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This paper presents vibration analysis of an autoparametric pendulum-like mechanism subjected
to harmonic excitation. To improve dynamics and control motions, a new suspension composed
of a semiactive magnetorheological damper and a nonlinear spring is applied. The influence
of essential parameters such as the nonlinear damping or stiffness on vibration, near the main
parametric resonance region, are carried out numerically and next verified experimentally in
a special experimental rig. Results show that the magnetorheological damper, together with
the nonlinear spring can be efficiently used to change the dynamic behaviour of the system.
Furthermore, the nonlinear elements applied in the suspension of the autoparametric system allow
to reduce the unstable areas and chaotic or rotating motion of the pendulum.

1. Introduction

Dynamic mechanical systems possessing the pendulum arise in many practical application
including special dynamical dampers [1]. The pendulum dynamics has been used for
vibration suppression of a helicopter blade under flutter conditions [2]. Harmonically excited
pendulum systems may undergo complicated dynamics, in particular if the pendulum and
the oscillator are coupled by inertial resonance condition [3]. It has been found that the
system generates various type of motion, from simple periodic oscillation to complex chaos.
The presence of the coupling terms can lead to a certain type of instability which is referred
as the autoparametric resonance. This kind of phenomenon takes place when the external
resonance and the internal resonance meet due to the coupling terms. Small parametric
excitations or small change of initial conditions may produce large response when the
frequency of the excitations is close to one of the natural frequencies of the system.
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A condition of the existence of an autoparametric vibrations is that, the structure has
to consists at least of two constituting subsystems. The first one is a primary system that
usually is excited by eternal force. The second subsystem, called as secondary, is coupled to
the primary system by inertia terms. A classical example of an autoparametric system is the
pendulum mounted to the oscillator, where the pendulum can both, oscillate or rotate [4].
Interesting example occurs when the primary system is at rest while the secondary system is
vibrating. This phenomenon is called the dynamic vibration suppression.

In this paper we propose the concept of the use of combination of the magnetorhe-
ological damper together with the nonlinear spring applied in the autoparametric system
suspension. Changing magnetorheological damping or nonlinear stiffness of the supporting
spring, dangerous regions can be eliminated or moved away. This solution with MR damper
gives reliable control possibilities and can help to react properly in critical situations. This
kind of semiactive isolator can change dynamic behaviour to prevent undesired vibration or
react properly according to varied initial conditions. The results are compared with a system
with a classical viscous damper and a linear spring. The proposed idea can be used to design
control strategy of an autoparametric system with an attached pendulum.

2. Model of a System with Semiactive Suspension

A model of the vibrating autoparametric system consists of a nonlinear oscillator (the
primary system) with mass m1 and the pendulum (the secondary system) made of two
masses m2 and mp (Figure 1). Coordinate x represents the oscillator motion, and ϕ is an
angle of the pendulum’s rotation. The primary system is excited by classical linear spring
with stiffness k2 due to a harmonic motion of a base with frequency ω and amplitude Q. The
stiffness of the oscillator’s spring is assumed to be nonlinear Duffing’s type and is described
by parameters k and k1. The length of the pendulum is denoted as l and its damping in
journal bearings is assumed as linear and expressed by cϕ coefficient.

Determining the kinetic, potential energies, dissipation function of the system, and
then applying Lagrange’s equations of the second kind we receive governing equations of
motion:
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In nondimensional form, these equations can be written as
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Figure 1: Model of an autoparametric system with a pendulum and semiactive suspension composed of
MR damper and nonlinear spring.

whereX = x/xst, ϕ ≡ ϕ, τ = ω0t, τ meansdimensionless time,ω0 =
√
(k + k2)/(m1 +m2 +mp)

is the natural frequency of the oscillator together with a fixed pendulum, xst is the static
displacement of the linear oscillator. Definitions of dimensionless parameters are
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where xst = (m1 +m2 +mp)g/(k + k2).
Damping of the oscillator is studied in two variants, as linear viscous and nonlinear

magnetorheological. Our concept of nonlinear damping is realized by application of the
magnetorheological (MR) damper. The first step is to describe the nonlinear behaviour of
the MR damper and to propose a proper mathematical model which characterizes its real
behaviour. The characteristics are found by taking the sampled restoring force and input
velocity based on the experimental data and curve fittings of a real MR damper. We propose
to use a smooth function of modified Bingham’s model suggested in paper [5]

Fd = d tanh(eẋ) + cẋ, (2.4)
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Figure 2: The Bingham model of MR damper (a) and exemplary characteristics for varied α3 and α1 = 0.1
for e = 10 (b).

where d is the force coefficient related to the rheological behaviour, produced by the fluid, ẋ
is the piston velocity of MR damper. In (2.4) e is a constant. In our study we assumed this
value is equal to ten. In dimensionless form of this equation is expressed as

Fd = α3 tanh
(
eẊ

)
+ α1Ẋ, (2.5)

where α3 is dimensionless coefficient of MR damping defined as

α3 =
d

(
m1 +m2 +mp

)
ω2

0xst
. (2.6)

Equation (2.6) presents the restoring force of the MR damper with respect to the input
velocity and acceleration.

The considered MR model consists of a combination of viscous damping (α1) and a
Coulomb’s friction (α3), as shown in Figure 2(b). The Bingham’s rheological model can be
used successfully when the width of hysteretic loop in real characteristics of MR dampers is
relatively narrow [6]. However, if the hysteretic loop is wider, it is necessary to construct a
more complicated rheological model.

Analytical solutions near the main parametric resonance received by the harmonic
balance method for the system with typical linear viscous damping are presented in paper
[1].
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Figure 3: Photo of experimental rig (a), magnetorheological damper RD 1097-01 (b), and nonlinear
oscillator springs (c, d).

3. Experimental Setup

The experiment was performed on an autoparametrically two degree of freedom system
presented in Figure 3 and schematically in Figure 1. Figure 3(a) shows a photo of the main
parts of a mechanical system while nonlinear components of suspension, that is, MR damper
RD 1097-01 and nonlinear spring are presented in Figures 3(b), 3(c), and 3(d). Detailed
description of the laboratory rig can be found in paper [7]. The spring which connects the
oscillator and the base is considered in two variants, linear or nonlinear with different soft
or hard stiffness characteristics. Nonlinearity of springs have been reached by designing
of a special shape of springs: barrel shape (Figure 3(c)) and spiral hourglass helical shape
(Figure 3(d)).

A semiactive control system typically requires a small external power source for
operation. Moreover, the motion of the structure can be used to develop the control forces.
Therefore, semiactive control systems do not have the potential to destabilize the structural
system, in contrast to active systems. Many studies have indicated that semiactive systems
perform significantly better than passive devices [8–10]. A smart isolation system for the base
isolated, two-degree-of-freedom structural model employing MR dampers was investigated
experimentally by Yoshioka et al. [11].

In our experimental system we use magnetorheological damper RD 1097-01 produced
by Lord Corporation [12]. In earlier studies we used a typical hydraulic damper with an oil
tank. Contrary to the hydraulic damper, MR damper does not require mechanical valves
to control flow. Magnetorheological fluids (MRF) are a class of materials whose rheological
properties are rapidly varied by applying a magnetic field. This change is in proportion to
the magnetic field applied and is immediately reversible. Voltage in the electromagnet coils
creates a magnetic field around the fluid gap between the housing and the piston. When it is
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Figure 4: Exemplary characteristics of different springs (a) and nonlinear damping force of MR versus
velocity of the damper piston (b).

not activated, MR fluid behaves like a free flowing liquid, with a consistency similar to that
of typical oil. Furthermore, this kind of smart materials provides simple, quiet and rapid
response between the electronic control and mechanical system. The magnetorheological
materials are useful in many applications because the change in their material properties
is large.

The magnetorheological damper RD 1097-01 is suitable for light structure suspensions
and isolation applications. The functional parameters of the damper listed by the manufac-
turer take values: maximum force 100 N (for current 1 A and piston velocity 51 mm/s), stroke
±25 mm, response time 25 ms. The force in the passive-off-mode (0 A) is about 9 N.

Such parameters allow very low damping force if the damper has to be switched
off. In Figure 4(b) experimental characteristics of MR damper RD 1097-01, for different
current intensity are shown. In Figure 4(a) exemplary characteristics of nonlinear springs
used in experimental system are presented. The spring corresponding to linear characteristic
is denoted as no. 1, hard characteristic as no. 2 (k = 103 N/m, k1 = 5 · 106 N/m3) and soft
characteristic as no. 3 (k = 2.5 · 103 N/m, k1 = −9 · 106 N/m3). Six different types of linear and
six nonlinear springs are used in the equipment.

4. Dynamics of MR Damped System

In this type of the systems near the parametric resonances the unstable areas may occur,
and moreover, for certain parameters chaotic motion may be observed [13]. Due to
strong nonlinearities, the global and local dynamics of the system is studied by direct
numerical simulations of (2.2). The equations have been implemented in Matlab-Simulink
and Dynamics packages [14]. The software allows to consider bifurcation diagrams, Poincaré
maps, phase trajectories, time histories, basins of attraction and two parameter plots. Because
the damping force Fd, generated by MR damper, is approximated by a smooth function (2.5),
the fourth-order Runge-Kutta method is used for numerical integration. The simulations
are carried out on the basis of data taken from the laboratory rig. In these simulations
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Figure 5: Two parameter space plot for different settings of MR damping α3 = 0 (a), α3 = 0.1 (b), α3 = 0.2
(c) and α3 = 0.5 (d) for γ = 0.

the following parameters are used: α1 = 0.26, α2 = 0.1, q = 3, μ = 17.2, and λ = 0.12. The
first 500 excitation periods were excluded in the analysis presented in this section.

The bifurcation diagrams are calculated to investigate the effects of the influence of MR
damping on dynamics for typical resonance range. For each value of the varied parameter,
the same initial conditions are used so that the comparison could be made between different
system’s parameter values.

Figure 5 depicts two parameter space plots with a set of initial conditions ϕo = 0.1,
ϕ′o = 0, xo = 0, x′o = 0. The black colour regions indicate chaotic motions estimated on the basis
of positive value of all Lyapunov exponents. Unmarked areas (white colour) define periodic
motion (oscillation or rotation) or regions where pendulum is at rest. The main parametric
resonance appears near the frequency ratio ϑ ≈ 1.
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We propose to change the dynamic behaviour of the autoparametric system (for
example transfer chaotic motion into periodic) by using MR damper which could allow for a
change of the system motion online. The MR damper is a semiactive device, this means that
the damping force can only be commanded by the input voltage adjusted to the MR damper.
Therefore, the dynamic mechanism of the system with installed MR damper in the suspension
can be updated in an online adaptive manner, according to the required conditions. In spite
of the fact MR damper cannot activate positive force, the advantage is that the restoring force
can be modified online without stopping the system.

Introducing MR damping we observe, that chaotic resonance tongues move towards
the axis of amplitude of excitation q. Additionally, small chaotic zones (black colours) are
reduced and a part of the chaotic area is divided into smaller regions (Figure 5).

To have better insight into the parameters space plot, the bifurcation diagrams
(crosschecks) have been done. Figures 6(a) and 6(b) present the numerical bifurcation
diagram and Lyapunov exponent corresponding to the classical viscous damped model
(α3 = 0). The positive value of the maximal Lyapunov exponent indicates that the black
area in bifurcation diagrams represents the chaotic regions. For the frequency of ϑ ≈
(0.65–1.16) pendulum goes to rotation. This result has been obtained by experimental results.
Surprisingly, the activated MR damping causes an increase in the second chaotic area (near
ϑ ≈ 1.2) (Figures 6(c) and 6(d)) reducing rotation of the pendulum. The first chaotic zone
(ϑ ≈ 0.54–0.62) remains practically unchanged.

The rotation of pendulum is defined as a case when the motion amplitude exceeds
ϕ = ±π [15].

Interesting example is observed for frequency ϑ ≈ 1.3. The pendulum goes from
lower to the upper position and is stopped there. The inverted pendulum’s equilibrium
point becomes stable. The same result is obtained from experimental tests (the grey line in
Figure 7(a)). But, for frequency ϑ ≈ 1.4 (Figure 7(b)) the pendulum executes the “chaotic
swinging” in lower position with positive value of Lyapunov exponent (Figure 6(b)). This
result has not been confirmed on the experimental rig. This chaotic region is very narrow and
therefore probably because of dynamically changed damping of the pendulum’s pivot and
varying working conditions, this result is difficult to find by the experiment. This may also
be caused by the system sensitivity to the initial conditions.

Introduction of MR damping does not change stability of the inverted pendulum for
analyzed range of parameter α3. However, further increase of MR damping above the certain
critical value change the inverted pendulum from stable into unstable.

5. Suspension with a Nonlinear Spring

Another proposal to change the system dynamics is modification of nonlinear stiffness of
a spring mounted in the suspension. Warminski and Kecik [1] proved that introduction
of nonlinear stiffness seems to be a promising method for improving the phenomenon of
dynamical vibration absorption, but for some parameters this solution can produce new,
unwanted attractors. Comparison of the parameter space plots for the system with the linear
spring (Figure 5(a)) and the nonlinear springs Figures 8(a) and 8(b), shows that for stiff
characteristics the chaotic resonance tongues are moved to the right side. Furthermore, the
small resonance area (black colour), near ϑ ≈ 0.9 and q ≈ 4, disappears.

The bifurcation diagrams for varying ϑ for the hard nonlinear spring are shown
in Figure 9. The stiffness causes mainly an increase of the second chaotic area (left-side)
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Figure 6: Bifurcation diagrams ϕ versus ϑ obtained for α3 = 0 (a), α3 = 0.1 (c), α3 = 0.2 (d), and Lyapunov
exponents obtained for α3 = 0 (b), calculated for a system with a linear spring.

and additionally, for nonlinearity γ = 0.02 (Figure 9(b)), the stabilisation of the inverted
pendulum is eliminated. The first chaotic zone is shifted towards to the second chaotic region.
This effect can be explained by stiffening effect of the suspension. Obtained results show that
hard stiffness of a spring can be used for avoidance unwanted dynamical situations.

Figure 10 demonstrates the influence of soft nonlinearity of a spring on the main
parametric resonance. The soft nonlinearity slightly moves the resonance tongue to left-
side. Additionally, near the frequency ϑ ≈ 0.8, for γ = −0.002 new bifurcation points exist.
Therefore, it is very important to check the existence a new attractors if spring with soft
characteristic is to be applied.
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Figure 7: Time history of pendulum motion for frequency ϑ = 1.3 (a) and ϑ = 1.4 (b) for γ = 0 and α3 = 0.
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Figure 8: Parameter space plot of a pendulum for different values of hard stiffness α3 = 0, γ = 0.01 (a) and
γ = 0.02 (b) for α3 = 0.

6. Dynamics Control of a System with Semi-Active MR Suspension

In real dynamical autoparametric structure, it is very important to keep the pendulum
at a given, wanted attractor. The nonlinear systems are sensitive for initial conditions,
environmental or working conditions, therefore monitoring of suitable parameters is required
to improve dynamic. The existence of two or more solutions for the same parameter values
in a nonlinear system indicates that the initial conditions play a critical role in determining
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Figure 9: Bifurcation diagrams ϕ versus ϑ obtained for γ = 0.01 (a), γ = 0.02 (b) and α3 = 0.
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Figure 10: Bifurcation diagrams ϕ versus ϑ obtained for γ = −0.001 (a) γ = −0.002 (b) and α3 = 0.

the system’s overall response. Therefore, slight disturbance may cause a jump from the
oscillating pendulum to the rotation or chaotic motion.

Figure 11(a) shows basins of attractions for two sets of initial conditions of the
pendulum, that is, its angular displacement and angular velocity. The plot (Figure 11)
indicates more than one coexisting attractor for the same set of parameters. For each attractor,
the set of initial conditions leading to long-time behaviour is plotted in corresponding
colours. We observe two double-point attractors and one one-point attractor with the suitable
basin of attraction. Attractor no. 1, with basins of attraction in a dark grey colour, represents
example of a semitrivial solution where the pendulum does not move while the oscillator
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Figure 11: Basins of attraction of a pendulum for ϑ = 1.4 (a) and ϑ = 0.7 (b) obtained for α3 = 0, γ = 0.

vibrates having the pendulum as an additional mass. Attractor no. 2 represents swinging
of the pendulum in the upper position (around the point ϕ ≈ π). Its basins of attraction,
denoted as light grey, show swinging with a shift on the right side (ϕ ≈ π − δ), a pink
colour corresponds to relevant swinging of the pendulum with a left-side shift (ϕ ≈ π + δ),
where δ is a shift of vibration centre of the pendulum in the upper position. The two possible
shifts are symmetric around the static position of the pendulum and depend on its initial
conditions. The chaotic attractor and its basin of attraction are marked as green and light blue
respectively. This attractor is responsible for “chaotic swinging” of the pendulum in lower
position.

Time history of pendulum motion, for the case of chaotic swinging (attractor no. 3)
obtained from numerical simulation is plotted in Figure 12(a). However, if the MR damping
is activated during the motion, for short instance of time of about value α3 = 0.25, then the
trajectory “jumps” from attractor no. 3 into no. 1. The same result is obtained by experimental
test (Figure 12(b)). It confirms that MR damper applied in the suspension can be useful
device to move pendulum’s motion from unwanted, often dangerous situations. Swinging of
the pendulum in inverted position (attractor no. 2) is presented in Figure 13(a). Nevertheless,
if the MR damper is activated for a certain interval time then for α3 = 0.11 attractor no. 2
goes into attractor no. 3 representing chaotic swinging—a grey line, or for α3 = 0.1 goes into
attractor no. 1 lower equilibrium position of the pendulum black line in Figure 13(b).

Figure 11(b) shows basins of attraction for frequency ϑ = 0.7. In this case we observe
one double-point attractor which represents rotation of the pendulum. The pink colour
denotes positive rotation of the pendulum, the light blue colour is responsible for its negative
rotation (clock wise). If the pendulum is to play a role of dynamical absorber, this kind of
motion is usually unwanted. For certain parameters, the switch-on of the MR damping lead
to transition a rotation to swinging of a pendulum or also can be used to a change of rotation
direction. In order to obtain these results, time of MR damper being active must be longer
and α3 parameter should be of higher value.
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Figure 12: Time histories of a pendulum for ϑ = 1.4, ϕo = 0.1: numerical (a) and experimental (b) results
with impulse turn on of MR damping.
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Figure 13: Time histories of a pendulum for ϑ = 1.4, ϕo = 3 without MR damping (a) and with impulse
turn on of MR damping (b).

In Figure 14(a) a coefficient of MR damping is equal α3 = 1.1 and its activation
lasts τ ≈ 500. This causes the pendulum rotation to change from positive to negative.
Magnetorheological damping can be applied also to stop the rotation of the pendulum.

Therefore, after proper tuning of the system the response can be modified from chaotic
to periodic motion and vice versa. It has been confirmed experimentally that the simple open
loop technique, allows for an easy control of the system response.
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Figure 14: Numerical and experimental time histories of a pendulum motion for ϑ = 0.7, ϕo = 0.1, α3 =
1.1 (a) and α3 = 1.2 (b), obtained for the system with a linear spring, γ = 0.

7. Conclusions and Final Remarks

This paper focuses on numerical and experimental investigations of an autoparametric
system with a pendulum subjected to kinematic excitation. The dynamic response has been
examined by constructing parameter plots which determinate the regular or irregular motion.
The bifurcation diagram, Lyapunov exponents, time histories, and basins of attractions have
been used to check nature of motion in those regions.

The results presented in the paper show that MR damping together with nonlinear
spring included in the pendulum-like absorber structure can be an effective tool for reduction
of dangerous unstable regions without a loss of the dynamical absorption effect. After
proper tuning, the system can be maintained on a regular or a chaotic attractor. Moreover,
by applying simple open loop control, it is possible to fit the structure response to the
frequency of external excitation. Obtained results show that our semiactive suspension of
the autoparametric system allows to freely move, both up and down, or left and right, the
chaotic regions. Application of a closed loop control technique, leading to a smart dynamic
absorber is a next step of our investigations.
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