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Generalized belief propagation (GBP) is a region-based belief propagation algorithm which can get
good convergence in Markov random fields. However, the computation time is too heavy to use
in practical engineering applications. This paper proposes a method to accelerate the efficiency of
GBP. A caching technique and chessboard passing strategy are used to speed up algorithm. Then,
the direction set method which is used to reduce the complexity of computing clique messages
from quadric to cubic. With such a strategy the processing speed can be greatly increased. Besides,
it is the first attempt to apply GBP for solving the stereomatching problem. Experiments show that
the proposed algorithm can speed up by 15+ times for typical stereo matching problem and infer
a more plausible result.

1. Introduction

Many engineering problems related to computer vision, statistical physics, signal processing,
and artificial intelligence can be formulated as an inference problem in probabilistic graphical
models such as Bayesian networks or Markov Random Fields (MRF). The goal is to find
the maximum a posteriori (MAP) configuration [1]. However, it is an NP hard problem
to get the exhaustive solution, and thus we may get the approximate inference by graph
cuts or message passing algorithm and so on. The most popular variant of message passing
algorithm is Belief Propagation (BP). Recently, because of its flexibility and efficiency, BP and
its variants are boomed especially in image restoration, optical flow, and stereo.

BP is an optimization tool which is firstly proposed by Pearl for singl Bayesian network
[2] and extended to loopy graphs such as MRF in last decade. The virtue of it is that we can
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use it to compute marginal probabilities for graphical models, at least approximately, in a
time that grows only linearly with the number of nodes in the system [3]. In BP algorithm,
each variance starts with the same initial message and iteratively updates all the messages
passing from its neighbor variances, and calculates messages for its every neighbor, then
passes new messages back until converged. In factor graph or Bayesian network, BP can
be used to perform exact inference for every variance. However, when it refers to highly
connected graphs with massive conflicting interactions such as the MRF of stereo matching,
the convergence problem becomes a tricky issue anyway. The precision of configuration will
vary with the cyclicity of graph. To impulse and accelerate variances to converge, many
works have done and also achieved some plausible progress. However, being enslaved to
the absence of the convergence property of BP in graph models with loops, the development
of BP seems slow. On the other hand, generalized belief propagation (GBP) proposed by
Yedidia et al. [4] with its better convergence property against BP has received more attentions
recently.

GBP can be considered as a variant of standard BP. It is also an instance of cluster
variation methods. In the literature, BP can only converge to a stationary point of Bethe free
energy, while GBP can converge to a more accurate stationary point of Kikuchi free energy
[5]. Therefore, it leads GBP to take the advantage of better convergence than BP. Despite of
the characteristic of good convergence, as a toll, it is really computationally expensive. When
considering the temporal complexity with the optimal version in [6], BP as an approximate
method reaches linear complexity, while the canonical GBP takes quartic complexity. This
has limited its applicability in some small-scale problems, for example, image denoising
and image restoration [1], and obviously prevents GBP away from some more complicated
problems, for example, stereo matching even in a small size image pair.

To accelerate GBP algorithm, some optimization methods have proposed recently.
Petersen et al. proposed two strategies of fast GBP for map estimation on 2D and 3D grid-
like MRF [7]. One is to use a caching method that significantly reduces the number of
multiplications during GBP inference. The other is to introduce a speed-up for computing
the map estimate of GBP cluster messages by presorting its factors and limiting the number
of possible combinations. Pawan and Torr also provides a method of fast memory efficient
GBP [8].

However, for solving the stereo matching problem, it is still a fraction of the need.
This paper proposes a new method named direction set method which is introduced into
the pairwise message computation stage to make GBP more efficiently. With the proposed
method, the temporal complexity can be decreased from quartic to cubic. Furthermore, this
is the first attempt to apply GBP for solving the stereo matching problem. For completeness,
we will briefly introduce the MRF and BP in the next section.

The remainder of this paper is organized as follows. Section 2 gives a sketch of basic
theory. Section 3 provides the definition of the GBP with min-sum messaging and its caching
structure. Section 4 represents a detailed description of the proposed strategies for GBP
optimization. Section 5 gives the experiments and results of stereo matching and Section 6
summarizes the findings.

2. The Basic Principle

Human understand a scene mainly using the spatial and visual information which is
assimilated through our eyes. These information such as region or object, mainly based on
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the contextual constraints, are extremely necessary for interpretation. The context-dependent
object such as image can be modeled in a convenient and consistent way through MRF theory.
It is achieved through characterizing mutual influences among such entities using conditional
MRF distributions [9].

MRF is firstly introduced into computer vision in [10] and have dominated the fields
of image processing and computer vision since the early 1980s. As the most popular type of
prior models for gridded image-like data, which include not only regular natural images but
also two-dimensional fields such as motion or depth maps, as well as binary fields such as
and image restoration and segmentations, MRF provides a mathematical foundation for the
characterization of contextual constraints and the derivation of the probability distribution of
interacting features [9].

Without loss of generality, let M be a set of indexes M = {1, . . . , m}, P = {p1, . . . , pm}
be a set of observed nodes, L = {l1, . . . , ln | n ≤ m} be a set of labels. Here we set all the labels
are discrete.

N = {Ni | i ∈ M} represents the neighbor system to indicate the interrelationship
between nodes or the order of MRF. Recently, a learning high-order MRF model named Fields
of Excepts has been proposed which could get more sufficient priors. However, we use one-
order MRF (also called pairwise MRF) for simplification. Figure 1 shows a sample of MRF
used in this paper.

Many computer vision problems can be formulated as a labeling problem in which
the solution is assigning a label from the set L to each of the nodes in P . In the literature, a
mapping function F : P → L which F = {f1, . . . , fm} can be represented in this processing.
It has been proved that the joint probability Pr(fpm) of an MRF is a Gibbs distribution.
Besides, according to the Hammersley-Cliffod theorem, the posterior probability Pr(fpm) only
depends on its neighborhood Npm , which means that

Pr
(
fpm | P − pm

)
= Pr

(
fpm |Npm

)
, ∀pm ∈ P. (2.1)

According to Bayes’ Rule, the posterior distribution for a given set y and their evidence
p(y | x), combined with a prior p(x) over the unknowns x, is given by

p
(
x | y

)
=
p
(
y | x

)
p(x)

p
(
y
) . (2.2)

If we take the negative logarithm of both sides, we get

− log p
(
x | y

)
= − log p

(
y | x

)
− log p(x) + log p

(
y
)
. (2.3)

Here log p(y) is a constant which is used to make the p(x | y) integrate to 1. To find the MAP
solution, we simply minimize (2.3), which can also be treated as an energy function:

E
(
x, y
)
= Ed

(
x, y
)
+ Es(x), (2.4)

where the Ed(x, y) is the data penalty and Es(x) is smoothness penalty.
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Figure 1: The model for a n4 neighborhood Markov random field (also called Pairwise MRF). The dash
circles are the observed nodes, while the white circles are the unobserved labels.

Recall (2.1) and rewrite(2.4)

E
(
fp ,Np

)
= Ed

(
fp ,Np

)
+ Es

(
fp
)
, (2.5)

where

Es
(
fp
)
= Es

q∈Np\q

(
fp, fq

)
. (2.6)

Therefore, the energy function is

E(F) =
∑

p∈P
Es

q∈Np\q

(
fp, fq

)
+
∑

p∈P
Ed
(
fp,Np

)
. (2.7)

In the large label space, because of massive variances and various uncertainties, it
becomes a nontrivial task [11] to make a global inference using local information. For this
reason, many approximated inference algorithms are proposed to find the MAP estimation
against the exact answer. In this case, the inference problem usually can be mapped into
an energy minimization problem which has a profound mathematic foundation in the
literature. In the last few years, two approximate algorithms have been developed in MRF
approximated inference problem with their efficiency and comparatively high accuracy, for
example, graph cut (GC) [12] and BP [6, 13].

In standard belief propagation with pairwise MRF, a variable mij(xj) can be vividly
treated as a “message” from a node i to its neighbor node j which contain the information
about what state node j should be in. The message is a vector of same dimensionality as the
number of possible label. The value of each dimension manifested that how this label might
be corresponding to the node.
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Figure 2: Illustration of message passing in BP. mij(xi)
t is a message form node i to its neighborhood node

j to indicate what state should be node j in.

Recall the function of (2.1) and write Pr(fpm) as Pr(pi), then

Pr
(
pi
)
= Π(i,j)∈Nφij

(
pi, pj

)∏

i

φi
(
xi, yi

)
, (2.8)

where φij(pi, pj) is the pairwise interaction potential and φi(xi, yi) is the “local evidence”.
Usually, the message must be nonnegative. A high value of message show that the

node “believes” the posterior probability of Xj is very high. The message update rule is

mij(xi)t =
∑

xi

φi(xi)ϕij
(
xi, xj

) ∏

k∈Ni\j
mki(xi)t−1, (2.9)

where t represents the number of iterations T as shown in Figure 2.
The belief is the product of “local evidence” of the node and all messages send to this

node

bi(xi) = kφi(xi)
∑

j∈Ni

mij(xi). (2.10)

The standard BP we have described above is also named sum-product BP. There is
another variant BP which is more simple and easy to use: max-product (or max-sum in log
domain). In max-product BP, (2.9) is rewritten

mij(xi)t = max
xi

(

φi(xi) + ϕij
(
xi, xj

)
+
∑

k∈Ni\j
mki(xi)t−1

)

,

bi(xi) = k

⎛

⎝
∑

j∈Ni

mij(xi) + φi(xi)

⎞

⎠.

(2.11)



6 Mathematical Problems in Engineering

It indicates that which states should the node most likely be in. Though BP is an efficient
implicit inference algorithm for MRF with loops. It can only converge to the stationary points
of the Bethe approximation of the free energy where the node number of regions is at most
two. As has discussed above, GBP can get a more accurate inference than BP. In next section,
we extend BP to GBP.

3. Message Passing

The GBP which was firstly proposed by Yedidia et al. can be considered as a region based
BP method [4]. Specifically, the basic intuitive idea behind GBP is to compute more useful
message between regions other than nodes. As a Kikuchi free energy approximation method,
GBP in general allows an arbitrary number of nodes to gather as a clique and involves the
clique information to the whole passing process, which yields better approximation to the
posterior probability, while BP only do node-to-node message passing around.

As another source of information, that is, the clique information, involved in the
passing process, the search capability for the minimum of an energy function is extensively
upgraded. The update rules of the canonical GBP are defined as below:

mrs ←− k
∑

xr\s
ϕr\s
(
xr\s
)∏

mr′′S′′ ∈M(r)\M(s)mr ′′s′′

∏
mr′s′ ∈M(r,s)mr ′s′

br ←− kϕr(xr)
∏

mr′s′ ∈M(r)

mr ′s′ ,

(3.1)

where r is the regions and s is their correspondent subregion,mrs is the message sending from
region r to its subregion s, ϕ(x) is the local “evidence” of node x, M(r) is the set of messages
sending from out side of region r to some nodes inside region r, M(s) is defined similarly,
M(r, s) is the set of messages sending from some nodes in region r but not in region s to
some nodes in region s, and br is the belief of region r.

The definitions of the regions, for example, r and s, in (3.1) directly determine the
performance of GBP. It is very hard to choose the reasonable size of region. Though the
basic clusters should encompass as many cycles as possible, the complexity will grows
exponentially with the number of size. To some degree, they are somewhat contradictory,
the more lager size is, the less efficiency the algorithm is. In practice, it is infeasible to set the
cluster sizes larger than four.

In this paper, we concern the implementation instance introduced in [14]. This instance
of GBP is comprised of two types of regions definition, that is, single node region and double
node region, and the correspondent messages are named edge message and cluster message,
respectively. The message update rules are defined in (3.2) and (3.3). The sketch map of the
message passing process can be seen in Figure 3,

ms→u(xu) = max
xs

(
φsϕsuma→ smb→ smc→ smbd→ sumce→ su

)
, (3.2)

mst→uv(xu, xv) =
maxxs,xt

(
φsφtϕstϕsuϕtvma→ smc→ smb→ tmd→ tmab→ stmce→ sumdf→ tv

)

ms→umt→v
.

(3.3)
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Figure 3: (a) A diagram of edge messages passing from node s to its neighborhood node u. (b) A diagram
of cluster messages passing from region {s t} to region {u v}. The dash (black) lines stand for the edge
messages. The dash (red) lines denote the cluster messages. The solid line represents the result message
correspondingly.

Equation (3.2) describes the edge message sending from a specific node s to node u. Equation
(3.3) describes the cluster message sending from pair-node s and t to pair-node u and v.

4. Efficiency Improvement

In order to improve the efficiency of GBP, the direction set method is proposed which can
reduce the computation complexity of cluster message. Considering (11), when xu and xv are
given, the temporal complexity to compute a specific item in the cluster message is O(n2). It
is almost contributed from the first term in the equation, which can be regarded as finding
the minimum value in a grid-like dataset which size is s and t, respectively. Usually all the
elements in the lattice are traversed to find a minimization. And the temporal complexity
is O(n2). Petersen et al. proposed a method to reduce the search space [7, 15], but it relies
very much on the traverse order. The method which we suggested in this paper is very
straightforward. The temporal complexity becomes O(n) when the direction set method is
applied. Thus the total complexity for computing the cluster message becomes O(n3).

The direction set method adopted here is also called Powell’s method [16]. It is a
classical numerical algorithm in function minimization or maximization. It decomposes an
N-dimensional (N-D) search problem into several one-dimensional (1D) search processes.
Take an example in 2D lattice where a node P with a random initial position, and two
orthogonal directions are given. First, P moves to the extreme value position which is
found by searching along the first direction among the two initial directions. Second, P
moves to another extreme value position by searching along the second direction given by
initialization. Third, the first direction is substituted by the second, and the second direction is
set to be a new direction which is determined by the initial position and the final position after
two rounds of searching. Meanwhile, the final position is set to be the new initial position.
The three steps are performed in an iterative way until P no longer moves. In another word,
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by searching along the two directions, there is no other position where its value is less than
P . Thus, the final position is where P stops.

The general idea of the direction set or Powell’s method has a challenging problem
that the two directions will “fold up on each other” in some cases. Once this happens, the
search capability in this iteration will be weakened, and the process has a high risk of getting
a subspace minimization instead of full N-D case. On the other hand, in practice it is hard
for computer to search along an arbitrary direction where it needs more computation to
determine which nodes are occupied. This paper adopts the method suggested in [16]. We
set the two directions to be static and parallel along each axis. This setting not only keeps
the orthogonal condition from the beginning to the end, but also makes the implementation
easier because every search process is along one of the axes.

Although there is no special requirement for the start position, it is more useful to
place the initial position close to the extreme value position. When xu and xv are given, the
initial position at the s-t lattice is a tricky issue. To place it near the minimum value position,
we assume that the combination of the independent minimum value positions of s and t is
close to the actual minimum value position.

Through this optimization, the number of accessed positions is decreased from n2 to
2kn where k is the number of iterations which in our practice is about 2 to 3 in average, n is
the search range, for example, the disparity range for stereo matching. Since the comparison
operation takes main computation time, the general complexity becomes 2kn3 while the
complexity of brute force search is n4. The efficiency rate is n/(2k). When n is larger, the
rate of computation time is higher.

5. Experiments

Stereo matching has been one of the most challenging and fundamental problems in
computer vision. A comprehensive research has been done in the last decade [17–22]. A latest
evaluation of these various methods can be found in [23]. In the last few years, as is showed
in [24], the global methods based on MRF have reached the top-performing.

In this section, stereo matching is formulated as a MRF inference problem. To achieve
the MAP estimation, which can be yielded as an energy minimization problem, let P be the
set of the image pixels in image pair and L be the disparity. The initial data cost calculated by
the truncated linear transform which is robust to noise or outlier is defined as

D
(
fp
)
= λ ·min

⎛

⎝
√ ∑

c∈{L,a,b}

(
ILc
(
p
)
− IRc
(
p − fp

))2
, T

⎞

⎠, (5.1)

where γ is the cost weight which determines the portion of energy that data cost possesses in
the whole energy, T represents the truncating value. Both of them are set experimentally. ILc (p)
represents p’s intensity in the left image of channel c. IRc (p) is defined similarly. The Birchfield
and Tomasi’s pixel dissimilarity is used to improve the robustness against the image sampling
noise. It is noticeable that we calculate the data cost in the CIELAB (the L∗a∗b∗ standard of
Commission Internationale de L’Eclairage) color space, and the Euclidean distance is used as
the measure. Practical experiments show that it can improve the final results at some degree.
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Table 1: Evaluation of errors.

Error (pixel)
0≤error≤1 1<error≤2 2<error≤3 error>3

Efficient BP 89.2% 7.0% 0.3% 3.5%
Canonical GBP 79.1% 13.2% 2.8% 4.9%
Proposed method 86.5% 8.1% 1.8% 3.6%

The smooth cost which expresses the compatibility between neighboring variables
embedded in the truncated linear model is defined as

V
(
fp, fq

)
= min

(∣∣fp − fq
∣
∣, K
)
, (5.2)

where K is the truncating value. The smooth cost based on the truncated linear model is also
referred to as discontinuity preserving cost, since it can prevent the edges of objects from over
smoothing.

The corresponding energy function used here is the most conspicuous one which is
defined as

E
(
f
)
=
∑

p∈P
D
(
fp
)
+
∑

(p,q)∈N
V
(
fp, fq

)
, (5.3)

where N are the edges in the four-connected neighborhood set.
The energy function defined in (5.3) can be considered as a description of the scene.

The objective is to find a solution which can minimize (5.3), which means the correct depth
information in the scene. Generally, a rather complex energy function can get the solution
more correct. However, to simplify the presentation and to be consistent and comparable
with other methods, the dualistic energy function as (5.3) is used in this paper.

The proposed method is evaluated on MiddleBury test. We compared our results
with efficient BP [6] and canonical GBP to show the improved efficiency as well as the
accuracy of the proposed method. The same set of certain typical parameters were used,
where specifically, T = 30.0 and λ= 0.87 in the data cost term, K = 10.0 in the smooth cost
term, d= 16. All experiments were tested on a personal computer with 1.6 GHz CPU and 2 G
DRAM.

Apparently, efficient BP is much faster than others. However, it is less accurate. The
ultimate purpose of the proposed method is to improve the efficiency of canonical GBP while
keeping it in a good accuracy. As shown in Figure 4, the execution time which combines the
two strategies can be extensively reduced, while the convergence energy rises a little because
direction set may cause loss of accuracy. The canonical GBP with caching and direction set
can achieve about 15+ times of the speed rate. The experiments were tested with the image
“Tsukuba” (384× 288 size).

The error of result is calculated with the ground truth, respectively. From the evaluated
accuracy listed in Table 1, the accuracy of proposed method is obviously better than that of
canonical GBP. Comparing it with the accuracy of efficient BP, the proposed method yields a
similar level. On the other hand, through the comparison between the proposed method and
efficient BP, it is noticeable that efficient BP tends to get a frontoparallel result which makes
the surface oversmooth and results in a layered effect. In the contrary, the proposed method
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Figure 5: Quality evaluation. From (a) to (d): the test image, ground truth, result of canonical GBP, and
result of the proposed method.
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does not have the drawback of layered effects like that caused by efficient BP, but the 3D map
becomes blurred at the boundaries and some noises cannot be eliminated. In fact, although
a layered result can reach a lower energy, it cannot always be a better description of the real
scenes (Figure 5).

6. Conclusion

This paper studied the challenging issues in both physics and computer vision, that is, the
efficient optimization for GBP and stereocorrespondence for 3D vision. A min-sum scheme
is invented for the message computing process in GBP, and this new method is applied to
solve the stereo matching problem. Direction set is proposed for improving the efficiency. For
a typical image pair, it can speed up the matching process to about 15+ times. Besides this
improved speed in each single thread, with a parallel computing architecture, it can further
catch up or take over most contemporary global algorithms due to its message-based passing
process. Furthermore, with the proposed method we can get more plausible results in visual
favorite because its better convergence can outperform most of other global algorithms. The
practical experiments also prove these conclusions beyond both efficient BP and canonical
GBP.
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