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A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed.
The Fredholm-type equations, which have many applications in mathematical physics, are then
considered. The method is based upon hybrid function approximate. The properties of hybrid
of block-pulse functions and Chebyshev series are presented and are utilized to reduce the
computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical
examples are selected to illustrate the effectiveness and simplicity of the method.

1. Introduction

Over the last years, the fractional calculus has been used increasingly in different areas of ap-
plied science. This tendency could be explained by the deduction of knowledgemodels which
describe real physical phenomena. In fact, the fractional derivative has been proved reliable to
emphasize the long memory character in some physical domains especially with the diffu-
sion principle. For example, the nonlinear oscillation of earthquake can bemodeled with frac-
tional derivatives, and the fluid-dynamic traffic model with fractional derivatives can elimi-
nate the deficiency arising from the assumption of continuum traffic flow [1]. In the fields
of physics and chemistry, fractional derivatives and integrals are presently associated with
the application of fractals in the modeling of electrochemical reactions, irreversibility, and
electromagnetism [2], heat conduction in materials with memory, and radiation problems.
Many mathematical formulations of mentioned phenomena contain nonlinear integrodif-
ferential equations with fractional order. Nonlinear phenomena are also of fundamental
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importance in various fields of science and engineering. The nonlinear models of real-life pro-
blems are still difficult to be solved either numerically or theoretically. There has recently been
much attention devoted to the search for better andmore efficient solution methods for deter-
mining a solution, approximate or exact, analytical or numerical, to nonlinear models [3–5].

In this paper, we study the numerical solution of a nonlinear fractional integrodiffer-
ential equation of the second:

Dαf(x) − λ

∫1

0
k(x, t)

[
f(t)

]m
dt = g(x), m > 1, (1.1)

with the initial condition

f (i)(0) = δi, i = 0, 1, . . . , r − 1, r − 1 < α ≤ r, r ∈ N (1.2)

by hybrid of block-pulse functions and Chebyshev polynomials. Here, g ∈ L2([0, 1)), k ∈
L2([0, 1)2) are known functions; f(x) is unknown function. Dα is the Caputo fractional dif-
ferentiation operator and mis a positive integer.

During the last decades, several methods have been used to solve fractional differential
equations, fractional partial differential equations, fractional integrodifferential equations,
and dynamic systems containing fractional derivatives, such as Adomian’s decomposition
method [6–11], He’s variational iteration method [12–14], homotopy perturbation method
[15, 16], homotopy analysis method [3], collocation method [17], Galerkin method [18], and
other methods [19–21]. But few papers reported application of hybrid function to solve the
nonlinear fractional integro-differential equations.

The paper is organized as follows: in Section 2, we introduce the basic definitions and
properties of the fractional calculus theory. In Section 3, we describe the basic formulation
of hybrid block-pulse function and Chebyshev polynomials required for our subsequent.
Section 4 is devoted to the solution of (1.1) by using hybrid functions. In Section 5, we report
our numerical finding and demonstrate the accuracy of the proposed scheme by considering
numerical examples.

2. Basic Definitions

We give some basic definitions and properties of the fractional calculus theory, which are used
further in this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0 is defined as
[22]

Jαf(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, α > 0, x > 0,

J0f(x) = f(x).

(2.1)

It has the following properties:

Jαxγ =
Γ
(
γ + 1

)
Γ
(
α + γ + 1

)xα+γ , γ > −1. (2.2)
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Definition 2.2. The Caputo definition of fractal derivative operator is given by

Dαf(x) = Jm−αDmf(x) =
1

Γ(m − α)

∫x

0
(x − t)m−α−1f (m)(t)dt, (2.3)

where m − 1 ≤ α ≤ m, m ∈ N, x > 0. It has the following two basic properties:

DαJαf(x) = f(x),

JαDαf(x) = f(x) −
m−1∑
k=0

f (k)(0+)
xk

k!
, x > 0.

(2.4)

3. Properties of Hybrid Functions

3.1. Hybrid Functions of Block-Pulse and Chebyshev Polynomials

Hybrid functions hnm(x), n = 1, 2, . . . ,N, m = 0, 1, 2, . . . ,M − 1, are defined on the interval
[0, 1) as

hnm(x) =

⎧⎪⎨
⎪⎩
Tm(2Nx − 2n + 1), x ∈

[(
n − 1
N

)
,
n

N

)

0, otherwise
(3.1)

andωn(t) = ω(2Nt−2n+1), where n andm are the orders of block-pulse functions andCheby-
shev polynomials.

3.2. Function Approximation

A function y(x) defined over the interval 0 to 1 may be expanded as

y(x) =
∞∑
n=1

∞∑
m=0

cnmhnm(x), (3.2)

where

cnm =
(
y(x), hnm(x)

)
, (3.3)

in which (·, ·) denotes the inner product.
If y(x) in (3.2) is truncated, then (3.2) can be written as

y(x) =
N∑
n=1

M−1∑
m=0

cnmhnm(x) = CTH(x) = HT (x)C, (3.4)
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where C and H(x), given by

C = [c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . cN0, . . . , cNM−1]T , (3.5)

H(x) = [h10(x), h11(x), . . . , h1M−1(x), h20(x), . . . , h2M−1(x), . . . hN0(x), . . . , hNM−1(x)]
T .

(3.6)

In (3.4) and (3.5), cnm, n = 1, 2, . . . ,N, m = 0, 1, . . . ,M − 1, are the coefficients expansions of
the function y(x) and hnm(x), n = 1, 2, . . . , N, m = 0, 1, . . . , M − 1, are defined in (3.1).

3.3. Operational Matrix of the Fractional Integration

The integration of the vector H(x) defined in (3.6) can be obtained as

∫x

0
H(t)dt ≈ PH(x), (3.7)

see [23], where P is the MN ×MNoperational matrix for integration.
Our purpose is to derive the hybrid functions operational matrix of the fractional

integration. For this purpose, we consider an m-set of block pulse function as

bn(x) =

⎧⎪⎪⎨
⎪⎪⎩

1,
i

m
≤ t ≤ i + 1

m
,

0, otherwise,

i = 0, 1, 2, . . . , m − 1 . (3.8)

The functions bi(x) are disjoint and orthogonal. That is,

bi(x)bj(x) =

⎧⎨
⎩
0, i /= j,

bj(x), i = j.
(3.9)

From the orthogonality of property, it is possible to expand functions into their block pulse
series.

Similarly, hybrid function may be expanded into an NM-set of block pulse function as

H(x) = ΦB(x), (3.10)

where B(x) = [b1(t), b2(t), . . . , bNM(t)] and Φ is an MN ×MN product operational matrix.
In [24], Kilicman and Al Zhour have given the block pulse operational matrix of the

fractional integration Fα as follows:

JaB(x) ≈ FαB(x), (3.11)
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where

Fα =
1
lα

1
Γ(α + 2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ξ1 ξ2 ξ3 · · · ξl−1

0 1 ξ1 ξ2 · · · ξl−2

0 0 1 ξ1 · · · ξl−3
...

...
...

...
. . .

...

0 0 0 0 · · · ξ1

0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.12)

with ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1.
Next, we derive the hybrid function operational matrix of the fractional integration.

Let

JαH(x) ≈ PαH(x), (3.13)

where matrix Pα is called the hybrid function operational matrix of fractional integration.
Using (3.10) and (3.11), we have

JαH(x) ≈ JαΦB(x) = ΦJαB(x) ≈ ΦFαB(x). (3.14)

From (3.10) and (3.13), we get

PαH(x) = PαΦB(x) = ΦFαB(x). (3.15)

Then, the hybrid function operational matrix of fractional integration Pα is given by

Pα = ΦFαΦ−1. (3.16)

Therefore, we have found the operational matrix of fractional integration for hybrid function.

3.4. The Product Operational of the Hybrid of Block-Pulse and
Chebyshev Polynomials

The following property of the product of two hybrid function vectors will also be used.
Let

H(x)HT (x)C ∼= C̃H(x), (3.17)
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where

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C̃1 0 · · · 0

0 C̃2 · · · 0

...
...

. . .
...

0 0 · · · C̃N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.18)

is an MN × MN product operational matrix. And, C̃i i = 1, 2, 3, . . .N are M × M matrices
given by

C̃i =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2ci0 2ci1 2ci2 2ci3 · · · 2ci,M−2 2ci,M−1

ci1 2ci0 + ci2 ci1 + ci3 ci2 + ci4 · · · ci,M−3 + ci,M−1 ci,M−2

ci2 ci1 + ci3 2ci0 + ci4 ci1 + ci5 · · · ci,M−4 ci,M−3
...

...
...

...
. . .

...
...

· · · · · · · · · 2ci0 + ciu ci1 + ci,u+1 · · · civ

· · · · · · · · · ci1 + ciu 2ci0
...

...

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · 2ci0 ci1

ci,M−1 ci,M−2 ci,M−3 ci,M−4 · · · ci1 2ci0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.19)

We also define the matrix D as follows:

D =
∫1

0
H(x)HT (x)dx. (3.20)

For the hybrid functions of block-pulse and Chebyshev polynomials, D has the following
form:

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

L 0 · · · 0

0 L · · · 0

...
...

. . .
...

0 0 · · · L

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.21)

where L isM ×M nonsingular symmetric matrix given in [23].
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4. Nonlinear Fredholm Integral Equations

Consider (1.1); we approximate g(x), k(x, t) by the way mentioned in Section 3 as

g(x) = HT (x)G,

k(x, t) = HT (x)KH(t).
(4.1)

(see [25]), Now, let

Dαf(x) ≈ ATH(x). (4.2)

For simplicity, we can assume that δi = 0 (in the initial condition). Hence by using (2.4) and
(3.13), we have

f(x) ≈ ATPαH(x). (4.3)

Define

C = [c0, c1, c2, . . . , cl−1]T = ATPα,

[
f(t)

]m =
[
HT (t)C

]m
=
[
CTH(t)

]m
= CTH(t) ·HT (t)C

[
HT (t)C

]m−2
.

(4.4)

Applying (3.17) and (4.4),

[
f(t)

]m = ATC̃H(t)
[
HT (t)C

]m−2
= ATC̃H(t) ·HT (t)C

[
BT (t)C

]m−3
,

[
f(t)

]m = CT
[
C̃
]m−1

H(t) = C∗H(t).

(4.5)

With substituting in (1.1), we have

HT (x)A − λ

∫1

0
HT (x)KH(t)HT (t)C∗Tdt = HT (x)G,

HT (x)A − λHT (x)K
∫1

0
H(t)HT (t)dt · C∗T = HT (x)G

(4.6)

Applying (3.20), we get

A − λKD · C∗T = G, (4.7)

which is a nonlinear system of equations. By solving this equation, we can find the vector C.
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We can easily verify the accuracy of the method. Given that the truncated hybrid fun-
ction in (3.4) is an approximate solution of (1.1), it must have approximately satisfied these
equations. Thus, for each xi ∈ [0, 1],

E(xi) = ATH(xi) − λ

∫1

0
k(xi, t)C∗H(t)dt − g(xi) ≈ 0. (4.8)

If max E(xi) = 10−k (k is any positive integer) is prescribed, then the truncation limitN is in-
creased until the difference E(xi) at each of the points xi becomes smaller than the pre-
scribed 10−k.

5. Numerical Examples

In this section, we applied the method presented in this paper for solving integral equation of
the form (1.1) and solved some examples.

Example 5.1. Let us first consider fractional nonlinear integro-differential equation:

Dαf(x) −
∫1

0
xt
[
f(t)

]2
dt = 1 − x

4
, 0 ≤ x < 1, 0 < α ≤ 1, (5.1)

(see [26]), with the initial condition f(0) = 0.
The numerical results for M = 1, N = 2, and α = 1/4, 1/2, 3/4, and 1 are plotted in

Figure 1. For α = 1, we can get the exact solution f(x) = x. From Figure 1, we can see the
numerical solution is in very good agreement with the exact solution when α = 1.

Example 5.2. As the second example considers the following fractional nonlinear integro-dif-
ferential equation:

D1/2f(x) −
∫1

0
xt
[
f(t)

]4
dt = g(x), 0 ≤ x < 1, (5.2)

with the initial condition f(0) = 0 and g(x) = (1/Γ(1/2))((8/3)
√
x3 − 2

√
x) − (x/1260), the

exact solution is f(x) = x2 − x. Table 1 shows the numerical results for Example 5.2.

Example 5.3.

D5/3f(x) −
∫1

0
(x + t)2

[
f(t)

]3
dt = g(x), 0 ≤ x < 1, (5.3)

(see [12]), where

g(x) =
6

Γ(1/3)
3
√
x − x2

7
− x

4
− 1
9
, (5.4)
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Figure 1: The approximate solution of Example 5.1 forN = 1,M = 2.
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Figure 2: Exact and numerical solutions of Example 5.3 forN = 2, M = 3.

and with these supplementary conditions f(0) = f ′(0) = 0. The exact solution is f(x) = x2.
Figures 2 and 3 illustrates the numerical results of Example 5.3 with N = 2,M = 3.

6. Conclusion

We have solved the nonlinear Fredholm integro-differential equations of fractional order by
using hybrid of block-pulse functions and Chebyshev polynomials. The properties of hybrid
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Figure 3: Absolute error of Example 5.3 forN = 2, M = 3.

Table 1: Absolute error for α = 1/2 and different values ofM, N for Example 5.2.

x N = 2, M = 3 N = 3, M = 3 N = 4, M = 3
0.1 5.1985e-003 1.5106e-004 2.8496e-006
0.2 1.1372e-003 2.4887e-004 3.9120e-006
0.3 7.4698e-004 3.2711e-004 4.6808e-006
0.4 1.2729e-003 7.0337e-005 3.1231e-006
0.5 4.6736e-003 4.3451e-004 3.2653e-006
0.6 1.2160e-003 2.5000e-006 2.6369e-006
0.7 6.0767e-004 6.2935e-005 4.7123e-007
0.8 6.0442e-004 3.2421e-004 4.8631e-006
0.9 1.2039e-003 6.2276e-005 2.0707e-006

of block-pulse functions and Chebyshev polynomials are used to reduce the equation to the
solution of nonlinear algebraic equations. Illustrative examples are given to demonstrate the
validity and applicability of the proposed method. The advantages of hybrid functions are
that the values of N and M are adjustable as well as being able to yield more accurate
numerical solutions. Also hybrid functions have good advantage in dealing with piecewise
continuous functions.

Themethod can be extended and applied to the system of nonlinear integral equations,
linear and nonlinear integro-differential equations, but some modifications are required.
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