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We get a new proof of a sextuple product identity depending on the Laurent expansion of an
analytic function in an annulus. Many identities, including an identity for (g; q)io, are obtained
from this sextuple product identity.

1. Introduction

For convenience, we let |g| < 1 throughout the paper. We employ the standard notation
(a:9),, =l_[(1—aq"), (a,b,....c;q), = (a;q) (b;g),, - (cq),- (1.1)
n=0

Series product has been an interesting topic. The Jacobi triple product is one of the most

famous series-product identity. We announce it in the following (see, e.g, [1, page 35,
Entry 19] or [2, Equation (2.1)]):

(q,z,%;q) = Z(—l)”q(l/z)n("*l)z”, z#0. (1.2)
® p=c0

It is well known that an analytic function has a unique Laurent expansion in an
annulus. Bailey [3] used this property to prove the quintuple product identity. By this
approach, Cooper [4, 5] and Kongsiriwong and Liu [2] proved many types of the Macdonald
identities and some other series-product identities. In this paper, we use this method to deal
with a sextuple product identity.
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In Section 2, we present the sextuple product identity ((2.1) below) and its proof. Our
identity is equivalent to [2, Equation (8.16)] by Kongsiriwong and Liu, which is the simpli-
fication of [2, Equation (6.13)]. Kongsiriwong and Liu got [2, Equation (8.16)] from a more
general identity. In this section, we give it a direct proof.

In Section 3, we get many identities from this sextuple product identity.

To simplify notation, we often write ', for >,7> __ in the following when no confusion
occurs.

2. A New Proof of the Sextuple Product Identity
The starting point of our investigation in this section is the identity in the following theorem.

Theorem 2.1. For any complex number z with z# 0, one has

3

<q, z, g;q> <q3,z3, %;(f’) = <q12, 4, ~4; q1z>w s P

n

" 2<q12, _qlzl _q12’. q12 ; Z q2n2+1z4n+2 (2.1)
n

_ (q?’, —q?’, —q3; q3> Z q(1/2)<n27n)zzn+1'

n

2]

Before the proof of Theorem 2.1, we need some preparations. The two identities in the
following lemma are from [6]. We write them in this version.

Lemma 2.2. One has

. (2.2)
6

<q8, qsl q5; q8>w<qz4/ q9, q15; qz4>oo + qz <q8, q, q7; q8>w<q24, qsl q21; q24>
)

= (qz, -q*,-q*; qz)oo (qé, T.q059")_

<q8, q, q7; q8>w<q24’ q9/ q15,. q24>00 _ q<q8/ q3, q5,. q8>w<q24’ qsl q21;q24>00

= (g% . g2 6 _ 6 _ 6.6 (23)
<‘7"7"7f‘7>m<q1 %, q,q)m.

Proof. For (2.2), see [6, Equation (3.18)]. Equation (2.3) is from [6, Equation (3.21)]. Its proof
is similar to that of [6, Equation (3.18)]. O

The lemma above is used to prove the following two identities.
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Lemma 2.3. One has

(@-0-4:9)..(7. -0, ~aa")_+(aiq-ig:q),,(7,-id"iq";q")_ o
_ 2<q4, —q4, —6]4; q4>w<q12, —6]6, —6]6; q12>w, '
@-0-4:9).(7. -0 ~4:9") _ - (@.iq,-ig:9), (¢, -4’ iq";4") _ 25)
_ 2q<q4, _qzl _qz; q4>w<q12, _q12, _q12’. q12>w. )
Proof. By (1.2), we have

1
@-0-4:9),,(0 4" -00")_=1a-1,-4:9),.(¢-1-4"4")_
4 Z q (1/2)(m? —m)z q(3/2) n’-n) _ Z q2m +mZ 6n*+3n
— Z qu +2mz q24n +6n + q4z qu +6mz 24n%+18n
+ q3z qu +2mZ 24n+18n + qz qu +6mZ 24n? +6n

(2.6)
(0/i9,-i4:9) . (4, -id’ i vf’) = 5(a/i,-ig;q),, (4% -iig:q”)
22( 1) q (1/2) (m? —m) mZ( 1) q (3/2)(n? —n) 3n
— Z( 1)mq2m +mZ( 1)11 6n’+3n
_ Z qu +2mZ q24n +6n | q4z q8m2+6mz q24n2+18n
m n m n
_ q3zq8m2+2mzq24nz+18n _ qzq8m2+6mzq24nz+6n.
(2.7)
Adding (2.6) and (2.7), we have
@-0,-0:9)..(0" -0 -05a")_+ @ ia,-ig:q),,(0",~id"id5q")_
— 22q8m2+2mzq24n2+6n " 2q4zq8m2+6mzq24n2+18n
m n m n (2.8)

-9 <q16’ —qé, —qlo; q16> (q48, _qlsl —q30; q48>
" 2114 <q16, —6]2, _q14’. :;16) <q48, —6]6, —q42; qjg> )

By (2.2), we have (2.4).
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Subtracting (2.7) from (2.6), we obtain
@0-0,-0:9)..(0° -0 -050") - @ia-ig:q),,(¢,~id"idq")_
-2 5]3 q8m2+2m q24n2+18n +2g q8m2+6m q24n2+6n
_ 2113 (q16, _q6’ _q10’. q16> } <q48, _q6, —1142; q48> }

+ 2q<q16, _qzl _q14; q16>oo <q48/ _q18/ _qsz; q48>oo'

(2.9)

Replacing g in (2.3) by —g* and, then, applying the resulting identity to the above equation,
we get (2.5). This completes the proof. O

Proof of Theorem 2.1. Set

3
_ q. 3. 39 . 3
f(zlq)_<"7/zfzr‘1>w<q lzlzslq> . (210)
Then f is an analytic function of z in the annulus 0 < |z| < co. Put

f(z,q) = Zan(q)zn, 0<|z| < co. (2.11)

By (2.10), we can easily verify

f(z4) =2f(z4,9). (2.12)
Combining (2.11) and (2.12) gives

> an(q)z" = > 4" ama(q)z". (2.13)

Equate the coefficients of z™ on both sides to get
an(q) = 9" am-s(q)- (2.14)

Using the above relation, we obtain

2m>-3m 2m>-2m

asm-1(q) =g a-1(q),  am(q) =4 ao(q),

- . (2.15)
asmi1(q) =g "ar(q),  amm2(q) = 47" a2(q).
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Substituting the above four identities into (2.11), we have
f(z.q) =a-1(q) )] grmZm 4 ag (9)>] P2
m m
ran(g) R g+ an(g) X g7
m m
By (2.10), we also have
f(z9) = f(g,q)-
This gives

Dam()z" = D g " a-m(q)z".

Then we have
am(q) =q "a-m(q).
Set m =1 to get
ar(q) = q 'a-1(q)-
By this relation, (2.16) reduces to
£(z,9) = ao(q) S22 4+ ay (q) 3 g2 Z2me

+ap (q) Zquz ZAm+2

Now, it remains to determine ag(q), ai(q), and a»(q).
Putting z = 1in (2.21) gives

0= ag (q>z q2m2—2m +a (q)z q(l/Z)(mz—m) +ap (q>z q2m2.
m m m
Set z = -11in (2.21) to get

4(9,-9,-9:9), (‘13' 9, -q’; ”’3> ®

= ap (q)ZquLZm —a (q)zq(l/Z)(mz—m) +ay (q)zqzmz'
m m m

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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Taking z = i in (2.21) and noting that 3, (-1)"g(/2"*=m) = (), we have
(a.i,-iq:9).,,(¢°,-i,iq% 4°) _ = a0(9) 2 g~ 2(9) 2 7. (2.24)
Subtracting (2.23) from (2.22) and noting that 3", g%/ 2)(m?-m) — 2(9,-9,-9; q),, we obtain
a(q) = (04 ~0:7) . (2.25)
Add (2.22) and (2.23) to get
2(4,-4,-4:9) o (4 ~°,~a%0°) _ = a0(q) % g az(q)%‘ "o (2.26)
Adding (2.24) and (2.26) and, then, using (1.2) in the resulting equation, we obtain

(0-0,-0:9)..(0" -0 -0 0") _+ @ia,-ig:q),, (0", ~id"ia";a°)_

(2.27)
=2a0(q) (4, 4", ~":4")_-
By (2.4), we have
a(): 12 6 _ 6.,12 . (228)
olq 9-9.79:9")_
Similarly, subtracting (2.24) from (2.26) and, then using (1.2), we have
0-0-09), (7 -0 ~a%0)_-(aiq-ig:q).. (¢ -id id;q)_
(2.29)
= ax() (d", 0" -4"4")_-
Applying (2.5) to this equation gives
a ( >:2 12 _ 12 _ 12, 12 (230)
2{q aq\q9 ,—9 .99 o

which completes the proof. O
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3. Some Applications
In this section, we deduce many modular identities from Theorem 2.1.

Corollary 3.1. One has

3(4:9)% (7" q3)i = (4" -a"~a%q")_ > 2n(n-1)g"" "
n

+ 2<q12, _qlzl _qlz; q1z>w Z Qn+1)(dn + 1)q2n2+1 3.1)

n

_ <q3’ _qSI _qS; q3> Z 1’[(21’[ + 1)6]1/2(112711)'
* n

Proof. Dividing both sides of (2.1) by (1 - z)?%, letting z — 1, and then using L'Hospital’s rule
twice on the right-hand side gives (3.1). O

Corollary 3.2. One has

<q24, _qlzl _qlzl, q24> ) <q8, —114, —114; q8> ) " 4114 <q24, —1124, —1124; q24> ) <q8, _q8’ _qsl. q8> )
+29(4°, 4", 4" ") (4%-a*-a%a")

- (7-a-a:4)_(¢'-a-a4")
(3.2)

<q36, _qlsl _qlsl. q36> ) (qlz, —q4, _qs; q12> ; " 2115 <q36, _q36, _q36,. q36> ) <q1zl _qzl _q1ol, q12> )
-4(¢-4"-4"4")_(4-a-44°)

= (49)..(a%7)_

(3.3)

<q12, —q6, _q6,. q12> } <q4, _q4, _q4,. q4> - q<q12/ _qlzl _qlz; q12> ; <q4/ _qzl _qz; q4> )

_ (@59 (3%4°)w
@), (-4%49°),

(3.4)
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<q60/ _q30, _qso; q60> ; <q20, _qgl _q12’. q20> } n 2q9 <q60, —q6°, _q60’. q60> } <q20, _qzl _q18; q20> ;
_ qz <q15, _q15, _q15,. q15> } <¢75, g, _q4,. q5> ;

_ @9, @),
(a.9%9)., (¢.q%495),,

(3.5)
<q60’ —qSO, —q30; q60> } <q20, —q4, _qlé; q20> ) + 2q7 <q60, _q60’ _q60,. q60> ) <q20, _q6’ —qM; q20> }
_ q<q15, _q15’ —qlS; q15>oo <q5, —qz, —q3; q5>oo

_ @9, (@),
(9% 9% 4°) ., (4°9%9").,

(3.6)

Proof. Replace g in (2.1) by ¢* and, then, z by —g. Using (1.2) in the resulting identity gives
(3.2).

Replace g in (2.1) by ¢° and, then, z by g. Using (1.2) in the resulting identity gives
(3.3).

Replace g in (2.1) by ¢* and, then, z by gq. Using (1.2) and the fact that
(q*,-9,-9% 9%, = (9,—9,—9; ), in the resulting identity, we obtain

<<q48, —1124, —q24; q48>00 n qu <q48, _q48, _q48,. q48>00> <q4, —114, —q4; q4>w

_ @), (@%4°).
© (-39, (-3%49°),

(3.7)

—q <q12, _q1zl _q1z; q12> ; <q4, _qzl _qz; q4>
By (1.2), we have

12,_ 6,_ 6’. 12 _ 6n® _ 6(2n)* n 6(2n+1)2
(4% -4°-4%4") En]q En]q En]q .

_ <q48, —q24, —q24; q48> + qu <q48’ _q48’ _q48,. q48> )

Combining (3.7) and (3.8) gives (3.4).

Replace g in (2.1) by ¢° and, then, z by ¢*. Using (1.2) in the resulting identity gives
(3.5).

Replace g in (2.1) by ¢° and, then, z by g. Using (1.2) in the resulting identity gives
(3.6). O

Obviously, using the same method above, we can get more identities from (2.1).
Now, we deduce a formula for (g; Q)i from (2.1).
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Corollary 3.3. One has

(q/ q)i — 2Zq2m222nq6n2+2n + 2qzq2m2+2m2(2n _ 1)q6n2—4n
m n m n

(3.9)
4 Zq2m2+m2(2n + 1)q(1/2)(3n2+n).
m n

Proof. Denote the left-hand side of (2.1) by f(z) and the right-hand side of (2.1) by g(z). Let
zo be a zero point of f(z). Because (2.1) holds in 0 < |z| < oo, zp is also a zero point of g(z). If
azo = 1, we have

f@) 86

zlijr;ﬂ 1oy = dm . (3.10)
Setting zp = a = 1in (3.10) and by L’'Hospital’s rule on the right-hand side, we have
0= <q3, —q3, —q3; ‘13)002(2" + 1)q(1/2)(n2—n)
_2<q12, —q"%, g% q12>wz(4n +2)q2n2+1 (3.11)

_ <q12, 4, ~q" q12>w;4nqzn -2n.

Let w = e®/37i Putting zy = w and a = w? in (3.10) and noting «w*" = 1 for any integer n, we
have

4
- (o) Slan g
-2(q"%, -4, -4 «112>oo S (4n +2)g" e (3.12)

n

_ <q12, 4, ~q" q12> Z4nq2n2—2nwn'
Taking zo = w? and a = w in (3.10), we obtain
4
3(1 = 2 3’. 3 — 3,_ 3,_ 3’. 3 n+1 (1/2)(n*-n), n-1
(1-?)(q%50°)_ = (44 qq)w;(n )9 w
_ 2<q12, _q12’ _qlzl, q12> 2(4" + 2)q2n2+1w2(n—1) (3.13)
* n

_ <q12, 4,4 q12> Z4nq2n272nw2n'
* n
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Adding the above three identities together gives

4
o

9<q3; q3> = <q3, -4, -q°; q3> S (@n +1)q1/A 0 (1 +w 4 wz("*D)
* n

_ 2<q12, _qlzl _qlz; q1z> Z(4n + 2)q2n2+1 <1 P wZ(n71)> (3.14)

n

_ <q12, 4, ~q" q12>°0 Z4nq2n2—2n <1 "+ w2n>.
Using the fact

3, n=0 (mod 3),
1+w" +w™ = (3.15)
0, n#0 (mod 3)

in the above identity and, then, replacing g° by g, we get

(4 ‘7>i =(9,-9,-4:9) . Z(Zn +1)g(1/2 G
n
—4q (q4, -q*,-q" q4)w 3@+ 1)gem o6
n

_ 2<q4, P~ q4>w Zznq6n2—2n'

Replacing n in the last two sums on the right-hand side of the above identity by —n and, then,
applying (1.2) to the resulting equation, we get Corollary 3.3. O

4, Conclusion

Besides the Jacobi triple product (1.2), well-known series-product identities are known as
the quintuple product identity, the Winquist identity, and so forth. The formula (2.1) is also
such an identity. Recently, we also obtain some other identities of this kind, including the
simplifications of the formulae [2, Equations (6.12) and (6.14)], with a different method.
These identities are widely used in number theory, combinatorics, and many other fields.
literature on this topic abounds. In (2.1), if we replace z by e*Z, then the right-hand side of
(2.1) turns into fourier series. For recent papers on the applications of fourier analysis, we
refer the readers to [7-9].
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