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Edge-preserving Bayesian restorations using nonquadratic priors are often inefficient in restoring
continuous variations and tend to produce block artifacts around edges in ill-posed inverse image
restorations. To overcome this, we have proposed a spatial adaptive (SA) prior with improved
performance. However, this SA prior restoration suffers from high computational cost and the
unguaranteed convergence problem. Concerning these issues, this paper proposes a Large-scale
Total Patch Variation (LS-TPV) Prior model for Bayesian image restoration. In this model, the prior
for each pixel is defined as a singleton conditional probability, which is in a mixture prior form of
one patch similarity prior and one weight entropy prior. A joint MAP estimation is thus built to
ensure the iteration monotonicity. The intensive calculation of patch distances is greatly alleviated
by the parallelization of Compute Unified Device Architecture(CUDA). Experiments with both
simulated and real data validate the good performance of the proposed restoration.

1. Introduction

Image restorations have wide applications in remote sensing, radar imaging, tomographic
imaging, microscopic imaging, astronomic imaging, digital photography, and so forth [1–
4]. For linear and shift invariant imaging systems, the transformation from f to g is well
described by the following additive linear degradation model [3, 4]:

g = A ∗ f + ε, (1.1)

where g, f , and ε represent the degraded observed image, the original true image, and the
corrupting white Gaussian noise with variance σ2, respectively. A is the PSF (Point Spread
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function) of the imaging system and ∗ is the linear convolution operator. Throughout this
paper, we assume that the PSFA is known or could be numerically determined or estimated.

Bayesian or maximum a posteriori (MAP) approach, within Markov Random Fields
(MRFs) framework, can provide a stable solution of the ill-posed inverse image restorations
through incorporating a priori information about the geometrical properties of an image
[3–8]. Via modelling the unknown parameters in the prior probability density functions,
prior information can also be interpreted as the regularization metrics, which measures the
extent to which the contextual constraint assumption is violated. With the incorporated prior
information, Bayesian approach is able to distinguish solutions from less desirable ones by
transforming the original ill-posed problem into a well-posed one. Generally, we can build
the following posterior probability P(f | g) for image restorations,

P
(
f | g) ∝ P(g | f)P(f), (1.2)

P
(
g | f) = exp

(
L
(
g, f
))

= exp
(
−1
2
∥∥g −A ∗ f∥∥2

)
, (1.3)

P
(
f
)
= Z−1 × exp

(−βU(f)) = Z−1 × exp

⎛

⎝−β
∑

j

Uj

(
f
)
⎞

⎠. (1.4)

Here, P(g | f) and P(f) denote the likelihood distribution and the prior distribution,
respectively. L(g, f) and U(f) denote the corresponding likelihood energy and the prior
energy function. Uj(f) is the notation of the energy function U evaluated at pixel index j.
The partition function Z is a normalizing constant. β is the global parameter controlling the
balance between the likelihood energy and the prior energy.We can build the posterior energy
function in the logarithm form

ψβ
(
f
)
= logP

(
f | g) = L(g, f) − βU(f) = −1

2
∥∥g −A ∗ f∥∥2 − β

∑

j

Uj

(
f
)
. (1.5)

The restored or deconvolved image f can be obtained through the maximization of function
ψβ(f).

The widely used quadratic membrane (QM) prior or the Tikhonov L2 regularization
tend to smooth both noise and edge details and often lead to unfavorable oversmoothing
in restorations [5]. On the other side, some edge-preserving Bayesian restoration methods
have been proposed, which can be classified into three main categories: wavelet relevant
regularization restorations, Bayesian restorations with nonquadratic prior energies, and
Bayesian restorations with total variation (TV) prior. Wavelet relevant regularization
restorations, with multiscale stochastic prior models, have been proposed in the research of
edge-preserving restorations [8–11]. In [10], priors based on wavelet decompositions and
heavy-tailed pdfs were incorporated into the EM restoration algorithm. In [11], Neelamani
et al. proposed a Fourier-Wavelet hybrid restoration, which exploits the potentials of the
sparse representation of noise for Fourier transform and the sparse representation of the
coefficients in wavelet transform. All these wavelet regularization methods are based on the
distribution modeling and thresholding of the decomposed wavelet coefficients [11]. Edge-
preserving priors with nonquadratic energies were also proposed to preserve the edge details
by using nonlinear inverse-proportional functions between edge existences and intensity
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differences [5, 12, 13]. The weighting matrices in nonquadratic prior Bayesian restorations
preserve the edges by turning off or suppressing smoothing at appropriate locations. Another
impressive research direction in this area is the total variation (TV)-based image restorations
[7, 14, 15]. This kind of approach can also be viewed as TV priors with the half-quadratic
regularization prior energies. With no enforced global image continuity, TV prior restorations
often demonstrate good property of edge preserving.

The nonquadratic priors preserve the edges by determining the pixel-wise regular-
izations based on the intensity-difference information within local fixed neighborhoods. The
regularizations on TV priors also come from the information of the local intensity gradients.
For all these nonquadratic and TV priors, the local information of intensity difference can
by no means provide effective regularizations to discriminate noise from image textures
in different scales. So these edge-preserving approaches often fail to cope well with some
complicated restorations with high noise contaminations, and tend to produce block artifacts
around the continuous edges in those situations [16–21].

Objects in the images are reasonably assumed to be a composition of edges and
backgrounds with intensities changing coherently over different scales. Thus, for the
traditional prior model, the intensity differences between individual pixels within local
neighborhoods are often insufficient to characterize objects [19, 20]. This limit elicited our
previous work in [21] which introduced a spatial adaptive (SA) prior restoration approach.
This SA prior works by adaptively including the relevant neighboring pixels and excluding
the negative irrelevant oneswithin a large neighborhood. Though showing expressive results,
the iterative restoration in [21] updates the prior weight using the latest image estimate
in a one step late (OSL) way, which leads to inconsistent posterior energy function and
nonconvergent iterations. In addition, the approach in [21] is greatly limited by the high
computational cost in calculating all the patch distances for all the pixel pairs in each
prior neighborhood. In this paper, to overcome the first problem, we applied a large-scale
total patch variation (LS-TPV) prior model, which is built through the specification of
the conditional probability for each pixel [22–25]. The joint maximization estimation of
this constrained entropy function will lead to convergent image/weight restorations. To
overcome the second problem, we introduce the parallel computation structure of CUDA
to calculate the patch distances [26–28]. Furthermore, another benefit from the CUDA-
accelerated parallelization is that it allows further performance enhancement for the LS-TPV
prior restoration by using larger search neighborhoods.

In Section 2, a review of some previous prior models is illustrated, and after that
we introduce the proposed LS-TPV prior model. In Section 3, we give a joint estimation
algorithm for the proposed restoration. In Section 4, we perform comparative experiments
with both simulated and real data. Relevant visual/quantitative results are also presented.
Conclusion and discussion are given in Section 5.

2. Prior Model

Conventionally, the value of Uj(f) is commonly computed through a weighted sum of
potential functions v of the differences between the pixels in the neighborhoodNj :

Uj

(
f
)
=
∑

b∈Nj

wbjv
(
fb − fj

)
. (2.1)

Generally, different choices of the potential function v lead to different priors. For
the simple space-invariant QM prior, the potential function has the form v(t) = t2/2. Some
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Edge-preserving nonquadratic priors could be chosen by adopting a nonquadratic potential
function v, such as the Huber potential function

v(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t2

2
, |t| ≤ γ,

γ |t| − γ2

2
, |t| > γ,

(2.2)

where γ is the threshold parameter [5, 13]. Such edge-preserving nonquadratic priors
preserve structure information by choosing nonquadratic potential functions that increase
less as the differences between the adjacent pixels become bigger. Weight wbj is a positive
value that denotes the interaction degree between pixel b and pixel j. In traditional prior
models, it is simply considered to be inversely proportional to the distance between pixels b
and j. So on a square lattice of image f , in which the 2D positions of pixels b and j (b /= j)
are, respectively, (bx, by) and (jx, jy), wbj is usually calculated by the geometric distance

1/
√
(bx − jx)2 + (by − jy)2.
Restorations using total variation (TV) prior take the prior energy as the following

expression:

UTV
(
f
)
=
∑

j

√(
Δh
j f
)2

+
(
Δv
j f
)2
, (2.3)

where Δh
j and Δv

j are linear operators corresponding to the first-order horizontal and vertical
intensity differences at pixel j, respectively [7, 14, 15]. Since both the smooth and sharp edges
tend to have similar prior energies, this TV prior energy given by (2.3) does not penalize
weak discontinuities and often favors images with bounded variations.

Traditional quadratic priors, nonquadratic priors and TV prior, only provide local
intensity information for Bayesian restorations. And the edge-preserving nonquadratic and
TV priors, though being able to preserve edge information, tend to produce unfavorable block
artifacts or false edges in high-noise situations.

To improve restoration quality, in [21] we proposed a spatial adaptive (SA) prior
model, in which a spatial adaptive prior neighborhood is implemented by setting the weight
wbj to an 1-0 binary function to classify the pixels in neighborhoodN into the pixels relevant
to the center pixel j and those not. The building of the SA prior can be formalized as follows:

USA
(
f
)
=
∑

j

Uj

(
f
)
=
∑

j

∑

b∈Nj

(
wbj

(
fb − fj

)2
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, (2.4)
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, (2.5)

∣∣nb
(
f
) − nj

(
f
)∣∣2 =

∑

l

(
fl∈nb − fl∈nj

)2
. (2.6)

Here, USA is the energy function for the SA prior. wbj , which represents the classification of
the neighboring pixels in the search neighborhood Nj , can be computed via (2.5) and (2.6).
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|Nrj |, the number of the neighboring pixels with nonzero wbj in the neighborhood Nj ,
is the normalization factor for the different sizes of non-1 neighboring pixels in each Nj .
Parameter δ in (2.5) is the threshold parameter. The distance |nb(f) − nj(f)|2 is determined
by the distancemeasure (2.6) between the two translated comparing patches nb and nj , whose
centers are, respectively, located at pixel b and pixel j.

Though proved to be effective in suppressing both noise and block artifacts, all the
weights w in SA prior need to be heuristically inferred using current image estimate in the
way of one step late (OSL), which often leads to inconsistent posterior energy function with
no guaranteed convergence [8]. To overcome this problem, in this paper, we proposed an
LS-TPV prior model, in which regularization takes effect through penalizing the weighted
distances/variations between the patches surrounding each neighboring pixel pair. The
weights w in each N are considered variables with a nonlinear dependence on image f .
For the central pixel j and its neighboring pixel b in each prior neighborhood Nj , wbj is
considered the similarity probability between the two patches nb and nj surrounding pixels
b and j, respectively [24]. An entropy prior of all the weights wbj for each Nj is introduced
into our model in the form of −∑j

∑
b∈Nj

wbj lnwbj . Here as the “Frame” model in [25], the
constraint is

∑
b∈Nj

wbj = 1. Then, based on joint MAP theorem [12], we can obtain

P
(
f,w, η | g) ∝ P(g | f)P(f | w, η)P(w, η). (2.7)

Here, η is the introduced pixel-wise Lagrange-multiplier parameter. For each pixel j, with f̂
denoting the current image estimate, the prior energy ULS-TPV(fj ,w, η | f̂) of the LS-TPV
prior is in the combined form of a weighted patch similarity energy, an entropy energy
−∑j

∑
b∈Nj

wbj lnwbj and a normalization constraint
∑

b∈Nj
wbj = 1. We can thus obtain the

following posterior energy function:

ψβ
(
f,w, η | g)

= logP
(
g | f) + logP

(
f | w, η) + logP

(
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)
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) − β
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(2.8)

Here, as (1.4), β is the global parameter controlling the balance between the likelihood energy
and the prior energy. The patch distance dbj is calculated as ‖Gα ∗ nb −Gα ∗ nj‖2, in which
Gα denotes the Gaussian convolution kernel with standard deviation α. ηj is the value of
Lagrange-multiplier parameter at pixel j. The parameter h controls the maximum entropy
constraint on w, which is routinely modulated with respect to the noise levels (large h is
routinely set to suppress more noise for high-noise situations).

3. Restoration Algorithm

To obtain tractable maximization of the posterior probability using the proposed LS-TPV
prior energy ULS-TPV in (2.8), we use the algorithm of iterative coordinate descent (ICD),



6 Mathematical Problems in Engineering

in which each element is sequentially updated by maximizing the log-style local conditional
probability function [29]. In this way, the objective image f and the weight w are jointly
estimated through alternative maximization of the ψβ(f,w, η | g) with respect to f and w.

(1) argmaxw −ULS-TPV(w, η | f̂).

f̂ denotes the fixed current image estimation, and each weightwbj for each pixel j is updated
by solving the following singleton optimization problem:

argmax
wbj

⎛

⎝−
∑

b∈Nj

wbj

∥
∥Gα ∗ nb −Gα ∗ nj

∥
∥2 − h

∑

b∈Nj

wbj lnwbj − ηj
⎛

⎝
∑

b∈Nj

wbj − 1

⎞

⎠

⎞

⎠. (3.1)

With Lagrange-multiplier ηj introduced, by joint solving (3.1)with respect to eachwbj

and ηj , we can then obtain wbj :

wbj =
exp
(
−∥∥Gα ∗ nb −Gα ∗ nj

∥∥2/h
)

∑
b′∈Nj

exp
(
−∥∥Gα ∗ nb′ −Gα ∗ nj

∥∥2/h
) , (3.2)

where ‖Gα ∗ nb −Gα ∗ nj‖2 can be easily calculated using currently available f̂ . Each wbj is
determined not only by the similarity metrics between patches nb and nj , but also by the sum
of all the similarity metrics between patches with the central pixels located in Nj . So wbj is
different from wjb.

(2) argmaxfψβ(f, ŵ, η̂ | g).
Here ŵ denotes the fixed current weight estimate. Omitting the terms with no f , the ψβ(f, ŵ |
g) becomes

ψβ
(
f, ŵ | g) = L(g, f) − β

∑

j

⎛

⎝
∑

b∈Nj

ŵbj

∥∥Gα ∗ nb −Gα ∗ nj
∥∥2
⎞

⎠. (3.3)

To make a tractable maximization of (2.8), based on the theories of pseudolikelihood
and iterated conditional mode (ICM) in [29], we can restore each fj by solving the following
factorized problem:

arg max
fj

ψβ
(
fj , ŵbj | g, f̂

)
=⇒ arg max

fj
L
(
f, g
) − β

⎛

⎝
∑

b∈Nj

ŵbj

∥∥Gα ∗ nb −Gα ∗ nj
∥∥2
⎞

⎠. (3.4)

Considering the convexity for ‖g −A ∗ f‖2 and ‖Gα ∗ nb −Gα ∗ nj‖2, we conclude that,
given the fixedweight ŵ, theHessianmatrix of each ψβ(fj , ŵbj | g, f̂) in (3.4) is a negative def-
inite. In this step of image updating, we applied the restoration algorithm in [4] to solve (3.4)
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to obtain the image estimate of each pixel fj . The ψβ(f,w, η | g) in (2.8) is separately convex
with respect to each f andw. Denoting f̂n, ŵn and f̂n+1, ŵn+1 as the nth and (n+ 1)th iterated
estimates, we can obtain following relation: ψβ(f̂n+1, ŵn+1 | g) ≥ ψβ(f̂n, ŵn+1 | g) ≥ ψβ(f̂n, ŵn |
g), which implies convergence to one local maximum and can be obtained for this joint
updating strategy [30].

In each iteration in the proposed restoration, it is very expensive to perform the pixel-
wise calculations of all the dbj and wbj for each pair of translated patches n in each N over
the whole image region. In the experiments, to save computation cost, we do not extend the
sizes ofN over the whole image region, and set them to some appropriate sizes. We achieve
significant acceleration by using parallel Compute Unified Device Architecture (CUDA) [26–
28]. For each iteration in the restoration using the proposed LS-TPV prior model, all threads
in this block grid structure execute simultaneously to perform all the involved pixel-wise
operations. Furthermore, considering the symmetry property that distance dbj equals to
distance djb, we can further save one half computation cost by only calculating one of the
two distances dbj and djb.

4. Experiments

Both simulated and real data are used in the experiments. To provide comparative results,
we also performed Wiener deconvolution, ForWaRD restoration, Bayesian restoration using
TV prior, Huber prior, and the SA prior in [21]. The Wiener deconvolution was performed
by using the degraded image to estimate the power spectrum in Fourier domain. The
TWIST algorithm in [7] and Newton-Raphson algorithm in [12] are used in the restorations
using TV prior and Huber prior, respectively. Restored images from above Wiener filter
method are taken as the initial images for all the Bayesian restorations. In experiment, the
parameters needed to be preset include the β for all Bayesian restorations, the threshold γ
for Huber prior, the wavelet threshold, and decomposition level in the ForWaRD method,
the δ for the SA prior, the h and the n and N settings for the proposed LS-TPV prior. In the
simulation experiment, all the parameters are set based on SNR maximization criteria with
SNR calculated as

SNR = 10 log10

⎛

⎜
⎝

∑M
j

(
Fj − F

)2

∑M
j

(
Fj − f̂j

)2

⎞

⎟
⎠. (4.1)

Here M, f̂ , F, and F denote the total pixel number in image, the restored image, the
original true image, and the mean of the original true image, respectively. As to the real data
experiment, which has no available true image for SNR calculations, all the parameters are
set based on the tradeoff between edge preservation and noise suppression.N and n of sizes
(11 × 11 N and 7 × 7 n) is used in our work. A full study of the effects of the sizes ofN and n
on the resulting restorations is performed in Section 4.5.

Generally, the solution to the restoration is considered optimized when the iteration
goes stable. So for the Bayesian restorations using TV prior, Huber prior, and SA prior
in which the energy functions are maximized with respect only to image, we stop the
iterations when the current image estimates satisfy the condition ψβ(f̂n+1 | g) − ψβ(f̂n | g)
< 0.995(ψβ(f̂n | g) − ψβ(f̂n−1 | g)). For the restorations using the proposed LS-TPV prior
in which the energy functions are maximized with respect to both image and weights,
we stop the iterations when the current image and weight estimates satisfy the condition
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Table 1: Parameter settings in simulated data experiment.

TV prior Huber prior ForWaRD SA prior LS-TPV prior

β = 0.0038 β = 0.026,
γ = 0.35

Threshold = 3.0,
Levels = 3

β = 0.015,
δ = 900,
7 × 7 n,

11 × 11 N

β = 0.075,
α = 0.5,
h = 150,
7 × 7 n,

11 × 11 N

ψβ(f̂n+1, ŵn+1 | g) − ψβ(f̂n, ŵn | g) < 0.995(ψβ(f̂n, ŵn | g) − ψβ(f̂n−1, ŵn−1 | g)). In practical
experiments, to reach the above iteration conditions, it is found that 411, 433, 475, and 486
iterations are required for the Bayesian restorations using TV prior, Huber prior, SA prior,
and the proposed LS-TPV prior, respectively.

4.1. Simulation Experiment

In this section, simulated experiments with 256 × 256 “Lena” image (intensity range
[−98 117]) are performed. In the simulation, a uniform 9 × 9 PSF is assumed, and Gaussian
noise with variance = 0.1663 is added. The PSF used in this experiment is normalized to 1.
Figure 1(b) is the degraded image simulated by (1.1) using the PSF with the white Gaussian
noise. The parameters for different restorations are listed in Table 1. All the restored images
are illustrated in Figures 1(c)–1(h), respectively.

The restored images from TV prior restoration and Huber prior restoration are,
respectively, shown in Figures 1(d) and 1(e). Figure 1(f) shows the restored image using
the ForWaRD method. The result of Bayesian restoration using the SA prior is illustrated
in Figure 1(g). For the Bayesian restoration using the proposed LS-TPV prior, the algorithm
in Section 3 is used, and the corresponding restored image is shown in Figure 1(h).

Through the results, we find the ForWaRD method and all the Bayesian restorations
(Figures 1(d)–1(h)) can overcome the ring effects in Wiener deconvolution (Figure 1(c)). The
block artifacts (the left arrows), which are observed in the ForWaRD approaches and the
restorations using Huber prior and TV prior, are effectively suppressed using the restorations
using the SA prior and the proposed LS-TPV prior. The LS-TPV prior (Figure 1(h)) presents
a further visual enhancement over the SA prior (Figure 1(g)) in block suppressing (the left
arrows) and edge preserving (the right arrows). Figure 2 plots the profiles along one specified
track (the red line in the hair region in “Lena” image in Figure 2) for different restorations,
and we can see that the profile from the proposed restoration (the blue profile) has the
closest match with the profile of the true “Lena” image (the red profile) of those from other
restorations. Table 2 shows that, compared to other methods, the proposed LS-TPV prior
restoration can lead to restored images with a higher SNR.

4.2. Real Data Experiment

In this section, a real blurred astronomical 256 × 256 “moon” image with intensity range
[−77 170] is obtained from “http://www.iceinspace.com.au/”. Here we use a 5 × 5
normalized Gaussian PSF, which was tested to be effective. The parameters for different
restoration approaches are listed in Table 3.

Figure 3(b) is the restored result from Wiener deconvolution. The restored images
from TV prior restoration and Huber prior restoration are, respectively, illustrated in Figures
3(c) and 3(d). Figures 3(e) and 3(f) show the restored images from the ForWaRD method
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(a) Original image (b) Degraded image

(c) Wiener restoration (d) TV prior restoration

(e) Huber prior restoration (f) ForWaRD restoration [11]

(g) SA prior restoration [21] (h) LS-TPV prior restoration

Figure 1: (a) Original “Lena” image. (b) Degraded “Lena” image (SNR = 6.65) with 9 × 9 uniform blur
and additive white Gaussian noise (variance = 0.1663). (c) Wiener deconvolution. (d) TV prior Bayesian
restoration. (e) Nonquadratic Huber prior Bayesian restoration. (f) The ForWaRD restoration in [11]. (g)
The SA prior Bayesian restoration proposed in [21]. (h) The proposed LS-TPV prior Bayesian restoration
(The left arrows: block-suppressing illustration, the right arrows: edge-preserving illustration).
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Figure 2: Profile illustrations of different restorations.

Table 2: Signal to noise ratio (SNR) of the observed degraded images and the restored images in the
simulated experiment with “Lena” image.

Degraded Wiener TV prior Huber Prior ForWaRD SA prior LS-TPV prior
6.65 15.06 15.54 15.59 15.50 15.84 16.02

Table 3: Parameter settings in real data experiment.

TV prior Huber Prior ForWaRD SA prior LS-TPV prior

β = 0.059
β = 0.045,

γ = 0.45

Threshold = 3.5,

Levels = 3

β = 0.032,

δ = 700,

7 × 7 n,

11 × 11 N

β = 0.095,

α = 0.5,

h = 325,

7 × 7 n,

11 × 11 N

and the Bayesian restoration using SA prior. As to the Bayesian restoration using the LS-
TPV prior, the restored image is shown in Figure 3(g). Also, we can note that the ForWaRD
method and all the Bayesian restorations (Figures 3(c)–3(g)) are free of the ring effects in
Wiener deconvolution (Figure 3(b)). Also, the block artifacts observed in the restorations
using Huber prior and TV prior are effectively suppressed in the restorations using SA prior
and the LS-TPV prior (the lower red arrows in Figures 3(f) and 3(g)). The oversmoothing
in the ForWaRD restoration can not be observed in the restorations using the SA prior and
the proposed LS-TPV prior (the upper arrows in Figures 3(e), 3(f), and 3(g)). Compared to
the restoration using the SA prior, the restoration using the LS-TPV prior also shows a better
visual performance in preserving edges (the upper arrows in Figures 3(f) and 3(g)).
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Table 4: CPU times (seconds) needed for different restorations for real data experiment.

Wiener filtering: simu: 58.16, real: 64.48 TV prior res: simu: 214.96, real: 228.92

Huber prior res: simu: 270.52, real: 292.36 ForWaRD res: simu: 2128.27, real: 2411.15

SA prior res: simu: 2128.27, real: 2382.43 LS-TPV prior res1: simu: 2885.61, real: 3058.07

LS-TPV prior res2: simu: 910.48, real: 954.48 LS-TPV prior res3: simu: 58.61, real: 64.45

4.3. Computation Cost Comparisons

Table 4 lists the recorded CPU times (in seconds) of different restorations for the experiments
with simulated data and real data, respectively. Please note that the notations simu and real in
Table 4 correspond to experiments with simulated data and real data, respectively. We can see
that the restorations using SA prior and the LS-TPV prior aremuch computationally intensive
than other methods. We define LS-TPV prior res1, LS-TPV prior res2, and LS-TPV prior res3
as the original serial restorations, the restorations after optimization, and the restorations
after both optimization and parallelization. Table 4 shows that, with respect to the original
serial version, the proposed restorations after optimization are about 3 times faster, and the
restorations after both optimization and parallelization are about 50 times faster. But we can
not claim that the LS-TPV prior restoration needs less computation costs than other methods
since that we did not design the parallelized versions for them.

4.4. Algorithm Monotonicity

Here, to analyze the monotonicity of the joint image/weight algorithm proposed in Section 3,
we calculated the posterior function energy ψβ(f,w, η | g) and SNR with respect to the
iteration numbers for the proposed restorations. The total iteration number is set to 500. As
illustrated in Figure 4, we can see that both the calculated posterior function energy and the
SNR increase monotonically during the whole iteration.

4.5. Study on Neighborhood N and n of Different Sizes

To study the roles of the sizes of N and n in restorations, we perform restorations using the
proposed prior withN and n of different sizes in above simulation experiment with “Lena”
image. To characterize local image structures, we do not set n larger than 7×7. Considering the
fact that the total pixel numbers are different for different comparing patches n (49 for 7×7 n,
9 for 3 × 3n, and 1 for 1 × 1n), parameter h should also change with the restorations using
different patches n. The hyperparameter β and parameter h for the proposed prior are chosen
by hand to produce the best stable images in terms of SNR maximization. Combinations of
N and n with different sizes and the corresponding computed SNR and the recorded CPU
time cost (with CUDA parallelization) are all listed in Table 5.

We can see that higher SNR can be obtained when enlarging N and n from 1 × 1 to
11 × 11 and 7 × 7. We also note in Table 5 that more CPU time is needed for the restorations
using the proposed prior with largerN and n. We should set the sizes ofN and n based on the
tradeoff between performance and computation cost. We find in Table 5 that no significantly
quantitative SNR differences are made between 11×11 N and larger 13×13 N. In fact, as the
iteration proceeds, more global information beyond the 11 × 11 N will be incorporated into
the regularization of the pixels.
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(a) Degraded image

(b) Wiener restoration (c) TV prior restoration

(d) Huber prior restoration (e) ForWaRD restoration [11]

(f) SA prior restoration [21] (g) LS-TPV prior restoration

Figure 3: (a) Original degraded “moon” image. (b) Wiener deconvolution. (c) TV prior Bayesian
restoration. (d) Nonquadratic Huber prior Bayesian restoration. (e) The ForWaRD restoration in [11]. (f)
The SA prior Bayesian restoration proposed in [21]. (g) The proposed LS-TPV prior Bayesian restoration
(the lower arrows: block-suppressing illustration, the upper arrows: edge-preserving illustration).
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Figure 4: For the proposed restoration approach, the calculated SNR (a) and the posterior function energy
(b)with respect to iteration number (1–500 iterations).

Table 5: SNR and CPU time cost (seconds) for the simulation restorations using the proposed method.

N and n SNR CPU times N and n SNR CPU times N and n SNR CPU times

(a)N3×3n1×1 15.48 17.98 sec (b)N3×3n3×3 15.65 28.59 sec (c)N3×3n7×7 15.79 53.69 sec

(d)N7×7n1×1 15.54 21.16 sec (e)N7×7n3×3 15.70 31.37 sec (f)N7×7n7×7 15.88 50.91 sec

(g)N11×11n1×1 15.55 24.59 sec (h)N11×11n3×3 15.72 38.42 sec (i)N11×11n7×7 16.02 58.61 sec

(j)N13×13n1×1 15.55 29.54 sec (k)N13×13n3×3 15.75 77.67 sec (l)N13×13n7×7 16.07 95.31 sec

5. Conclusions and Future Work Plan

In this paper on image restoration, we proposed an LS-TPV prior which penalizes the
total distances between neighboring patches through a constrained mixture prior mode. A
convergent joint image/weight updating algorithm, which estimates image and weights
sequentially, is proposed to overcome the heuristical OSL weight determination for the SA
prior restoration in [21]. We can see that, in addition to providing effective regularization,
the proposed approach can lead to stable iteration with convergence guaranteed.

The application of the proposed prior model needs a pixel-wise computation of the
distances between neighboring patches over a large region, which implies high computation
cost of restorations. In this paper, remarkable advance in shortening computation time is
achieved by optimizing patch distance computation and replacing the original pixel-wise
calculation of patch distances by CUDA framework.

Further work includes applying the proposed approach in blind image deconvolu-
tions, further justifying the proposed approach by using more image-quality measures based
on human visual system, and further accelerating the computation by parallelize the PSF
convolution in restorations.
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