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Examining the effect of strong ground motions on civil engineering structures is important as
it concerns public safety. The present study initially selects twenty-one bridges with lengths
over 500m in the Formosa freeway of Taiwan and collects a series of recorded seismic data
from checking stations near these bridges. Then, three seismic parameters including focal depth,
epicenter distance, and local magnitude are used as the input data sets, and a model for estimating
the key seismic parameter—peak ground acceleration—for each of bridge site is developed by
using the neural network approach. This model is finally combined with a simple distribution
method and a new weight-based method to estimate peak ground acceleration at each of the
bridges along the freeway. Based on the seismic design value in the current building code as the
evaluation criteria, the model identifies five bridges, out of all the bridges investigated, as having
the potential to be subjected to significantly higher horizontal peak ground accelerations than that
recommended for design in the building code. The method presented in this study hence provides
a valuable reference for dealing with nonlinear seismic data by developing neural network model,
and the approach presented is also applicable to other areas of interest around the world.

1. Introduction

Most of the economical activities in Taiwan are concentrated on the western side of the island,
and rely heavily on the first ever built national highway (Jhongshan freeway in the north-
south direction), which started operation of the full length (372.8 km) in 1978 [1]. Following
the rapid development in many areas, a more complete transportation networks including
rail system, mass rapid transit system, and high-speed rail systemwere required to linkmajor
cities and to fulfill all needs. Therefore, it is not difficult to find a variety of traffic engineering
projects, including regional highways and large scale national freeways, being constructed or
rebuilt around the island in recent years. Naturally, the topic of analyzing the environment
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and the structures in a road system by emerging scientific methods can contribute to increase
the engineering quality and safety standard of these structures.

Mountains occupy about two-third of the total area of the island of Taiwan, thus most
early highways and freeways were constructed basically along the coastline region. Whereas,
in recent years, due to lack of sufficiently flat areas for planning, the second north-south
freeway (Formosa freeway), wich was opened fully in the year of 2008, had to be built
along the mountain region. This freeway has a total length of 430.5 km and includes about
200 km of bridges, which occupy almost half the length (45%) of the freeway [2–4]. Hence,
it is crucial to understand the safety levels of bridges in this major freeway, and they must
be examined from time to time to prevent economical losses caused by natural disasters,
particularly potential damages resulting from strong ground motions.

The island of Taiwan is located within the Pacific ring of fire or sometimes called the
circum-Pacific seismic belt, hence strong ground motions are frequently recorded due to the
intrusion of Eurasia plate and Philippine plate. Therefore, the problems of engineering quality
and antiearthquake design are often considered while dealing with construction projects
in this area. In the current building code, there are two earthquake zones, A and B, that
are classified into all the subregions, and the design values for the earthquake horizontal
acceleration are 0.33 g and 0.23 g, respectively, for these two zones [5]. This zone classification
and the corresponding design value and their underlying assumptions can be taken as an
evaluation index for examining the safety of the bridges along the freeway.

The variables that need to be considered in developing models for the estimation of
peak ground acceleration (PGA)—the key factor for evaluating the characteristics of strong
motion at a specified region—can be classified into those arising from the source, travel
path and the site [6]. Models for the prediction of PGA have been developed previously
based on various combinations of these variables, and essentially fall into two categories:
empirical equations developed through nonlinear regression analysis and more recently
neural network models developed through supervised learning methods [7–9]. It has been
demonstrated that just three variables—local magnitude (ML), focal depth (De), and focal
distance (Di)—are adequate for developing acceptable models, and for this set of variables
the neural networkmodels have been shown to provide better estimations of PGAwithmuch
higher coefficients of correlations compared to the nonlinear regression analysis approach
[10]. The superior performance of the neural network model is due to its ability to learn the
underlying function using information available in the data rather than make assumptions
about the form of the function, as in the nonlinear regression analysis.

The advantage of developing models using three independent variables is that the
underlying function will be simpler. The site information, not represented explicitly as a
variable, is embedded in the numerical values of the equations or the weights and biases
of the neural network. Thus, these models are only applicable to the sites for which they are
developed. This, however, is not an issue for the present work as separate neural network
models are developed for each of the checking stations. It is also possible to use different
neural network types to develop the model, but previous research indicates that the best
results are obtained with feed-forward back-propagation networks [11]. Thus, this network
type has been used for developing network models for all the checking stations.

Among the emerging scientific methods for data analysis, computational intelligence
methods such as evolutionary algorithm, in addition to artificial neural network, find
applications in solving a variety of engineering problems, including the problem of
detecting or identifying seismic damage in various engineering structures [12–19]. It is
also possible to use hybrid approaches—genetic algorithm and neural network—to develop
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better performing neural network models for PGA predictions [20]. Neural network models
have also been used for earthquake forecasting [21], but this is not the objective of the
present research. In comparing the predicted PGA values against those recommended in the
appropriate design codes, the probability of occurrence of the earthquake that produced the
PGA values should also be taken into consideration.

In the present investigation, neural network models are developed using the seismic
data available for checking stations close to the bridges of interest, including the following
stages: (1) selecting twenty-one bridges, with lengths over 500m, along the Formosa freeway;
(2) collecting a series of recorded seismic data from at least three checking stations in
the neighborhood of each bridge; (3) using measuring tool in Google map to calculate
the distance between a bridge and each of the checking stations; (4) developing a simple
distribution model and a new weight-based model for the neural network approach to
estimate PGA for each bridge, and (5) identifying potentially hazardous bridges based on
the comparison of the neural network estimate and the design value required by building
code. It is hoped that the results of the present study will provide useful information for
improving the level of bridge safety along the freeway investigated.

2. Active Faults and Recorded Seismic Data

The central geological survey data of the ministry of economic affairs (MOEA) in Taiwan
shows that there exists at least 42 active faults in the whole island (see Figure 1, [22]), with 5
major active faults located on the western side, near several areas with important engineering
projects and very high population density [23, 24]. Specifically: (1) Sanyi fault, numbered 13,
is 19 km long; (2) Chelungpu fault, numbered 19, is 50 km long; (3) Tamaopu-Shuangtung
fault, numbered 20, is 55 km long; (4)Meishan fault, numbered 22, is 13 km long; (5) Chukou
fault, numbered 26, is 67 km long. Historical records show that these major active faults did
create destructive earthquakes that caused tremendous damages.

When the active faults trigger a strong ground motion, the released energy from
hypocenter generates an elastic wave that propagates to the ground surface, and the vertical
point is called epicenter. The characteristics of this seismic wave can be measured by seis-
mometers installed in checking stations. A typical seismic data recorded usually include sev-
eral items of information such as date and time, exact location, intensity, local magnitude in
Richter scale, focal depth, epicentral distance, PGA in vertical (V), north-south (NS), and east-
west (EW) directions, respectively. The distance between hypocenter to epicenter is defined
as the focal depth, and epicentral distance is calculated from the epicenter to checking station.

It is necessary to further mention that the focal depth is an important factor as it relates
to the degrees of damage caused by earthquakes. It is clear, even without considering other
seismic parameters that a low focal depth, in general, will result in high damage. Therefore,
earthquakes may be classified as shallow, intermediate, or deep depending on the value of
the focal depth. For shallow earthquake, the focal depth is less than 70 km beneath the ground
surface, while in the case of focal depth between 0–30 km, it is referred to as a very shallow
earthquake. For intermediate earthquakes, the focal depth is between 70 km to 300 km. When
the focal depth is more than 300 km, it is referred to as a deep earthquake [25]. In general, the
intermediate earthquakes occur much more often than the other two categories. It occurs
about 3 times the deep earthquake and about 10 times the shallow earthquake, but the
occurrences of these earthquakes are not uniformly distributed around the world.

As mentioned previously, the Formosa freeway is mostly constructed in the mountain
region, and thus some of active faults are mainly distributed in the neighborhood of bridges
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Figure 1: Formosa freeway and distribution of active faults in the island of Taiwan. (Map sources: MOEA
and http://www.simcam.net/Personal-Website/taiwan-links.html).
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along the freeway, particularly those in the central and southern parts of the freeway. Thus,
the seismic effect on each of the bridges along the freeway is a crucial issue and can be
examined by available scientific methods, including the neural network approach, which,
in recent years, has been shown to have a wide range of applications. In the present study,
a series of seismic data recorded at checking stations around the main bridges along the
freeway is evaluated by neural networkmodels, which take local magnitude, focal depth, and
epicentral distance as the input, and PGA in each of three different directions as the output.

Shown in Figure 2 is the distribution of main bridges along the freeway, and the nearby
seismic checking stations for each bridge. Before developing neural network models, the
seismic records need to be processed to prevent the existence of extreme values in the input
data set, which may affect the accuracy of neural network training. The following equation
can be applied to normalize the input data:

Vn =
(Vo − Vmin)
(Vmax − Vmin)

, (2.1)

where Vn is the normalized seismic data, Vo is the original record, Vmin is the minimum value
in the data set, and Vmax is the maximum value in the data set [26]. With this preprocessing
of data, the input values will be within the range of 0 to 1, and this normalization will match
the transfer function used in the neural network.

3. Neural Network Approach and Evaluation Index

The concept of artificial neural networks first appeared in the study of McCulloch and Pitts
in 1943, but the development of this method did not progress far until the appearance
of Hopfield network in 1982 [27–29]. Now many different types of neural networks have
been developed, and the back-propagation neural network, which uses supervised learning
to obtain minimum error, is possibly the most commonly employed model in a variety of
applications [30–35]. This multilayered network model includes an input layer, one or more
hidden layers, and an output layer. The output of each layer becomes the input of the next
layer, and a specific learning law updates the weights of each layer connections based on the
errors in the network output.

The basic algebraic equation of each layer may be written as:

Yj = F
(∑

WijXi − θj
)
, (3.1)

where Yj is the output of neuron j, Wij represents the weight from neuron i to neuron j, Xi

is the input signal generated for neuron i, and θj is the bias term associated with neuron j.
There are several functions fromwhich the activation function can be chosen, but the sigmoid
function F(x) = 1/(1 + e−x) is commonly used to limit the output values to be between 0
and 1 for the input values ranging from negative to positive infinity. This nonlinear transfer
function makes the operating process continuous and differentiable.

Information regarding the use of neural network model to study the key element
of seismic problems around the world can be found in recent research literature. For
instance, Tselentis and Vladutu [36] developed a combination model of using artificial neural
network and genetic algorithm to uncover relations between the engineering ground-motion



6 Mathematical Problems in Engineering

N

120◦ 121◦ 122◦

120◦ 121◦ 122◦

25◦

24◦

23◦

22◦

25◦

24◦

23◦

22◦

A01

A02

A03

A04

A05

A06/A07

A08

A09

A10
A11

A12

A13

A14

A15

A16/A17

B02

B03
B04

B01

Taipei

Taichung

Kaohsiung

Pacific Ocean

Taiwan Strait

Formosa freeway
Bridge location Zone A

Zone B

0 50
(km)

Checking station

Figure 2: Bridges along Formosa freeway and the nearby seismic checking stations.

parameters and macroseismic intensity. The results concluded that the model can be satisfied
by using Greek seismological database. Another example as reported by Derras [37], the
neural network approach was able to predict peak ground acceleration with different input
seismic parameters collected from a data base in Japan. More researches related to this topic,
using regional seismic data bases, may also be found in Turkey [11] and in Mexico [38].
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Since neural network method is widely applied in the computational intelligence
community due to its simplicity and effectiveness; therefore, in this study, the neural network
toolbox in the software package Matlab [39, 40] is used to analyze seismic data collected
from checking stations around each of the chosen bridges along the Formosa freeway. For
creating a network in the software data manager toolbox, the input range is set to between
0 and 1, and the Levenberg-Marquardt back-propagation algorithm is chosen in the training
process. For the training parameters including epochs, goal, max fail, mem reduc, min grad,
mu, mu dec, mu inc, mu max, show, and time are set to 1000, 0, 5, 1, 1e − 010, 0.001, 0.1, 10,
1e010, 25, and infinite, respectively. With three neurons in the hidden layer, and one neuron
in the output layer, the creating neural network model can then be trained, adapted, and
simulated to obtain an estimation result for analysis.

The effectiveness of neural network model developed can be evaluated by using the
coefficient of correlation (R or r) that is defined as:

R =
∑n

i=1(xi − xi)
(
yi − yi

)
[∑n

i=1 (xi − xi)
2 ∑n

i=1
(
yi − yi

)2]1/2 , (3.2)

where xi and xi are the recorded data and its averaged values, respectively, yi and yi are the
estimated and its averaged values, respectively, and n denotes the number of data items in
the analysis. This coefficient may have a positive or negative value, so that its squared value,
R2, is also frequently taken to represent the degree of correlation between the recorded data
and the estimation. In general case as seen in Wikipedia encyclopedia [41], |R| > 0.5 denotes
a large level of correlation, 0.3 < |R| ≤ 0.5 denotes a medium level of correlation, and |R| ≤ 0.3
represents a small level of correlation. However, the ranges 0.3 < |R| ≤ 0.7 and |R| > 0.7 may
also be used to represent medium and large levels of correlation, respectively [42]. For more
conservative manner, the present study takes R2 > 0.7 as sufficient criterion for checking the
neural network models developed.

Furthermore, an error evaluation function is required to calculate the difference
between the actual records and estimations by neural network model. This is usually the
root mean square error (RMSE) function [43], and the definition in this study is:

RMSE =

[∑N
n (Tn − Yn)2

N

]1/2

, (3.3)

whereN is the number of learning cases, Tn is the target value for case n, and Yn is the output
value for case n. In general, the smaller the root mean square error, the more accurate the
estimation.

4. Evaluation Models and Illustrative Results

To develop an adequate neural network model for evaluating peak ground acceleration at
each of bridge of interest, the seismic data sets are arranged into three groups. Initially, three
sets of largest value for local magnitude, focal depth, and epicenter distance are withdrawn
from seismic data base in each checking station for verification purpose. Then, the remaining
parts are divided into 70% and 30% of the data sets, for training and adapting, respectively,
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Figure 3: Convergence tendency of root mean square error versus epochs for each of checking station
around bridge A09.

in the neural network model. For a total of 52 checking stations investigated, the seismic data
sets with magnitude over 5.0 in Richter scale are only used in neural network modeling to
prevent unwanted noise. For each of the checking station, the size of the data sets range from
25 to 120, this may be sufficient to meet the minimum requirement from statistical standpoint.

Now for the trained model, the averaged square values of correlation coefficient
(R2) for all checking stations are 0.912, 0.899, and 0.908, in V, N-S, and E-W directions,
respectively. After the weights and bias terms of neural network model are adapted slightly,
the verification result is finally shown in Table 1. It can be seen that the averaged square
values of the correlation coefficients range from 0.821 to 0.964 for the checking stations around
each of the bridge. That is, the correlation between seismic records and neural network
estimations has a very high level. Besides, by taking bridge A09 as an example, the plot
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Table 1: Averaged square values of correlation coefficient for all directions at each bridge.

A01 A02 A03 A04 A05 A06 A07

0.841 0.846 0.821 0.876 0.937 0.964 0.925
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Figure 4: Spatial relationship between bridge (A08), checking stations and epicenter location of the 921
earthquake (Map source: http://maps.google.com/).

of root mean square error versus epochs for each of the checking stations (SST 21, SST 25,
SST 31, SST 33) around the bridge is shown in Figure 3. For all plots, it can be seen that the
root mean square errors are converged between 10−3 and 10−6 for the three directions. These
results reflect that the neural network estimations already have a sufficient accuracy.

The objective of this study is to evaluate PGA at all 21 bridge locations, and to identify
the potential for damage to each bridge resulting from strong ground motions. Since, there
exists no checking station just right on the bridge site to record historical seismic data, a
suitable method is required to calculate PGA for each bridge based on available neural
network estimations from nearby checking stations. In the present study, the straightforward
way to estimate PGA for each of the bridges is by simply distributing the estimated results
from nearby checking stations in accordance with weighting factors.

By taking bridge A08 as an example, the distance between this bridge and checking
stations can be calculated from their precise coordinates with Google map, as shown in
Figure 4. The distances to the bridge A08 are 13.22 km, 2.96 km, and 2.77 km for checking
stations SST24, SST26, and SST28, respectively. The weighting factor for each station is then
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Figure 5: Comparison of PGA estimations in different directions.

calculated by the following formula:

Wi =

(∑n
j=1 dj

)
/di

∑n
k=1

[(∑n
j=1 dj

)
/dk

] ; i = 1, 2, 3, . . . n, (4.1)

where di, dj , and dx are the distances between the bridge and checking stations, n is the total
number of seismic checking stations, and Wi denotes the weight of each checking station to
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the specified bridge. For the bridge A08, the weighting factors can then be calculated as 0.098,
0.436, and 0.466 for the three checking stations SST24, SST26, and SST28, respectively.

Now by using the above method, PGA for each bridge can be obtained directly from
the estimated results for the checking stations by the neural network models. That is, PGA for
each bridge is simply aggregated from distributed results of checking stations around it, and
the computing process of this simple distribution model is denoted as “Model 1 or NN1.” For
the other model, namely “Model 2 or NN2,” the epicentral distance to the bridge is calculated
for each strong motion, and then this new parameter with the other two inputs (same local
magnitude and focal depth) is processed through the trained neural network models. After
all available earthquake records are processed through the models, the output values are then
modified by the weights and summed as shown in the following equation:

NNb =
n∑
i=1

(ANNi)Wi, (4.2)

where NNb is the final PGA estimation for each bridge; ANNi is the estimation using neural
network model for each checking station;Wi and n have the same definitions as in (4.1). This
new approach of taking into account both the epicentral distance and the distance from the
checking station appears more likely to represent the true PGA estimation for each bridge.

Figure 5 shows PGAs estimated for the 21 bridges in V, N-S, and E-W directions
respectively, by the two neural network estimation models. From the plots, it can be seen that
Model 1 has a slightly higher PGA estimation than that of Model 2 for most of the bridges,
particularly for N-S and E-W directions. It can also be seen that PGA in V direction is slightly
smaller than that of the other two directions. Because most of natural faults in the island of
Taiwan are in the neighborhood of the central mountain region, which is basically distributed
in north-south direction; therefore, it is not surprising that PGA estimations in E-W direction
tend to have a higher value than that of the estimation in N-S direction for most of bridges
due to the extrusion of Eurasia plate and Philippine plate.

By using the formula PGAh = [(PGAN-S)
2 + (PGAE-W)2]

1/2
, the calculated horizontal

PGA for each bridge is displayed in Figure 6. It can be identified that there are five bridges
(A05, A06, A07, A08, and A09) with higher horizontal PGA values than that in the seismic
design standard for zoneA (0.33 g). That is, these bridges have the potential to be damaged by
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strong ground motions, and thus public must be cautioned to prevent unnecessary economic
losses. In zone B, all bridges comply with building code seismic requirement (0.23 g), and
thus no further action is necessary at this stage, based on the present research results.

In order to see more clearly, bridges with horizontal PGA values in excess of the seis-
mic design value are shown in Figure 7. It can be seen that the five bridges are mostly located
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in thewest-central part of Taiwan, and in the neighborhood of two frequent seismic zones and
six active faults, including the two major Chelungpu and Meishan faults, numbered 19 and
22 in Figure 1. The historical records showed that there exist several destructive earthquakes
in this region with local magnitude over 7.0 in Richter scale including the recent big one
(921 earthquake) with ML = 7.3 that occurred in the year 1999. From the plot and numerical
results, it can also be seen that bridge A08 has significantly higher estimated horizontal PGAs
than that of the other bridges and the design standard value, that is, 0.681 g obtained from
Model 1 (NN1), and 0.690 g obtained from Model 2 (NN2). The reasons may be that this
bridge is quite close to the major active faults, and it is only about 13 km from the epicenter
of 921 earthquake, as shown in Figure 4. Anyway, it is better to pay more attention to these
potentially hazardous bridges that have been identified and check their safety status as often
as possible.

5. Summary and Conclusion

Seismic recorded parameters can be used to evaluate regional engineering safety level, and
for establishing design values in the building code by applicable scientific methods. This
study employed the neural network approach to train and adapt a series of recorded seismic
data to estimate PGA in checking stations around 21 major bridges along the Formosa
freeway in Taiwan. A total of three input seismic parameters: focal depth, epicenter distance,
and local magnitude have been considered in developing the models for estimation.

By taking the developed neural network model for each of checking station around
the specified bridge as the basis, two methods have been used to estimate PGA at each
of the bridge locations along the freeway. Model 1 (NN1) simply takes the results of
nearby checking stations with the use of weighting factors to obtain PGA for the bridge
being investigated. Model 2 (NN2) calculates epicenter distance at first for each bridge in
accordance with recorded seismic data. By inputting this new parameter to a weight-based
neural network model, the final PGA estimation was then obtained for each bridge.

Based on the calculation results, five bridges out of 21 bridges have been identified
as having a higher horizontal PGA than the seismic design value in the building code. This
study has thus demonstrated that the neural network approach could be used to develop
concise models of recorded nonlinear seismic data that can be used for prediction, and this
approach may be applicable to other areas of interest around the world. Note that the seismic
requirement in building code is applicable for bridge design, but it may no longer play an
important role if the bridge code is revised in accordance with the actual site conditions.
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