ω2

. . .

...

0 · · · 2ζnωn

⎤
⎥⎥⎥⎥⎥⎦
, (3.3)

P0 = φTP,
∑8

f=1 F0f =
∑8

f=1 φ
TFf , K0n = φTKnφ, K00 = φTK0φ,G0n = φTGn, M0 = φTM,

G0gl = φTGglφ, K0gl = φTKglφ. ζn and ωn are the n-order damping ration mean and the n-
order instantaneous natural frequency mean of the n-order canonical mode of the system in
a period of motion, and ζn can be obtained through experiment.

Equation (3.2) also can be expressed as

η̈r +ω2
rηr = P0r +

8∑
f=1

F0fr + ε

(
−2ζrωrη̇r −

∑
s

αsηs +
∑
s,t

δηsηt +
∑
s,t,u

γstuηsηtηu

)

(
g, l = 2, 3, 4, 6, 7, 8; r, s, t, u = 1, 2, . . . , n

)
,

(3.4)
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where

∑
s

αsηs = ξK0η,

∑
s,t

δstηsηt =
8∑
n=1

ξηTGnKnη +
1
2

8∑
n=1

ξηTKnηGn,

∑
s,t,u

νstuηsηtηu =
1
2

∑
g

∑
l

ξηTGglηKglη +
1
2

∑
g

∑
l

ξGglηη
TKglη,

(3.5)

αs, δst, and γstu are the coefficients of ηs, ηsηt, and ηsηtηu, respectively. ξ is the nth-order
vector, and the rth element of ξ is 1 and the other elements are zero. Therefore, the system is
affected by multifrequency excitations.

The method of multiple time scales is employed to study the nonlinear (3.4), and the
frequent factors of system can be obtained. and some resonance phenomena will take place
in the system under certain conditions.

(1) On condition that vp ≈ ωr , the primary resonance will take place in the system.

(2) On condition that ωr ≈ kvp (k /= 1), the ultra-harmonic resonance will take place in
the system.

(3) On condition that ωr ≈ 1/3vp or ωr ≈ 1/2vp, the subharmonic resonance will take
place in the system.

(4) On condition that ωs ≈ ωt +ωu, the inner resonance will take place in the system.

(5) On condition thatωr ≈ |±jvp±kvq| orωr ≈ |±2jvp±kvq|, the combination resonance
will take place in the system.

(6) On condition that two types of the resonance take place in the same time, the
multiple resonance of the system will take place in the system.

Considering the first two orders modal of vibration, the first approximation solutions
of the multi-DOF nonlinear coupling system in the generalized coordinate are also obtained
by the method of multiple scales as follows:

u =
2∑
r=1

ηrφ
(r), (3.6)

ηr = 2ar cos(ωrt + θr) +
8∑
f=1

m∑
k=1

(
Λrfk cos

(
ikvf t + τfki

))
, (r = 1, 2), (3.7)

where ar and θr can be resolved by the method of Newton-Raphson, ωr is the r-order
instantaneous natural frequency mean of the system, and Λrfk = Γrfk exp(iτfki) and Γrfk =
Frfk/(2(ω2

r − k2 v2
f
)).

Therefore, the resonance characteristics of the multi-DOF nonlinear coupling system
can be analyzed using the method of multiple scales, and the first approximate solutions of
the dynamic model of the system also can be obtained by that method.
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4. Newmark Stable Numerical Solution

Because the implicit Newmark integration method can calculate the unconditioned stable
solution when the Newmark parameters ς and ϑ are specific constants [13, 14], the method is
adopted to obtain the stable solution of the multi-DOF nonlinear coupling system. Therefore,
the stable solutions can be obtained using the implicit Newmark integration method based
on the first approximate solutions calculated by the method of multiple scales.

In order to calculate the dynamic response of the system as shown in (2.7), the period
t of motion of the system is divided into S time steps Δt under given trajectory, that is to say,

T = S ·Δt. (4.1)

And the first approximate solution of dynamic response of the system is solved by the
multiple-scales method firstly as shown in (3.7). The first approximate solution when t is
at a moment is looked as the initial value,and then the dynamic response of system is solved
by immediate integration implicit Newmark method.

When we calculate the response of the system by implicit Newmark method, the
hypothesis about the response of some moment must be taken as

u̇t+Δt = u̇t + ((1 − ς)üt + ςüt+Δt)Δt, (4.2)

ut+Δt = ut + u̇tΔt +
((

1
2
− ϑ

)
üt + ϑut+Δt

)
Δt2, (4.3)

where ς and ϑ are the Newmark parameters, namely, the constant of integration and ς ≥ 0.5
and ϑ ≥ 0.25(0.5 + ς)2.

Because the multi-DOF nonlinear coupling dynamic (2.7) is time variant, the equation
at the moment of t + Δt can be expressed as

Mt+Δtüt+Δt + Ct+Δtu̇t+Δt + (Kt+Δt + (K0)t+Δt)ut+Δt

= Pt+Δt −Mt+Δtür −
(
Ke

1 +Ke
2

)
t+Δte − (k0)t+Δt + (ε)t+Δt, (k, l = 2, 3, 4, 6, 7, 8).

(4.4)

Substituting üt+Δt calculated according to (4.3) into (4.4), the ut+Δt expressed by ut, u̇t
and üt can be obtained. The calculation accuracy is related to time stepΔt.

5. Simulation and Experimental Results

Every link of the linkage mechanism is homogeneous. The width and thickness are 30mm
and 2mm, respectively. The lengths of each links are, crank L1 = 200mm and L4 = 150mm,
coupler L2 = L3 = 400mm, and frame L5 = 400mm as shown in Figure 1. The material
of link is aluminium. The density of aluminium ρ = 2700 kg/m3 and the Young’s modulus
E = 70GPa. The lumped mass of the intersection between the crank and the coupler ism01 =
0.142 kg. The lumped mass of the intersection between the two couplers is m02 = 0.092 kg.
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The controllable motor 1 is 90ZYTmotor andmotor 2 is YS8024 motor. Themotors are custom
made by motor manufacturer. The parameters of motors are offered by the manufacturer.

The parameters of the motors are as follows:
�1 The Parameters of the Control Motor 1. The rated power of the 90ZYT motor, PN =

0.75 kW, the rated voltage,Ukn = 220V, the rated rotational speed of the motor is 1500 r/min,
and the stall torque is 2.0N ·m. The static-geometric eccentricity of the motor, e01 = 0.75mm
and the rotational eccentricity, ε01 = 0.5mm. The magnetic permeability coefficient of air is
μ0 = 4π × 10−7 H/m, the length of the even air is gap δ0 = 0.25mm, and the saturation is
kμ = 1.2. The number of excitation windings of the motor is W = 924, and the coefficient
is Kw = 0.92. The peak value of field current, I = 3.58A. The number of magnetic pole-
pairs of the motor is p = 1. m1 = 2 and m2 = 2 are the number of phases of the stator and
rotor, respectively. The reactance of field windings is xm = 594.35Ω. The reduction value of
resistance and equivalent self-induction reactance of rotor, respectively, are r ′ = 27.24Ω and
x′ = 0.0196Ω. The slide ratio is s = 0.0713. The control voltage is Uk = 26V. The mass of the
motor rotor is m0 = 2.2 kg. The moment of inertia of the motor rotor is J0 = 0.018 kg · m2.
The length of the motor shaft is l = 363mm (l1 = 130mm, l1 = 53mm, and l1 = 180mm),
the effective length of the rotor L01 = 140mm, and the inner radius of the motor stator is
R01 = 23mm.

�2 The Parameters of the Control Motor 2. The rated power of the YS8024 motor is PN =
0.75Kw, the rated current is IN = 3.48/2.01A, the rated voltage is Ukn = 220V, and the
rated rotational speed is nN = 1440 r/min. The static-geometric eccentricity is e02 = 0.73mm
and the rotational eccentricity is ε02 = 0.5mm. The magnetic permeability coefficient of air
is μ0 = 4π × 10−7 H/m the length of the even air gap is δ0 = 0.25mm, and the saturation is
kμ = 1.2. The number of excitation windings of the motor is W = 824 and the coefficient is
Kw = 1. The peak value of field current is I = 3.58A. The number of the magnetic pole-pair
of compounded magnetic field is p = 2. m1 = 3 and m2 = 0.5 are the number of phases of
the stator and rotor respectively. The reactance of field windings is xm = 600Ω. The reduction
value of resistance and equivalent self-induction reactance of rotor, respectively, are r ′ = 30Ω
and x′ = 0.02Ω. The slide ratio is s = 0.15. The control voltage is Uk = 95V. The mass of
the motor rotor is m0 = 2.93 kg. The moment of inertia of the motor rotor J0 = 0.021 kg ·m2.
The length of the motor shaft l = 208mm (l1 = 100mm, l2 = 33mm, and l3 = 175mm),
the effective length of the rotor L01 = 100mm and the inner radius of the motor stator is
R01 = 38mm.

As shown in Figure 1, The initial angles of the two cranks are 0◦. The calculation initial
value of the response is the one when the two cranks move to the initial position of them after
the system comes to the stabilized state. Given ς = 0.25 and ϑ = 0.5, the period of motion of
the linkage mechanism is divided into S = 100 time steps.

The responses of transversal and longitudinal displacement of the midpoints of the
links L2, and L3 can be calculated by the method of multiple-scales Newmark mentioned
above, then the dynamic responses on the direction perpendicular to the links’ axis can be
simulated by the Multiple-Scales-Newmark method mentioned above as shown in Figure 6,
and the corresponding experimental curve of dynamic response of the links’ midpoint on
the same parameter conditions can be obtained through experiment as shown in Figure 6.
The dynamic responses of midpoints of the links are measured by the dynamic test system
in experiment. Comparing the simulation with experimental figures, one can find that the
multiple-scales Newmark method studied in this paper is correct and practicable.
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Figure 6: Simulation and experiment curve of dynamic response for midpoint of link L2 and L3.

6. Conclusions

The numerical method can calculate the dynamic responses, but that method could
not analyze internal relationship between the dynamic characteristics and the scale and
electromagnetism parameters. Though the multiple-scales method can analyze the dynamics
mechanism, it usually adopt first approximations and second, or higher-order approximation
is very complex. An evolutionary analytic method of multiple-scales Newmark is firstly
presented in this paper to study the dynamic characteristics of such kind of multi-DOF
nonlinear coupling system synthetically using the property that the implicit Newmark
method can calculate the unconditioned stable solutionwhen the parameters of Newmark are
specific constants with the features of the multiple scales method. The numerical simulation
and experimental results indicate that the multiple-scales Newmark method mentioned in
this paper is correct and practicable. The study provides the basis of further study on the
dynamic control of such kind of mechanism.

Appendix

According to the finite element method,W1(x, t) and V1(x, t) can be expressed as

W1(x, t) =
∑
i

ψi(x)Ui(t), i = 1, 2,

V1(x, t) =
∑
i

ψi(x)Ui(t), i = 3, 4,
(A.1)

where ψi(x) are the shape functions,

ψ1,2(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 10e31 + 15e41 − 6e51, x ≤ l1,
1 − 10e32 + 15e42 − 6e52, l1 < x ≤ l1 + l2,
0, l1 + l2 < x ≤ l1 + l2 + l3,
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ψ3(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ l1,
1 − e2, l1 < x ≤ l1 + l2,
e3, l1 + l2 < x ≤ l1 + l2 + l3,

ψ4(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ l1,
0, l1 < x ≤ l1 + l2,
1 − e3, l1 + l2 < x ≤ l1 + l2 + l3,

(A.2)

where e1 = x/l1, e2 = (l1 + l2 − x)/l2, e3 = (l1 + l2 + l3 − x)/l3, l1, l2, and l3 are, respectively,
the length between point 1 and point 2, point 2 and point 3, point 3 and point 4. Ui(t) is the
nodal displacement as shown in Figure 2.

The mass matrix M1 of the electromotor element is 4 × 4 matrix,

(
M1

)
11

=
∫ l
0
m1(x)ψ1(x)ψ1(x)dx,

(
M1

)
22

=
∫ l
0
m1(x)ψ2(x)ψ2(x)dx,

(
M1

)
kp

=
∫ l
0
m1(x)ψk(x)ψp(x)dx,

(
k, p = 3, 4

)
,

(A.3)

and the other components are equal to zeros.
The stiffness matrixes of the electromotor element are

(
K11

)
11

=
∫ l
0
E1I1(x)

[
∂2χ1(x)
∂x2

]2
dx,

(
K11

)
12

= (K11)21 =
∫ l
0
E1I1(x)

∂χ1(x)
∂x

∂χ2(x)
∂x

dx,

(
K11

)
22

=
∫ l
0
E1I1(x)

[
∂2χ2(x)
∂x2

]2
dx,

(
K11

)
kp

=
∫ l
0
G1J1(x)

∂χk(x)
∂x

· ∂χp(x)
∂x

dx, k, p = 3, 4,

(
K12

)
11

=
pR01l01Λ01

4σ2
2

∫2π

0

{
(1 + cos 2α)

[
F+s cos

(
ω01t − pα

)
+ F−s cos

(
ω01t + pα

)

+F+r cos
(
ω01t − pα − ϕ10

)
+ F−r cos

(
ω01t + pα − ϕ20

)]2}
dα,
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(
K12

)
12

= (K12)21 =
pR01l01Λ01

4σ2
2

∫2π

0

{
(sin 2α)

[
F+s cos

(
ω01t − pα

)
+F−s cos

(
ω01t + pα

)

+F+r cos
(
ω01t−pα−ϕ10

)
+ F−r cos

(
ω01t+pα − ϕ20

)]2}
dα,

(
K12

)
22
=
pR01l01Λ01

4σ2
2

∫2π

0

{
(1−cos 2α)[F+s cos

(
ω01t−pα

)
+ F−s cos

(
ω01t+pα

)

+F+r cos
(
ω01t − pα − ϕ10

)
+F−r cos

(
ω01t + pα − ϕ20

)]2}
dα,

(
K12

)
kp

= 0, k, p = 3, 4,

(
K11

)
13

=
(
K11

)
14

=
(
K11

)
23

=
(
K11

)
24

=
(
K11

)
31

=
(
K11

)
32

=
(
K11

)
41

=
(
K11

)
42

=
(
K12

)
13

=
(
K12

)
14

=
(
K12

)
23

=
(
K12

)
24

=
(
K12

)
31

=
(
K12

)
32

=
(
K12

)
41

=
(
K12

)
42

= 0,

(
k01

)
1
=
pR01l01Λ01

2σ

∫2π

0

{
(cosα)

[
F+s cos

(
ω01t − pα

)
+ F−s cos

(
ω01t + pα

)

+F+r cos
(
ω01t − pα − ϕ10

)
+ F−r cos

(
ω01t + pα − ϕ20

)]2}
dα,

(
k01

)
2
=
pR01l01Λ01

2σ

∫2π

0

{
(sinα)

[
F+s cos

(
ω01t − pα

)
+ F−s cos

(
ω01t + pα

)

+F+r cos
(
ω01t − pα − ϕ10

)
+ F−r cos

(
ω01t + pα − ϕ20

)]2}
dα,

(
k01

)
3
=
(
k01

)
4
= 0.

(A.4)

According to the finite element method, V3(x, t) andW3(x, t) can be expressed as

V3(x, t) =
∑
i

γi(x)ui(t), (i = 1, 5),

W3(x, t) =
∑
i

γi(x)ui(t), (i = 2, 3, 4, 6, 7, 8),
(A.5)

where x is the coordinate of beam element in local coordinate system, and the shape functions
are as follows:

γ1(x) = 1 − e,

γ2(x) = 1 − 10e3 + 15e4 − 6e5,
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γ3(x) = L ×
(
e − 6e3 + 8e4 − 3e5

)
,

γ4(x) = L2 × e2 − 3e3 + 3e4 − 5e5

2
,

γ5(x) = e,

γ6(x) = 10e3 − 15e4 + 6e5,

γ7(x) = L ×
(
−4e3 + 7e4 − 3e5

)
,

γ8(x) = L2 × e3 − 2e4 + e5

2
,

(A.6)

where e = x/L, L is the length of the beam element.
The mass matrix and stiffness matrix of the beam element are as follows:

(
M3

)
ij
= ρA(x)

∫L
0
γi(x)γj(x)dx + pI

∫L
0
γ ′i(x)γ

′
j(x)dx,

(
i, j = 2, 3, 4, 6, 7, 8

)
,

(
M3

)
ij
= ρA(x)

∫L
0
γi(x)γj(x)dx,

(
i, j = 1, 5

)
,

(A.7)

(
K3

)
ij
= EJ(x)

∫L
0
γ

′′
i (x)γ

′′
j (x)dx,

(
i, j = 2, 3, 4, 6, 7, 8

)
,

(
K3

)
kp

= EA(x)
∫L
0
γ ′k(x)γ

′
p(x)dx,

(
k, p = 1, 5

)
,

(A.8)

where I is the moment of inertia of cross-section.
The positive-sequence and negative-sequence components of the magnetomotive

amplitude of stator and rotor, respectively, are

F+s =
1
2
(1 + ae)Fm,

F−s =
1
2
(1 − ae)Fm,

(A.9)

F+r =
1
2
m2

m1

xm√
(r ′/s)2 + (x′)2

(1 + a2)Fm,

F−r =
1
2
m2

m1

xm√
[r ′/(2 − s)]2 + (x′)2

(1 + a2)Fm,

(A.10)

where Fm = 0.9(WKw)/pI,W is the number of turns of field winding,Kw is the coefficient of
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field winding, p is the number of pole pairs, I is the peak value of field current. ae = Uk/Ukn

is the effective signal coefficient,Ukn is the rated voltage, andUk is the actual control voltage.
m1 and m2 are the number of phases of the stator and rotor, respectively, xm is the reactance
of field windings, r ′ and x′ are respectively the reduction value of resistance and equivalent
self-induction reactance of rotor windings, and the slip ratio s is the difference between the
rotor speed and forward revolving field. 2 − s is the slip ratio between the rotor speed and
backward revolving field.

The transformation matrix of the ith element Ri is as follows

R1 = R2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1

1

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos β1 − sin β1
− sin β1 cos β1 0(4 × 4)

1
1

cos β1 − sin β1
− sin β1 cos β1

0(4 × 4) 1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R4 = R5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos β2 − sin β2
− sin β2 cos β2 0(4 × 4)

1
1

cos β2 − sin β2
− sin β2 cos β2

0(4 × 4) 1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R6 = R7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos β3 − sin β3
− sin β3 cos β3 0(4 × 4)

1
1

cos β3 − sin β3
− sin β3 cos β3

0(4 × 4) 1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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R8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos β4 − sin β4
− sin β4 cos β4 0(4 × 4)

1
1

cos β4 − sin β4
− sin β4 cos β4

0(4 × 4) 1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A.11)

where βi is the position angle of the link Li with the level position.
The coordinate matrix of the ith element B1 and B2 is 4 × 32 matrixes, and B3, B4, B5,

B6, B7, and B8 are 8 × 24 matrixes, and

(B1)11 = (B1)22 = (B1)33 = (B1)44 = 1,

(B2)15 = (B2)26 = (B2)37 = (B2)48 = 1,

(B3)3,9 = (B3)4,10 = (B3)5,11 = (B3)6,12 = (B3)7,13 = 1,

(B4)1,11 = (B4)2,12 = (B4)3,14 = (B4)5,15 = (B4)6,16 = (B4)7,17 = (B4)8,18 = 1,

(B5)1,15 = (B5)2,16 = (B5)3,17 = (B5)4,18 = (B5)5,19 = (B5)6,20 = (B5)7,21 = 1,

(B6)1,19 = (B6)2,20 = (B6)3,21 = (B6)3,22 = (B6)5,23 = (B6)6,24 = (B6)7,25 = (B6)8,26 = 1,

(B7)1,23 = (B7)2,24 = (B7)3,25 = (B7)4,26 = (B7)5,27 = (B7)6,28 = (B7)7,29 = 1,

(B8)1,27 = (B8)2,28 = (B8)3,30 = (B8)7,31 = (B8)8,32 = 1,

(A.12)

and the other components of Bi are 0.
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