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Inside a chiral nihility slab which is backed by perfect electromagnetic conductor, all valid frac-
tional dual solutions are determined using the fractional curl operator. Fractional dual solutions
may be regarded as intermediate step between the original and dual to the original solution. Cor-
responding fields outside the nihility slab for each case are also determined and analyzed. It is
noted that only for one out of three cases the corresponding field outside chiral nihility slab is also
fractional dual, while for other two cases, corresponding fields are not fractional dual. It is noted
that time average power density vanishes inside the PEC-backed chiral nihility slab, while it exists
outside the nihility slab.

1. Introduction

Chiral nihility is a special kind of chiral medium, for which the real part of permittivity and
permeability are simultaneously zero or refractive index become zero at certain frequency
known as nihility frequency. The realization of the chiral nihility medium has been discussed
in [1-3]. Tretyakov et al. [1], showed that this material can be realized in a similar way as
mixture with “ordinary” nihility by addig chiral inclusions all of the same handedness. At
the frequency where the real parts of both permittivity and permeability become zeros, the
chirality parameter is nonzero, and, the imaginary parts of all the parameters can be rather
small compared to the chirality parameter. It has been proved that at the frequency equal to
6.38 GHz, both the permittivity and permeability of the material have zero real parts as
discussed by Tretyakov et al. [2]. Also, Cheng et al. [3] proposed the realization of chiral
nihility medium inside waveguide at frequency 0.5GHz. Chiral nihility is extension of
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nihility concept, introduced by Lakhtakia [4] and studied by researchers [5-7], for ordinary
dielectric medium. In chiral nihility, the two nihility, the two eigenwaves are still circularly
polarized but one of them is a backward wave. For backward waves, phase velocity is anti-
parallel to the corresponding Poynting vector. Phenomena of negative refraction occurs when
a plane wave enters from vacuum to chiral nihility medium.

Due to its interesting and extraordinary characteristics, chiral nihility has attracted
many researchers [8-21]. Constitutive relations for isotropic chiral nihility medium are [2]

D = —ixy/eouo H,
B = ix+/eopo E.

(1.1)

Taking time dependence as exp(iwt), Maxwell equations for chiral nihility medium
can be written as

V xE= koKfE,
(1.2)
V x H = koxH,

where kg = w/c is the wavenumber in vacuum. It must be noted that electric and magnetic
fields in chiral nihility medium are not independent but are related through wave impedance

n= Tlos_)l(i)rlfléo g (13)

It may be noted that, in the present paper, impedance of chiral nihility medium has
been considered close to impedance of free space 7.

According to the duality principle for ordinary isotropic medium, if (E,7oH) is one
solution to Maxwell equations, then (r0H,—E) is another solution to Maxwell equations.
Solution (79H, -E) is termed as dual solution to the original solution (E,7oH), because
Maxwell equations remain unchanged for both solutions. It is obvious, from above given
Maxwell equations for chiral nihility medium, that if (E, #H) is one solution to Maxwell equa-
tions, then other solutions for which Maxwell equations remain unchanged are (¥4H, +E),
(-E,—nH), and (+7H, +E). Set of solutions which may be discerned as dual solutions to the
original solution (E, nH) is {(yH, -E), (-nH, E), (-E, -yH)}, as discussed by Naqvi [11]. This
means that simultaneous rotation of both electric and magnetic fields in clockwise or coun-
terclockwise direction by amount of integer multiple of s /2 is allowed to get the dual so-
lution. Unallowed dual solution means that one field of original solution is being rotated in
clockwise direction, while the other is being rotated counterclockwise and vice versa. That is,
(nH,E) and (-nH, —E) are invalid dual solutions. Now, if an achiral-chiral-nihility interface
is excited by a uniform plane wave, there exists more than one dual to original solution in
chiral nihility medium while only one dual to original solution in ordinary medium.

For an isotropic and homogeneous medium, the solutions which may be regarded as
intermediate step between the original and dual to the original solutions may be obtained
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using the following relations:

1

Eiq = —— (VX)?E,
fd (iko)"( x)
(1.4)
1
H, = ——(Vx)"nH,
Moty (ikg)"‘( x) 1o

where a is fractional parameter and (Vx)” means fractional curl operator. ko = w./fig€g is the
wavenumber and 79 = \/o/ €p is impedance of the medium. The intermediate solutions bet-
ween the above two sets of solutions may be obtained by varying parameter a between zero
and one. A number of contributions in this direction are available in the published literature
[22-40].

The other important material which is to be discussed here in this paper is the perfect
electromagnetic (PEMC) material. PEMC material is the generalization of PEC and PMC
materials. Perfect electromagnetic conductor (PEMC) was introduced by Lindell and Sihvola
[41]. PEMC has attracted many researchers to contribute in the field of the field of electro-
magnetics using this material [42-54].

In this paper, we have determined all valid fractional dual solutions inside a chiral
nihility slab which is backed by PEMC surface, using the fractional curl operator. Fractional
dual solutions inside the PEMC-backed chiral nihility slab and corresponding fields for
region outside the slab are determined and analyzed. It is noted that only for one out of three
cases corresponding field outside chiral nihility slab is also fractional dual, while for other
two cases, corresponding fields are not fractional dual. It is shown that time average power
density vanishes inside the PEC-backed chiral nihility slab while it exists outside the nihility
slab. It is seen that duality theorem provides a way to obtain solution of a problem without
going into analytical details. In ordinary medium, only one solution/problem (known as
dual) can be treated if original solution is known, whereas chirality nihility provides oppor-
tunity to address more than one such situations. Present study incorporates all possible (three
possible dual solutions) combinations of original and dual to original solutions.

2. Chiral Nihility Slab Backed by PEMC

Consider a slab of chiral nihility metamaterial. The slab is of infinite length and is backed by
PEMC. Front face of the chiral nihility slab is located at z = d;, while perfect electromagnetic
conductor is located at location z = d», where d, > d;.

A linearly polarized uniform plane wave, with time dependency time harmonic
exp(—jwt), is incident on the chiral nihility slab backed by PEMC. For the sake of simplicity,
it is assumed that direction of incidence is parallel to the normal at chiral nihility slab.
The electric and magnetic fields inside and outside the grounded chiral nihility slab may be
written in terms of unknown coefficients as

Eo = Xexp(iko-z) + A"Ny exp(—ikozz) + B'N] exp(-ikozz), z<dy,
E; = E*Mjexp(ikiz) + F*Mj exp (ik:z)
+ E"Mpgexp(-ikiz) + FM; exp(-ik;z), di<z<dy,
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Hp = nlfr exp(ikozz) — UL{A_NI_? exp(—ikozz) - B'N] exp(-ikozz)}, z<d,
0 0

H, = %l [E*Mj exp(ikiz) — F*M] exp(ikzz) + E"Mpexp(-ikiz) — F"Mj exp(-ik;z)],

dl <z< dz,
(2.1)
where

Nj = X iy,
N} =X Fiy,

P (2.2)
My =Xx+iy,
M; =X Fiy.

Superscript + in (2.2) represents the eigenwaves propagating in the +z direction. The
subscript R and L refer to the RCP and LCP eigenwaves satisfying the dispersion relations

k: = +wx, (2.3)

at the nihility frequency. In the above equations, ko, = w,/fio€g and 17 = \/p/ €. It may be noted
that relation kI = —k; holds for all modes propagating inside the slab.

Unknown coefficients in field expressions (2.1) may be obtained by using the related
boundary conditions. At z = d5, tangential components of field quantity (ME; + H;) must be
[40]. Tangential components of electric and magnetic fields across the dielectric interface
located at z = d; must be continuous. Application of these boundary conditions yield un-
known coefficients

__1/Mn+i . .
E = 5 (i — M11> exp(iko.di +ik;dy),
Ef = eXp(ikadl - lk;dl)
2 7
. . (2.4)

B < Mn+i >exp(21k02d1)

A" = - ,
i— Mn 2
B - <i - Mn) exp(2iko.d1)
A\ Mn+i 2 ‘

It may be noted that all coefficients are independent of parameter d».

3. Fractional Dual Solutions in Chiral Nihility Slab

Using the concept of fractional curl operator (V x)” [14], we can find fractional dual solutions
to the Maxwell equations in chiral nihility slab. Discussion has been divided into three cases
as:



Mathematical Problems in Engineering 5

Case 1. Fractional dual fields between (E, 7H) and (yH, —E) for region inside and outside the
slab may be obtained from Maxwell equations as

(3.1)

Above fields must satisfy the Maxwell equations. Subscript fd stands for fractional dual. Sign
+ are for propagation in positive and negative z-direction. In order to deal with above equa-
tions, eigenvalues and eigenvector of operators (k;x) = +Zx are required. So, the eigenvalues
and eigenvectors of these cross-product operators are given below. Eigenvalues and eigen-
vectors of operator ki x = Zx

Alzi[.ﬁ?+iy], a =—i,

V2
A, = L [3? - i]?], ap = +i, (3.2)
V2
A3 = 12, as = 0.
Eigenvalues and eigenvectors of operator kyx = —Zx are
1. . :
A = ﬁ[x+zy], ap = +i,
(3.3)

| .
A2=ﬁ[x—zy], a, = —i,
A3 = —if, as = 0.

Fractional dual fields are obtained by fractionalizing the eigenvalues of corresponding
linear operator; that is,

1 a1
72A1+(+1) i

+ [(—i)"A™Ny + (i)*B"N; | exp(—ikozz),

Eotq = [(-1)" A;| exp(ikozz)

Eifq = [(-i)"E*M} exp(ikiz) + (i)*F"M] exp (ikzz) + (—i)"E"Mpg exp(—ikZ z)
+(i)"F"M] exp(-ik;z)],
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1 1
How = |(=)“" —= Aq + (+i ““—A]ex ikozz
HOOfd[()ﬁl()ﬁz p(iko-.z)
+ [(-i)“”A-NI; + (i)“”B-Ng] exp(—iko.z),
nHiga = [( i)" E*Mj exp(ik:z) + (i) F*M; exp(ikzz) + (=i)*" E"My exp(-ik: z)
+(i)“+1F’MieXp(—ik;z)].
(3.4)

Expressing k7 as (~k?), above equations yields the following:
AT\ . (TN .
Eofa = [cos<7>x + sm<7>y] exp(ikozz)

(1) cos(F) - 2nmmsin(F)

(M) +1

{((Mrl) —1>sm<a2> 2M71cos< >}y] exp(—ikoz(z — 2d1)),

—iX + ar ar . .
Eifa = —(M j) |Mnsin(5-) - cos(5) | expliko:ds +ik: (z = di))
(-ix - 7) air aJr . .
* M?’l + l I:MTZ 51n< ] [ ] X eXp(lkOZdl - lkz (Z - dl))/

noHosa = [cos(%>3?+ sin<( Zl)JT) ] exp(iko.z)
- m [{ ((Mn) - 1) cos( 5 > +2Mn sm( (a +21)Jr> }3?
_{ ((Mq)2 - 1) sin( (a +21)Jr> -2Mn cos< (a +21)7r> }g]

x exp(—ikoz(z — 2d1)),

(-ix +7) VACERYY (a+ 1) : -
nHifg = m Mn sm( 5 > - cos( 5 >] x exp(iko.di +ik;(z —dy))
(-ix-7) . [(a+ 1) (a+ D) \] [Mn+i
+—M11+i qum(—z > —COS( 5 )] [i—Mrl

x exp(iko-di — ikl (z — dy)).
(3.5)
Boundary conditions can be easily verified at two interfaces. Changing values of a bet-

ween zero and one, one can find behavior of fields inside intermediate geometries. For a = 0
and a = 1, one reproduces the original and dual to original solutions in chiral nihility slab.
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It may be noted that corresponding field outside the slab is also fractional dual between the
original and dual to the original field.

Case 2. Inside the chiral nihility slab, solutions which may be regarded as intermediate step
between the original solution (E, 7H) and dual to original solution (-#H, E) are obtained as

]_V]I?,;i [Mrl shx(%) + cos(%)] exp(ikozdy + ik} (z - dy))

Eifq =

g onsn () e (5 ) gt e v

(3.6)

noHigq = (7 - iX) sin< (a +21).7r

Mn+i | a+1)r . -
i—1§\/11151n<( 2) >exp(1k02d1—zkz(z—d1)).

) exp(ikozd1 + ikl (z — dy))

- @+ i®)
Corresponding fields outside the nihility slab is given below
Eotq = [cos(%)a? - sin<%>§] exp(iko-z)
_ m [(((Mq)z - 1> cos(%) -2Mn sin<%>>f

+<((M1])2 - 1) sin(%) +2Mpn cos(%))?] x exp(—ikoz(z — 2d4)),

oHor = [cos< (a +21)Jr>£ _ sin(@)?] exp(iko:z) — 1+(1—M;1)2

x [<<(M71)2 - 1> cos<(a +21)7r) —2Mrlsin<a +21]r>>5E+ <<(M71)2 - 1)

X sin< (a +21)Jr> +2Mn cos( (a +21)Jr>>y] x exp(—ikoz(z — 2d1)).

(3.7)
Equivalent cross-product operator for the corresponding field outside the nihility slab is (kix)
= Fzx. It may be noted that outside fields are not fractional dual solutions.
Case 3. Solutions which may be regarded as intermediate step between the original solution

(E,nH) and (-E, —nH) are obtained as

o -y +ix
T My +1

[cos(ar) — M sin(aur)] exp(iko.di + ikZ(z — dy))

y+ix

+i—M11

[cos(arr) — M sin(aur)] exp(iko-dr — ik} (z — d1)),
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oMy = (7 - i%) sin(@) exp(ikozdy +ik! (z — dy))

. Mn+i | /QRa+1)a . e
- (g +ix) = My sm( 7 > exp(ikozdr — ik} (z — dy)).
(3.8)
Corresponding fields outside the nihility slab are
Eorg = [cos(ar)x + sin(aor)y] exp(iko.z) — 14—(1—M11)2 [((Mq)z - 1> cos(arr) +2Mn sin(owr)]a?
- [((Mr[)2 - 1> sin(aur) — 2Mr cos zxyr]y exp(—ikoz(z - 2d1)),
1oHota = [cos(@)f + sin<w>y] exp(iko.z)
1 2 2a+ 1) Qa+1Dxr\]~
- m [((MTI) - 1> COS<T> + 2MTZ COS<T>:| X
20+ 1 20+ 1
- [((Mq)2 - 1) sin<y> -2Mn sin<w>] 7 x exp(—ikoz(z — 2d1)).
(3.9)

Equivalent cross-product operator for the corresponding field outside the nihility slab is (kix)
= +izx. It may be noted that outside fields do not construct fractional dual solution.
The average power density P,,(z) can be obtained using the relation

P (z) = %%(E(z) x H*(2)). (3.10)

It is noted that average power density is zero inside the chiral nihility slab, whereas it has
nonzero value outside the slab.

4. Conclusions

It is concluded that inside the chiral nihility slab, three dual to original solution are possible,
while outside the chiral nihility slab, only one dual to original solution exist. Out of three dual
solutions for region inside the chiral nihility slab, only one dual solution has correspondence
with the dual solution for region outside the slab. Fractional dual solutions inside the PEMC-
backed chiral nihility slab and corresponding fields for region outside the slab are determined
and analyzed. Average power density outside the slab is nonzero, whereas it yields zero for
region inside the slab.
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