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Let x(t) be a locally self-similar Gaussian random function. Denote by rxx(τ) the autocorrelation
function (ACF) of x(t). For x(t) that is sufficiently smooth on (0,∞), there is an asymptotic
expression given by rxx(0) − rxx(τ) ∼ c|τ |α for |τ | → 0, where c is a constant and α is the
fractal index of x(t). If the above is true, the fractal dimension of x(t), denoted by D, is given
by D = D(α) = 2 − α/2. Conventionally, α is strictly restricted to 0 < α ≤ 2 so as to make sure that
D ∈ [1, 2). The generalized Cauchy (GC) process is an instance of this type of random functions.
Another instance is fractional Brownian motion (fBm) and its increment process, that is, fractional
Gaussian noise (fGn), which strictly follow the case ofD ∈ [1, 2) or 0 < α ≤ 2. In this paper, I claim
that the fractal index α of x(t) may be relaxed to the range α > 0 as long as its ACF keeps valid for
α > 0. With this claim, I extend the GC process to allow α > 0 and call this extension, for simplicity,
the extended GC (EGC for short) process. I will address that there are dimensions 0 ≤ D(α) < 1
for 2 < α ≤ 4 and further D(α) < 0 for 4 < α for the EGC processes. I will explain that x(t) with
1 ≤ D < 2 is locally rougher than that with 0 ≤ D < 1. Moreover, x(t)withD < 0 is locally smoother
than that with 0 ≤ D < 1. The local smoothest x(t) occurs in the limit D → −∞. The focus of this
paper is on the fractal dimensions of random functions. The EGC processes presented in this paper
can be either long-range dependent (LRD) or short-range dependent (SRD). Though applications
of such class of random functions forD < 1 remain unknown, I will demonstrate the realizations of
the EGC processes for D < 1. The above result regarding negatively fractal dimension on random
functions can be further extended to describe a class of random fields with negative dimensions,
which are also briefed in this paper.

1. Introduction

Conventionally, for a time series, or a random function x(t), such as fully developed ocean
wave series, we need not discuss its fractal dimension, as can be judged from the power
spectra discussed by Massel [1], the Specialist Committee on Waves of the 23rd ITTC [2],
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Li [3]. However, in some cases, we have to consider the fractal dimension of a random
function, such as oceanic monthly temperature; see Alvarez-Ramirez et al. [4]. As a matter
of fact, time series with fractal dimensions are observed in many fields of sciences and
technologies; see, for example, Beran [5], Mandelbrot [6], Korvin [7], West and Deering [8],
Schreiber [9], Abry et al. [10], Werner [11], Levy-Vehel [12], Cattani [13, 14], and references
therein.

Denote the fractal dimension of x(t) byD, which measures the local roughness or local
irregularity or local self-similarity of x(t); see Mandelbrot [15], Li [16]. Then, in the standard
fractal time series, one has the positive dimension given by

D ∈ [1, 2). (1.1)

The literature with respect to the time series with D ∈ [1, 2) is rich; see, for example,
[4–68], simply a drop in the bucket in the field. However, how to represent D ∈ (0, 1) and
D < 0 in particular for time series remains an open problem. This paper gives a solution to
this problem in the case that x(t) is a locally self-similar Gaussian random function the ACF
of which follows the form of the GC process.

There are various definitions of dimensions (Mandelbrot [15]), such as the Minkowski
dimension, the Rényi dimension, the Hausdorff dimension, the packing dimension, the box-
counting dimension, the correlation dimension. Those dimensions may not be equal for
a specific object but this does not matter. What an important thing is whether there are
objects the dimensions of which are negative and how to represent negative dimensions
of objects (Mandelbrot [69]). In this regard, the research conducted by Mandelbrot and his
colleagues reveals a new outlook in negative dimensions in geometry, see Mandelbrot [69–
75], applications of which were found to turbulence, see Molenaar et al. [76], Chhabra and
Sreenivasan [77, 78].

Note that the negative dimensions described based on the Duplantier’s function
are from a view of geometry. Differing from the work by Mandelbrot [69–75], this paper
addresses time series or random functions with negative dimensions. It is well known that
commonly used models of fractal time series are fractional Brownian motion (fBm) and
fractional Gaussian noise (fGn) that is the increment process of fBm (Mandelbrot [17]). For
fBm as well as fGn, dimensions are restricted to be positive. As a matter of fact, denote by
DfGn andHfGn the fractal dimension of fGn and its Hurst parameter, respectively. Denote fGn
by xfGn(t). Then, the autocorrelation function (ACF) of fGn follows

E[xfGn(t)xfGn(t + τ)] ≈ HfGn(2HfGn − 1)τ (2HfGn−2). (1.2)

The right side of the above expression requires 0 < HfGn < 1; see Mandelbrot [17]. Thus,
1 < DfGn < 2 because DfGn = 2 −HfGn. In the LRD case, 0.5 < HfGn < 1 and 1.5 < DfGn < 2.
As a result, I have the following note.

Note 1. The dimension of fGn is never negative. That is, 1 ≤ DfGn < 2.

There are various types of fractal time series, such as fGn, alpha-stable processes,
Levy processes. However, not all time series have negative dimensions. For example, fGn
does not have negative dimensions. However, there may exist time series that have negative
dimensions. This research of mine restricts my study to a specific class of Gaussian random
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functions. It is the extension of the GC process that were reported by Gneiting and Schlather
[79], Lim and Li [80], Li and Lim [81], and Li et al. [82]. The extended GC (EGC) processes
may have negative dimensions.

LetDGC andHGC be the fractal dimension and the Hurst parameter of the GC process,
respectively. Then, DGC and HGC are independent of each other. In the previous research
regarding the GC process, only the case of 1 < DGC < 2 was discussed, see [79–81], Li [52], Li
and Lim [83, 84]. In this paper, I extend the GC process such thatDEGC ∈ (0, 1) andDEGC < 0,
where DEGC is the fractal dimension of the EGC process in addition to the traditional case of
DEGC ∈ [1, 2). The term EGC process means that it is a class of processes that is based on the
GC process but extended to the case of DEGC < 1, simply for the purpose of distinguishing it
from the standard GC process.

The rest of paper is organized as follows. The class of negatively dimensional
random functions, that is, EGC processes, is addressed in Section 2. Discussions are given
in Section 3. Extending the presented class of negative dimensional random functions to the
corresponding random fields is briefed in Section 4. Finally, Section 5 concludes the paper.

2. Extended Generalized Cauchy (EGC) Processes

Denote by (Ω, T, P) the probability space. Then, x(t, ζ) is said to be a stochastic process when
the random variable x represents the value of the outcome of an experiment T for every time
t, where Ω represents the sample space, T is the event space or sigma algebra, and P the
probability measure.

As usual, x(t, ζ) is simplified to be written as x(t), that is, the event space is usually
omitted. Denote by P(x) the probability function of x. Then, one can define the general
nth order, time varying, joint distribution function P(x1, . . . , xn; t1, . . . , tn) for the random
variables x(t1), . . . , x(tn). The joint distribution density function is written by

p(x1, . . . , xn; t1, . . . , tn) =
∂nP(x1, . . . , xn; t1, . . . , tn)

∂x1 · · ·∂xn
. (2.1)

In this paper, only the first- and second-order properties of processes are considered
instead of the complete joint distribution function. Moreover, this research only considers
Gaussian processes. Gaussian processes can be completely determined by the second-order
properties, more precisely, mean and ACF, see Papoulis [85]. Without generality losing, this
paper only considers processes with mean zero.

Note that (1 + |τ |α)−β/α is a valid ACF for α > 0 and β > 0. Denote (1 + |τ |α)−β/α by
rEGC(τ) that is the ACF of a Gaussian random function denoted by xEGC(t). That is,

rEGC(τ) = E[xEGC(t + τ)xEGC(t)] =
(
1 + |τ |α)−β/α, α > 0, β > 0. (2.2)

Then, we call a random function x(t) as an EGC process if it is a stationary Gaussian centred
process with the ACF given by (2.2).

Usually, the norm of a random function x(t) is expressed by E[x(t)x(t)] = ‖x(t)‖2,
see, for example, Cramer [86, 87], Liu [88], Gelfand and Vilenkin [89], and Adler et al. [90].
However, for the EGC process, E[xEGC(t)xEGC(t)] = rEGC(0) = 1 regardless of the values of α
and β. Therefore, it is inconvenient to use ‖xEGC(t)‖. For this reason, I utilize ‖rEGC(τ)‖ rather
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than ‖xEGC(t)‖ in this paper. The norm ‖rEGC(τ)‖ is suitable for our research purpose. In fact,
since xEGC(t) is Gaussian, it is uniquely determined by rEGC(τ) and vice versa. Note that

∫∞

−∞
|rEGC(τ)|2dτ = ∞ for 0 < β < 0.5. (2.3)

Thus, I need to express ‖rEGC(τ)‖ in the domain of generalized functions.

Definition 2.1 (see Griffel [91]). A function of rapid decay is a smooth function φ : � → �

such that tnφ(r)(t) → 0 as t → ± ∞ for all n, r ≥ 0, where � is the space of complex numbers.
The set of all functions of rapid decay is denoted by S.

Lemma 2.2 (see Griffel [91]). Every function belonging to S is absolutely integrable.

Now, define the norm and inner product of r ∈ HEGC by

‖rEGC‖2 = (rEGC, rEGC) =
∫+∞

−∞
[rEGC(u)]

2g(u)du, (2.4)

where g ∈ S. Combining any r ∈ HEGC with its limit yields that HEGC is a Hilbert space.
Denote it by

HEGC =
{
rEGC; ‖rEGC‖2 < ∞; α > 0, β > 0

}
. (2.5)

For 0 < α ≤ 2, I express the subspace ofHEGC by

HEGC1 =
{
rEGC; ‖rEGC‖2 < ∞; 0 < α ≤ 2, 0 < β

}
. (2.6)

Denote byHGC the space of the standard GC process. Then, one immediately sees that
HGC is a subspace of HEGC. More precisely,

HGC = HEGC1. (2.7)

In the case of 2 < α ≤ 4, I denote another subspace of HEGC by

HEGC2 =
{
rEGC; ‖rEGC‖2 < ∞; 2 < α ≤ 4, 0 < β

}
. (2.8)

Further, I denote the subspace of HEGC for α > 4 by

HEGC3 =
{
rEGC; ‖rEGC‖2 < ∞; 4 < α, 0 < β

}
. (2.9)

Then, I have the remark below.

Remark 2.3. One hasHEGC = HEGC1 ∪HEGC2 ∪HEGC3.
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Recall that each rEGC ∈ HEGC corresponds to a Gaussian process, see Gelfand and
Vilenkin [89, Chapter 4], Kanwal [92]. Its ACF is given by (2.2). However, the dimensions
of processes in HEGC2 and HEGC3 are undefined, more precisely, unknown. The following
theorems will describe the dimensions of processes inHEGC2 andHEGC3.

Theorem 2.4. Processes in HEGC2 have the dimensions less than one and greater than or equal to
zero.

Proof. Denote a process inHEGC2 by xEGC2(t). Let an ACF inHEGC2 be rEGC2. Then, taking into
account the definition of the local self-similarity provided by Kent and Wood [93], Hall and
Roy [94], Chan et al. [95], Adler [96], one says that a Gaussian stationary process is locally
self-similar of order α if its ACF satisfies for τ → 0

rEGC2(τ) = E[xEGC2(t + τ)xEGC2(t)] = 1 − β

α
|τ |α{1 +O

(|τ |α)}, 2 < α ≤ 4, 0 < β. (2.10)

Therefore, according to [93–96], the fractal dimension denoted by DEGC2 is given by

0 ≤ DEGC2 =
(
1 − α

2

)
< 1. (2.11)

This yields Theorem 2.4.

Let xEGC3(t) be a process in HEGC3. Denote the ACF of xEGC3(t) by rEGC3. Then, the
following theorem gives the negative dimensions of xEGC3(t).

Theorem 2.5. Processes in HEGC3 have negative dimensions.

Proof. Similar to (2.10), one has

rEGC3(τ) = E[xEGC3(t + τ)xEGC3(t)] = 1 − β

α
|τ |α{1 +O

(|τ |α)}, 4 < α, 0 < β. (2.12)

Then, following (2.12), we have

DEGC3 =
(
1 − α

2

)
< 0. (2.13)

This completes the proof of Theorem 2.5.

Remark 2.6. For an EGC process xEGC(t)with 0 < α and 0 < β, the fractal dimension of xEGC(t)
in general satisfies

DEGC < 2. (2.14)
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Theorem 2.7. The power spectrum density (PSD) function of the EGC process is given

SEGC(ω) =
∞∑

k=0

(−1)kΓ(β/α + k
)

πΓ
(
β/α

)
Γ(1 + k)

I1(ω) ∗ Sa(ω)

+
∞∑

k=0

(−1)kΓ(β/α + k
)

πΓ
(
β/α

)
Γ(1 + k)

[πI2(ω) − I2(ω) ∗ Sa(ω)],

(2.15)

where ω is angular frequency, ∗ implies the convolution, Sa(ω) = sin(ω)/ω and

I1(ω) = −2 sin
(
αkπ

2

)
Γ(αk + 1)|ω|−αk−1,

I2(ω) = 2 sin

[(
β + αk

)
π

2

]

Γ
[
1 − (

β + αk
)]|ω|(β+αk)−1.

(2.16)

Proof. Note that (1 + x)ν can be expanded as a binomial series given by

(1 + x)ν =
∞∑

k=0

(
ν

k

)

xk =
∞∑

k=0

Γ(ν + k)
Γ(ν)Γ(1 + k)

xk for |x| < 1, (2.17)

where ν ∈ �. and ( ν
k ) is the binomial coefficient.

Now, I expand the ACF of the EGC process by

C(τ) =

{ ∞∑

k=0

(−1)kΓ[(β/α) + k
]

Γ
(
β/α

)
Γ(1 + k)

|τ |αk
}

[u(τ + 1) − u(τ − 1)]

+

{ ∞∑

k=0

(−1)kΓ[(β/α) + k
]

Γ
(
β/α

)
Γ(1 + k)

|τ |−(β+αk)
}

[u(τ − 1) + u(−τ − 1)],

(2.18)

where u(τ) is the Heaviside unit step function (Li and Lim [84]).
Because the Fourier transform (FT) of |t|λ is expressed by

F
(
|t|λ

)
= −2 sin

(
λπ

2

)
Γ(λ + 1)|ω|−λ−1, (2.19)

where λ/= − 1,−3, . . ., I have

F
[
|τ |αk

]
= −2 sin

(
αkπ

2

)
Γ(αk + 1)|ω|−αk−1 = I1(ω). (2.20)
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Similarly,

F
[
|τ |−(β+αk)

]
= 2 sin

[(
β + αk

)
π

2

]

Γ
[
1 − (

β + αk
)]|ω|(β+αk)−1 = I2(ω). (2.21)

Note that F[u(τ + 1) − u(τ − 1)] = 2 Sa(ω). Doing the FT of the first term on the right
side of (2.18) term-by-term yields the following:

F

{[ ∞∑

k=0

(−1)kΓ[(β/α) + k
]

Γ
(
β/α

)
Γ(1 + k)

|τ |αk
]

[u(τ + 1) − u(τ − 1)]

}

=
1
2π

{ ∞∑

k=0

(−1)kΓ[(β/α) + k
]

Γ
(
β/α

)
Γ(1 + k)

F
(
|τ |αk

)}

∗ F[u(τ + 1) − u(τ − 1)]

=

{ ∞∑

k=0

(−1)kΓ[(β/α) + k
]

πΓ
(
β/α

)
Γ(1 + k)

I1(ω)

}

∗ Sa(ω)

=
∞∑

k=0

(−1)kΓ[(β/α) + k
]

πΓ
(
β/α

)
Γ(1 + k)

I1(ω) ∗ Sa(ω).

(2.22)

In addition, computing the FT of the second term on the right side of (2.18) term-by-
term yields

F

{{ ∞∑

k=0

(−1)kΓ[(β/α) + k
]

Γ
(
β/α

)
Γ(1 + k)

|τ |−(β+αk)
}

[u(τ − 1) + u(−τ − 1)]

}

=
1
2π

{ ∞∑

k=0

(−1)kΓ[(β/α) + k
]

Γ
(
β/α

)
Γ(1 + k)

F
[
|τ |−(β+αk)

]}

∗ F[u(τ − 1) + u(−τ − 1)]

=

{ ∞∑

k=0

(−1)kΓ[(β/α) + k
]

2πΓ
(
β/α

)
Γ(1 + k)

I2(ω)

}

∗ [2πδ(ω) − 2Sa(ω)]

=
∞∑

k=0

(−1)kΓ[(β/α) + k
]

πΓ
(
β/α

)
Γ(1 + k)

[πI2(ω) − I2(ω) ∗ Sa(ω)].

(2.23)

Adding the right sides of (2.22) and (2.23) yields the result of this theorem.

Remark 2.8. The EGC processes are non-Markovian since rEGC(t1, t2) does not satisfy the
triangular relation given by

rEGC(t1, t3) =
rEGC(t1, t2)rEGC(t2, t3)

rEGC(t2, t2)
, t1 < t2 < t3, (2.24)
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which is a necessary condition for a Gaussian process to be Markovian; see Todorovic [97].
In fact, up to a multiplicative constant, the Ornstein-Uhlenbeck process is the only stationary
Gaussian Markov process; see Lim and Muniandy [98], Wolperta and Taqqu [99].

Note 1. Since rEGC(τ) ∼ |τ |−β for τ → ∞, one has the Hurst parameter of the EGC processes
given by

HEGC = 1 − β

2
. (2.25)

An EGC process is LRD if 0 < β < 1. It is short-range dependent (SRD) if β > 1.

Note 2. Parameter α is independent of β and vice versa in the ACF of an EGC process.

Note 3. Dimensions of an EGC process relies on the value of α, irrelevant with β. That is,
dimensions of an EGC process is irrelevant with its statistic dependenc.

I will discuss the meaning of DEGC2 and DEGC3 in the next section.

3. Discussions

The emphasized point I will explain is that the ACF, (2.2), of the EGC process differs
significantly from that of the GC process because I relax the restriction of α to be α > 0 instead
of 0 < α ≤ 2 as that in the GC process, though two ACFs appear the similar, referring [80, 81]
for the details of the GC process. Relaxing the range of α from 0 < α ≤ 2 in the GC model to
α > 0 in this paper makes a considerable step further in the aspect of dimensions of random
functions. To exhibit this step, I should explain the meaning of dimensions less than one and
negative for a random function.

The fractal index α of a random function x(t) is considered for τ → 0 in (2.10) or in
the following expression if the ACF of x(t) is sufficiently smooth on (0,∞):

rxx(0) − rxx(τ) ∼ c|τ |α for |τ | −→ 0, (3.1)

where α relates to D by D = 1 − α/2. Obviously, rEGC is sufficiently smooth on (0,∞). As
implied by (3.1), one sees that the larger the value of α, the smoother the sample path of a
random function. The following notes become apparent, accordingly.

Note 1. The present fractal dimensions, say DEGC2 and DEGC3, imply that conventionally
random functions are not the locally smoothest because there are random functions with
dimensions less than one, for example,DEGC2, or even negative, for example,DEGC3.

Note 2. The zero dimension occurs when α = 4. That is,

DEGC = DEGC2 = 0 for α = 4. (3.2)

Note 3. Random functions with DEGC = 0 are not the locally smoothest. They are locally
rougher than those with DEGC3 < 0.
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In the extreme case of α → ∞, I have

lim
α→∞

DEGC = −∞. (3.3)

Because

lim
α→∞

|τ |α = 0 for |τ | −→ 0, (3.4)

we say that the locally smoothest random function is that with DEGC → −∞.

Note 4. For DEGC → −∞, xEGC(t) is locally uncorrelated at any point of t. However, it may
not be a white noise because it may globally be LRD if 0 < β < 1. As a matter of fact, there are
the Hurst effects on xEGC(t) regardless of the value of DEGC.

Note 5. The standard GC process is a special case of the EGC process for 0 < α ≤ 2 and β > 0,
which has applications to relaxation description in physics (Lim and Li [80]), the Internet
traffic (Li and Lim [81], Li and Zhao [100]), chromatin morphologies in breast cancer cells
(Muniandy and Stanslas [101]).

Note 6. The usual Cauchy process is a special case of the EGC process. In fact, when α = β = 2,
one gets the ACF of the usual Cauchy process. Denote by rC(τ) the ACF of the usual Cauchy
process. Then,

rC(τ) =
(
1 + |τ |2

)−1
. (3.5)

It is easily seen that the fractal dimension of the usual Cauchy process is one. It is SRD
since rC(τ) ∼ |τ |−2 for τ → ∞.

In what follows, I denote rEGC(τ) by rEGC(τ ;α, β) for facilitating the explanation. When
α = 2 and β = 1, one has

rEGC(τ ; 2, 1) =
(
1 + |τ |2

)−1/2
. (3.6)

The above rEGC(τ ; 2, 1) is the ACF proposed by Spector and Grant [102] for interpreting
areomagnetic data, which is a special case of the EGC process. When α = 2 and β = 3, rEGC(τ)
reduces to

rEGC(τ ; 2, 3) =
(
1 + |τ |2

)−3/2
, (3.7)

which has applications to magnetic fields; see Chilés and Delfiner [103]. The ACF of the
Cauchy type stated by Chilés and Delfiner [103, page 86] is a reduced case of rEGC(τ) in the
cases of α = 2 and β > 2b for b > 0. That is,

rEGC(τ ; 2, 2b) =
(
1 + |τ |2

)−b
for b > 0. (3.8)
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At moment, I am unaware what practical data may have the fractal dimensions less
than one or negative but we are able to synthesize such data following the simulation method
by Li [104]. Denote by w(t) the standard white noise. Let F−1 be the operator of the inverse
Fourier transform. Denote by y(t) the synthesized random function that follows the ACF of
the EGC process. Then,

y(t) = w(t) ∗ F−1
{[

F
(
1 + |t|α)−β/α

]0.5}
. (3.9)

Replacing α and β by DEGC and HEGC, respectively, yields

y(t) = w(t) ∗ F−1
{[

F
(
1 + |t|4−2DEGC

)−(1−HEGC)/(2−DEGC)
]0.5}

. (3.10)

In the discrete case, we have

y(i) = w(i) ∗ IFFT
{[

FFT
(
1 + |i|α)−β/α

]0.5}

= w(i) ∗ IFFT
{[

FFT
(
1 + |i|4−2DEGC

)−(1−HEGC)/(2−DEGC)
]0.5}

,

(3.11)

where FFT represents the fast Fourier transform and IFFT stands for its inverse. Figure 1
indicates the realizations of the EGC process with various values of α for β = 0.8 (the LRD
case).

4. Extension to Corresponding Random Field with
Negative Dimension

Denote by �
n the n-dimensional Euclidean space. The bold letters t and τ represent vectors

belonging to �n , respectively denoting t = (t1, . . . , tn) and τ = (τ1, . . . , τn). The symbols ‖t‖
and ‖τ‖ represent their Euclidean norms.

In the work by Lim and Teo [105], a random field X(t) is called a Gaussian field with
the GC’s covariance function if its covariance is given by

R(τ) = E[X(t)X(t + τ)] =
(
1 + ‖τ‖α)−β/α, (4.1)

where β > 0 and α is restricted by 0 < α ≤ 2. Lim and Teo termedX(t) as the GFGCC (Gaussian
field with the generalized Cauchy covariance) in short. We denote X(t) by XGFGCC(t) for
simplicity. Over the hyperrectangle C =

∏n
i=1[ai, bi], they obtained the positive fractal

dimension of XGFGCC(t) by the following expression:

DGFGCC = n + 1 − α

2
, 0 < α ≤ 2. (4.2)
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Figure 1: Continued.
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Figure 1: Realizations of the EGC process for β = 0.8, that is, HEGC = 0.6. (a) Realization for α = 0.1, that
is, DEGC = 1.95. (b) Realization for α = 1, that is, DEGC = 1.5. (c) Realization for α = 2, that is, DEGC = 1.
(d) Realization for α = 4, that is, DEGC = 0. (e) Realization for α = 8, that is, DEGC = −2. (f) Realization for
α = 16, that is,DEGC = −6.

Clearly,

n ≤ DGFGCC < n + 1. (4.3)

As previously discussed in Sections 2 and 3, the restriction of α can be relaxed to α >
0. Therefore, GFGCC can be extended to the case of α > 0. We call such an extension by
EGFGCC (extended Gaussian field with the generalized Cauchy covariance) and denote it
by XEGFGCC(t). The fractal dimension of XEGFGCC(t) is expressed by

DEGFGCC = n + 1 − α

2
, α > 0. (4.4)

The difference between XEGFGCC(t) and XGFGCC(t) is considerable because DEGFGCC

may be negative while DGFGCC is always positive. As a matter of fact, we have

DEGFGCC < 0 if α > 2(n + 1). (4.5)

The meaning of negative dimension for XEGFGCC(t) is similar to that explained in
Section 3. That is, locally, XEGFGCC(t) is more regular for smaller DEGFGCC.

5. Conclusions

I have explained that the GC process can be extended to the EGC process with dimensions
less than 1 and negative. The EGC process is rich such that it takes the standard GC process
as its special case. I have explained that the EGC process with smaller fractal dimensions is
smoother than that with larger ones. The present results are theoretic but data with negative
dimensions have been synthesized in this paper. One interesting thing, as a consequence of
this paper, is to explore such a class of data in various fields, for example, either in time series
as those in [13, 14, 106–127], or random fields [103].
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