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A fractional-order control strategy for pneumatic position servosystem is presented in this paper.
The idea of the fractional calculus application to control theorywas introduced inmanyworks, and
its advantages were proved. However, the realization of fractional-order controllers for pneumatic
position servosystems has not been investigated. Based on the relationship between the pressure
in cylinder and the rate of mass flow into the cylinder, the dynamic model of pneumatic position
servo system is established. The fractional-order controller for pneumatic position servo and
its implementation in industrial computer is designed. The experiments with fractional-order
controller are carried out under various conditions, which include sine position signal with
different frequency and amplitude, step position signal, and variety inertial load. The results show
the effectiveness of the proposed scheme and verify their fine control performance for pneumatic
position servo system.

1. Introduction

In the last decade, pneumatic servosystems are increasingly used and studied in a great deal
of industrial applications because of a number of advantages over other servosystems in point
of high-power weight and power volume ratios, high speed, low cost, and simple operational
mechanism. However, the dynamic characteristics are complex and highly nonlinear due to
compressibility of air, external disturbances such as friction and payload, and pressure supply
variations [1, 2]. The compressibility of air results in very low stiffness leading to low natural
frequency, and low damping system makes it difficult to be controlled. Especially, precise
control of pneumatic position servosystem is more difficult in the presence of uncertainties
and nonlinearities. In order to overcome those difficulties, many researchers have extensively
studied the application of different control methods in pneumatic servosystems [3–10].
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The research efforts mainly focused on two types of control strategy: applying recently
developed nonlinear control theory and modifying the conventional PID controller.

Recently, researchers reported that controllers making use of factional-order deriva-
tives and integrals could achieve performance and robustness results superior to those
obtained with conventional (integer order) controllers [11–13]. Fractional-order controllers
(FOCs) is described by fractional-order differential equations. Expanding derivatives and
integrals to fractional-orders can adjust control system’s frequency response directly and
continuously, which makes it possible to design more robust control system [14]. However,
FOC was not widely applied in control engineering mainly due to most researchers’
unfamiliar idea of fractional calculus and limited computational power, which leads to few
engineering application existed in the past. Microprocessors with powerful computation
ability and digital realizations for FOC become available now, which made it possible
to adopt fractional-order control methods to solve traditional control questions. The last
application researches in many complex objects, such as flexible robot [15], satellite attitude
control [13], spacecraft attitude control [16], and hydraulic actuator [17], have attracted
much attention and show that FOC possesses fine robust performance and can control the
low-damping system. To solve strong nonlinearity and low natural frequency problem of
pneumatic systems, fractional-order control strategy is provided in this paper.

This paper is organized as follows: we present the dynamic model of pneumatic
systems in Section 2. Section 3 introduces the fractional-order control and it’s digital
realizations. Section 4 deals with the experimental design of fractional-order control for
pneumatic systems. Section 5 presents the experimental results and discussions. Section 6
draws some conclusions.

2. System Model

The schematic diagram of pneumatic displacement servosystems is depicted in Figure 1.
It is composed of control elements and actuating elements. The control valve is a 5-port
proportional valve.

The mass flow rate through the orifice can be expressed as

qm = CdSCk
Pu√
RT

ϕ

(
Pd

Pu

)
, (2.1)

where Pu, Pd, R, Cd, Ck, and T are the pressures at upstream and downstream of the orifice, the
gas constant, the flow coefficient, the dimensionless constant, and the absolute temperature,
respectively. S is the effective area that changes according to the spool position. The flow
function ϕ is defined as

ϕ(θ) =

⎧⎪⎪⎨
⎪⎪⎩

√
2

k − 1

(
k + 1
2

)(k+1)/(k−1)[
(θ)2/k − (θ)(k+1)/k

]
0.528 < θ ≤ 1,

1 0 ≤ θ ≤ 0.528,

(2.2)

where k, θ are the ratio of specific heat and the ratio between the downstream and upstream
pressure, respectively.
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Figure 1: The schematic diagram of pneumatic displacement servosystems.

The relationship between the pressure in cylinder and the rate of mass flow into the
cylinder can be described by

dP

dt
=

kRTqm
V

− kP

V

dx

dt
A, (2.3)

where V, x, and A are the volume of the air in chamber, the displacement of the rod, and
the equivalent operational area of chamber, respectively. The overall dynamics of cylinder
motion can be obtained by

mẍ = (Pa − Pb)A − Ff − F, (2.4)

where a and b designate the chambers a and b, respectively. m,F, and Ff are the mass
of position, the external load, and the frictional fore, respectively. According to the above
equations, we definite the system state vector X = [x, ẋ, Pa, Pb]

T , so the overall system state
equations can be obtained by

ẋ1 = x2,

ẋ2 =
1
m

[
(Pa − Pb)A − F − Ff

]
,

ẋ3 =
k

Va

(
RTqma − PaAx2

)
,

ẋ4 =
k

Vb

(
RTqmb + PbAx2

)
.

(2.5)
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Based on the above-system model analysis, it is obvious that the pneumatic
servosystem possesses the inherent nonlinearity and parameter uncertainty because of air
compressibility, uneven distributed, and large change friction. The precise dynamic system
model required by control qualification is difficult to be obtained. The friction and other
uncertainties in pneumatic position system are always considered as external disturbance
and then compensated it using the value estimated by the observer technology [7]. Finally,
the better control performance can be achieved in comparison to other conventional control
methods such as PID controllers. However, they require a great deal of computation,
and the cost of control system is largely increased, which are not expected in the real
industrial applications. Besides, the dominant control methods working in the pneumatic
position servosystem are based on the PID controllers. It is important to further improve
the performance of PID controllers for the precision position control of pneumatic system,
which would contribute significantly to the real industrial applications. Therefore, the ideas
of fractional calculus improving the performance of traditional PID control strategy are
introduced to overcome the difficulties in controlling pneumatic position servosystem.

3. Fractional-Order Control

Fractional-order control systems are described by fractional-order differential equations.
Fractional calculus allows the derivatives and integrals to be any real number. The theory
of fractional-order derivative and integral was developed mainly in the 19th century. It just
has been in the last decades when the use of fractional-order operators and operations has
becomemore andmore attractive among many research areas. However, applying fractional-
order calculus to control engineering is a recent focus of interest.

3.1. Fractional Calculus

Fractional calculus is a generalization of integration and differentiation to noninteger-
(fractional)-order fundamental operator:

aD
α
t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dα

dt
, (α > 0),

1, (α = 0),∫ t

a

(dτ)α, (α < 0),

(3.1)

where a and t are the limits, and α is any real number and the order of the operation. There
are two common definitions for the general fractional differentiation and integration, such as
the Grunwald-Letnikov (GL) definition and the Riemann–Liouville (RL) definition [18]. The
GL definition is perhaps the best known one because it is most suitable for the realization of
discrete control algorithms. The GL fractional derivative of continuous function f(t) is given
by

aD
α
t f(t) = lim

h→ 0
h−α

[x]∑
j=0

(−1)−j
(
α

j

)
f
(
t − jh

)
, (3.2)
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where [x] is a truncation and x = (t − m)/h;
( α

j

)
is binomial coefficients, it can be replaced

by Gamma function,
( α

j

)
= Γ(α + 1)/j!Γ(α − j + 1), while the RL definition is given by

aD
α
t f(t) =

1
Γ(n − α)

dn

dtn

∫ t

a

f(τ)

(t − τ)α−n+1
d(τ), (3.3)

for (n − 1 < α < n).
For convenience, Laplace domain notion is usually used to describe the fractional

integrodifferential operation. The Laplace transform of the fractional derivative of f(t) is
given by

L
{
Dαf(t)

}
= sαF(s) −

[
Dα−1f(t)

]
t=0

, (3.4)

where F(s) is the Laplace transform of f(t). The Laplace transform of the fractional integral
of f(t) is given as follows:

L
{
D−αf(t)

}
= s−αF(s). (3.5)

Obviously, the Fourier transform of fractional derivative can be obtained by
substituting swith jω.

3.2. Fractional-Order Controllers

The differential equation of fractional-order PIλDδ (FOPID) controller [19] is described by

u(t) = Kpe(t) +KiD
−λ
t e(t) +KdD

δ
t e(t), (3.6)

whereKp, Ki, and Kd are the proportional, integral, and derivative coefficients, respectively.
λ, δ are the orders of integral and derivative. The continuous transfer function of FOPID is
obtained through Laplace transform, which is given by

Gc(s) = Kp +Kis
−λ +Kds

δ. (3.7)

It is obvious that the FOPID controllers not only need to design three parameters
Kp, Ki, and Kd, but also to design two orders λ, δ of integral and derivative controllers.
The various design methods of the FOPID controllers have been investigated, such as the
crossover frequency and phase margin [19], dominate pole in complex plane [19], the two-
stage approach [14], and the intelligent optimization method [20, 21]. The orders λ, δ are
not necessarily integer, but any real numbers. As shown in Figure 2, the FOPID controller
generalizes the conventional integer order PID controller and expands it from point to plane.
This expansion could provide much more flexibility in PID control design.
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Figure 2: PID controllers with fractional-orders.

3.3. Discretization Methods

To realize fractional-order controllers perfectly, all the past inputs should be memorized.
These are two discretization methods: direct discretization and indirect discretization [22].
In indirect discretization methods, frequency domain is fitting in continuous time domain
first and discretizing the fit s-transfer function. They could not guarantee the stable minimum
phase discretization. Several direct discretization methods by finite differential or difference
equation were proposed in recent researches, such as short memory principle, Tustin
expansion, and Al-Alaoui expansion [23]. The two famous expansion methods are power
series expansion (PSE) and continued fraction expansion (CFE).

Derived from Grunwald-Letnikov definition, the numerical calculation formula of
fractional derivative can be achieved as

t−LDα
t x(t) ≈ h−α

[L/T]∑
j=0

bjx
(
t − jh

)
, (3.8)

where L is the length of memory, T , the sampling time, always replaces the time increment h
during approximation. The weighting coefficients bj can be calculated recursively by

b0 = 1, bj =
(
1 − 1 + α

j

)
bj−1,

(
j ≥ 1

)
. (3.9)

With generating function s = ω(z−1), the fractional-order differentiator sα can be
transformed from s domain to z space. The well-known s → z schemes include Euler,
Tustin, and Al-Alaoui methods. To obtain the coefficients of the approximation equations
for fractional calculus, we can perform PSE or CFE calculation. If adopting PSE method,
the approximation equations as FIR filter structure can be obtained, while adopting CFE
method, the approximation equations as IIR filter structure. Through the pioneering research
[24], it has been shown that the low-order approximation equations with IIR structure can
achieve the excellent approximating results, which can be obtained only by the high-order
approximation equations with FIR structure. That is to say, the CFE method is preferable to
PSE one. What is more, the experimental results indicate that the results of Al-Alaoui and
Euler using CFE are suitable to physical applications in control engineering.
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Figure 3: Experimental framework.

We consider the Al-Alaoui operator as generating function

sα =
(
ω
(
z−1
)) α

=

(
8
7T

1 − z−1

1 + z−1/7

)α

(3.10)

and then can perform CFE; the discretized result is as follows:

Z{Dαx(t)} = CFE

{(
8
7T

1 − z−1

1 + z−1/7

)α}
X(z) ≈

(
8
7T

)α Pp

(
z−1
)

Qq

(
z−1
)X(z), (3.11)

where CFE{u} denotes the continued fraction expansion of u; p and q are the orders of the
approximation; P and Q are polynomials of degrees p and q. Normally, we can set p = q = n.

The above-FOPID controller (3.7) can be approximated using discretization methods,
which is given by

Gc(z) = Kp +Kiwi(z) +Kdwd(z), (3.12)

wherewi(z) is the discrete approximation equation of fractional-order integral s−λ, andwd(z)
is the discrete approximation equation of sδ. The greater the truncation order, the better the
approximation. Namely, the discretized model with higher order is more close to the real
fractional-order systems.

4. Experiments

The experimental framework of fractional-order control for pneumatic system is shown
in Figure 3. It mainly consists of pneumatic cylinder (SMC, CDA50-600-PPV-A), 5-port
proportional control valve (Festo, MPYE-5-1/4-010B), linear positioner (Festo, MLO-POT-
600-TLF), two pressure transducers (PT351-0.6MPa-0.3), multifunctional data acquisition
board (Advantech, PCL-812PG), and industrial computer (Advantech 610). The linear
positioner with a resolution of 0.5mm was employed to measure the position. It can output
the voltage signal from 0 to 10V proportional to the position of pneumatic cylinder. The
output of sensors is passed to computer through data acquisition with a sampling frequency
of 1000Hz. The control output is assigned to the proportional valve using the D/A channel of
the data acquisition. It can adjust flow rate according to input voltage (0–10V) by changing
the spool position. When input voltage is a half of the nominal value, the flow rate is
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theoretically equal to zero, so that the rod will stop. However, the voltage of stopping the
rod is about 5.3V in the proposed experiment. Additionally, the inaction region of pneumatic
position servosystem is 4.9∼5.8V, that is to say, the pneumatic actuator only slowly creeps in
this region. In order to improve the response speed, the inaction region is compensated in the
design of control algorithms. The compensating scheme is given as follows:

Δu =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4.9 −UFOC(k), Pe > 0.5mm,

5.3, |Pe| ≤ 0.5mm,

5.8 −UFOC(k), Pe < −0.5mm,

(4.1)

where Δu ,UFOC are the output of current control system and fractional-order controllers,
respectively. Pe is the position error between target value and current sampling value.

The approximation approach of fractional-order controllers in the following experi-
ments is described in (3.11). The sampling period in digital realization is 0.001 s. For example,
the discrete results of fractional-order operator s−0.4 can be achieved as

W−0.4
i (z)

=
29.6+11.84z−1−60.45z−2−20.87z−3+40.65z−4+11.27z−5−9.96z−6−1.89z−7+0.64z−8+0.048z−9
619−247.6z−1−1264z−2+436.4z−3+850.1z−4−235.6z−5−208.3z−6+39.61z−7+13.48z−8−z−9 .

(4.2)

According to the direct discretization methods using CFE, the FOPID controller can be
approximated by

U(k) = Kpe(k) +KiW
−λ
i (k, k − l) +KdW

δ
d (k, k − l), (4.3)

where U(k) is the current output of the FOPID controller, l is the memory length, W−λ
i (k, k −

l) and Wδ
d
(k, k − l) are the discrete approximation equation of s−λ and sδ, respectively.

The previous research indicates that the low-order approximation equations using CFE
can achieve the excellent approximating results [24]. So the experiments adopt direct
discretization methods using CFE. From (4.3), it is viewed that the implementation of FOPID
controller algorithm in Labwindows/CVI requires the last (l+ 1) error input, the last l output
from fractional integral and derivative parts. They are designated as e(k), e(k−1), . . . , e(k−l),
ui(k), ui(k−1), . . . , ui(k− l+1) and ud(k), ud(k−1), . . . , ud(k− l+1). Then the FOPID controller
output can be rewritten as

U(k) = Kpe(k) +Kiui(k) +Kdud(k). (4.4)

The flowchart of FOPID controller algorithm is summarized as follows:

(1) setKp,Ki,Kd, e(k) = e(k−1) = · · · = e(k−l) = 0, ui(k) = ui(k−1) = · · · = ui(k−l+1) =
0 and ud(k) = ud(k − 1) = · · · = ud(k − l + 1) = 0,

(2) sample the current value and calculate the error e(k + 1),
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(3) update the error sequences e(k − l) = e(k − l + 1), ..., e(k) = e(k + 1),

(4) calculate ui(k + 1) and ud(k + 1) from the discrete approximation equation,

(5) update the output sequences from fractional integral and derivative parts of FOPID
controllers

ui(k − l + 1) = ui(k − l + 2), . . . , ui(k) = ui(k + 1),

ud(k − l + 1) = ud(k − l + 2), . . . , ud(k) = ud(k + 1),
(4.5)

(6) obtain U(k) from (4.4),

(7) return to (2.2).

It is obvious that the realization of FOPID controller algorithm requires five parameters
of λ, δ,Kp,Ki, andKd in advance. Under the understanding of systemmodel, the parameters
of FOPID controllers can be designed through various methods, such as dominate pole, the
two-stage approach, and intelligent optimization method. It is proposed that particle swarm
optimization-based FOPID controllers design method is effective in our former research [20].
However, pneumatic position servosystem is nonlinear and parameter variable in back-
and-forth movement. It is difficult in exactly modeling pneumatic position servosystem.
Meanwhile, the system model of back and forth movement is different. So the parameters
of FOPID controllers are obtained by trial-and-error methods in the following experiments.

5. Experiments and Discussion

5.1. Classical PID Control Response

The above compensating scheme in (4.1) is adopted in classical PID control of pneumatic
position servosystem. The parameters of PID controllers are also obtained by trial-and-error
methods. Through experiment, the parameters of PID controllers are set as Kp = 0.8, Ki =
0.001, and Kd = 0.1. Figure 4 shows the experimental result of step position response from
350mm to 450mm with classical PID controllers. Figure 5 shows the result from 470mm to
300mm, and Figure 6 indicates the result from 400mm to 300mm. The maxim overshoot
is 6.7mm in Figure 4, while 18mm in Figure 5. It can be seen that step position back-and-
forth tracking with PID controllers reveals comparatively large steady error. The fluctuating
position tracking will result in the huge variation of cylinder pressure. The creep movement
in pneumatic position tracking is clearly exhibited in classical PID control.

5.2. Different Fractional-Order Response

In the position tracking of step signal, the different results of fractional-order control are
recorded, which are shown in Figure 7. The FOPID controllers PIλDδ are implemented,
whose fractional integral order λ varies from 0 to −1. It is obvious that the pneumatic
displacement response result is excellent without creep, when λ is equal to −0.4. To overcome
the creep, the following experiments adopt λ = −0.4. Using traditional PID controllers, it is
difficult to get rid of the creep phenomena in control. In general, only pressure compensation
can remove it. But fractional-order controllers exhibit fine characteristics in this area.
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Figure 4: Step position tracking (350 → 450mm).
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Figure 6: Step position tracking (400 → 300mm).
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Figure 7: position response with different integral order λ.
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Figure 8: Fractional-order control with variable load.

5.3. Position Tracking in Various Conditions

For detecting the robust performance of FOPID controllers, the experiments with the external
inertial load change are carried out. The M depicts the mass of inertial load in Figure 8.
The pneumatic position system with M = 3.3 kg response quickly and its overshoot only
has 5mm. When M is equal to 13.3 kg, the time of stabilizing the system has about 1.2
second, and the overshoot is limited in the range of 20mm. As can be seen from Figure 8,
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Figure 9: Sinusoidal position tracking (f = 0.15Hz).
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Figure 10: Sinusoidal position tracking (f = 0.25Hz).

the FOPID controllers PIλDδ can achieve successfully the fine control of pneumatic position
servosystems with parameter uncertainty.

Figures 9 and 10 show the desired displacement tracking ability of the FOPID
controllers. The desired position signal is a sinusoid with different frequency and is denoted
as xd shown in Figures 9 and 10. The x represents the practical position using fractional-order
control strategy. In Figure 9, the desired position signal with 50mm amplitude and 0.15Hz
frequency is tracked. It can be seen that the system has the high speed of response, and the
dynamic error is confined in the range of 5mm.When the frequency f is equal to 0.25Hz, the
error always does not reach to 20mm. The pneumatic position servosystem with fractional-
order control possesses the fine tracking ability when the signal frequency is comparatively
low. It is clear that the position tracking using the FOPID controllers is effective.
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6. Conclusions

The fractional-order control of pneumatic position servosystem is proposed to solve the
strong nonlinearity and low natural frequency problem. Fractional calculus provides the
profitable extension of traditional control strategy and attracts much attention in control
engineering. The experimental equipment for fractional-order control of pneumatic system
is established, and how to digitally realize the software algorithm of fractional-order control
is analyzed. Finally, the experiments under various conditions are carried out. The results
verify the fine control performance for pneumatic position servosystem with the nonlinearity
and parameter uncertainty.
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