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This paper considers generation self-scheduling in electricity markets under uncertain price. Based
on the robust optimization (denoted as RO) methodology, a new self-scheduling model, which
has a complicated max-min optimization structure, is set up. By using optimal dual theory,
the proposed model is reformulated to an ordinary quadratic and quadratic cone programming
problems in the cases of box and ellipsoidal uncertainty, respectively. IEEE 30-bus system is used
to test the new model. Some comparisons with other methods are done, and the sensitivity with
respect to the uncertain set is analyzed. Comparing with the existed uncertain self-scheduling
approaches, the new method has twofold characteristics. First, it does not need a prediction of
distribution of random variables and just requires an estimated value and the uncertain set of
power price. Second, the counterpart of RO corresponding to the self-scheduling is a simple
quadratic or quadratic cone programming. This indicates that the reformulated problem can be
solved by many ordinary optimization algorithms.

1. Introduction

Electricity market is a system which organizes, manages, and coordinates the power system
by means of laws and economic tools under the principle of openness, competition, and
fairness. The aim of electricity market is to improve the efficiency of power industry, to lower
electric price, and to ensure the security of power system at the same time. The operation
process of electricity market is as follows: firstly, the market participants submit their bids to
the independent system operator (ISO), considering their own profit maximization; secondly,
under the power system security limits, the ISO decides the dispatch schedule such as the
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generated energy, load power, and spot price; thirdly, the market participants submit their
bids of next period bids to ISO again. This process shows that for the generation company, it
is important to make an available self-scheduling in the competitive environment so that the
ISO can accept their bids. Finally, the aim of our research is to set up a suitable self-schedular
model and to find an effective solution approach.

In power system analysis, the generation self-scheduling is based on optimization
approach. Two types of models are used for such problem. One is the determinate
optimization approach, and the other is the uncertainty optimization approach with
uncertain parameters. Since the later can describe the market operation action better, we will
pay our attention to it in this paper. In the literature, the uncertain self-scheduling approach
has been studied extensively from the model and algorithm aspects (see [1–9]). There
are two available approaches to handle the uncertainty in competitive electricity markets:
probabilistic approach and fuzzy approach. By using the probabilistic method, Conejo et al.
studied the self-scheduling models of multiperiod schedule where the generation company
is as price-takers [2] and a price-makers [6] in a pool-based electricity market, respectively.
Then a correspondent mixed-integer quadratic programming and a mixed-integer linear
programming are set up. In their research, the profit and risk are considered simultaneously.
Furthermore, as an example, the hydro producer’s self-scheduling is consideredwith start-up
costs [1], and an 0/1 mixed-integer linear programming model is established. Yamin studied
the self-schedulingmodel by using the fuzzymethod [8, 9]. A comprehensive fuzzy approach
for self-scheduling problem is set up [9], with the uncertainty of the demand, spinning and
nonspinning reserves, price, and so forth. Recently, due to the nice mathematical property
of conditional Value-at-Risk (CVaR) (see [10, 11]), Jabr [3] combined the CVaR method into
generation self-scheduling, under the known random distribution of power price. Then a
second-order cone program is established and the polynomial interior-point approach is
adopted. Furthermore, considering the case that the mean vector and covariance matrix of
probability distribution may be known partially, Jabr [4, 5] developed the methodology [3]
and presented a worst-case robust profit model for the generation self-scheduling. The new
model is reformulated as a symmetric cone optimization under special box uncertainty. For
the multiperiod consideration, Tseng and zhu [7] studied the self-scheduling and bidding
strategy of a thermal generation with the ramp constraints. All of these make a meaningful
contribution for the ordinal market operation and provide a guideline of bidding strategy of
generation companies.

We also note that the probabilistic approach is based on the known (or partial
known) distribution of random variable, and a fuzzy approach is depend on the so-
called membership function. However, in the complicated electricity market, the distribution
prediction of random variable is difficult, which may result an inaccurate forecast of random
variables and yields a bad generation self-scheduling. This motivates us to find other method
for the self-scheduling approach.

Mathematically, there is another typical approach for the uncertainty optimization
problems, called robust optimization (RO). The RO method has been studied and applied
various aspects recently (see [11–15] and references therein). The main characteristic of
RO approach solves the optimal problems based on a uncertain set of parameters, not the
distribution of them. Such method can avoid the prediction of uncertain parameters in power
markets and provide a motivation for the study of the generation self-scheduling.

Under the uncertain price, this paper addresses the self-scheduling via the RO
approach. A min-max self-scheduling model is set up where the security constraints of
the system are considered. In order to facilitate the model, we use the dual theory of
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optimization and obtain the correspondent counterpart. The reformulation is a typical
quadratic optimization programming and can be solved easily. The characteristics of such
research are twofold. First, the self-scheduling model does not need a distribution forecast
of electricity price, but just need the possible set of the price, for example, a box region set.
This is the main characteristics of RO approach and the difference with [3–5]. Second, the
counterpart of generation self-scheduling is ordinary convex quadratic and quadratic cone
programming. This is very helpful from the viewpoint of computation.

The paper is organized as follows. Section 2 introduces the RO problem and its
counterpart under a linear uncertain set. Section 3 sets up the RO-based self-scheduling
model and facilitates the max-min optimization model with the cases of box and ellipsoidal
uncertain sets. In Section 4, a numerical example of IEEE-30 system is tested, and some
comparison with CVaR approach is also done. Last section addresses some conclusions.

2. Robust Optimization and Its Counterpart

This section presents the mathematical analysis for RO problem. The main objective is to
transfer the uncertain optimization problem into a determinate optimization.

2.1. Robust Optimization

A general mathematical programming is of the form

min
x∈Rn

f0(x, ξ)

s.t. fi(x, ξ) ≤ 0, ∀ξ ∈ U (i = 1, . . . , m),
(2.1)

where x is the design (decided) vector, the functions f0 : Rn → R (the objective function)
and fi : Rn → R (i = 1, . . . , m) are structural elements of the problem (the constrained
functions), and ξ ∈ U ⊂ Rl stands for the dada (or called parameters).

We have the following observation for problem (2.1):

(i) if there is no parameter vector ξ or the vector ξ is fixed (i.e.,U has finite points), the
problem reduces to ordinary nonlinear programming problems;

(ii) if ξ ∈ U with infinite elements, that is, the parameter vector ξ belongs to some set,
then (2.1) is a uncertainty optimization.

The major challenges associated with above uncertain optimization are

(i) when and how can we reformulate or approximate (2.1) as a “computationally
tractable” optimization problem?

(ii) How to specify reasonable uncertainty set U in practical applications?

Typically, a min-max model is used to handle the model (2.1), called robust (or worst-
case) version, as follows:

min
x∈Rn

sup
ξ∈U

f0(x, ξ)

s.t. fi(x, ξ) ≤ 0, ∀ξ ∈ U (i = 1, . . . , m)
(2.2)
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or equivalently

min
x∈Rn

sup
ξ∈U

f0(x, ξ)

s.t. sup
ξ∈U

fi(x, ξ) ≤ 0, (i = 1, . . . , m).
(2.3)

We call (2.2) and (2.3) robust optimization (RO) models. In this paper, we use (2.3) as
a studied model. In what follows, we analyze its counterpart under some special uncertain
set U.

2.2. Counterpart of RO under Linear Uncertain Set

We assume U to be a linear version

U = Uτ ≡
{
ξ̂ + τDδ : ‖δ‖p ≤ 1

}
, (2.4)

where ξ̂ is the estimate value of ξ, τ ∈ R and D ∈ Rl×lδ are the given constant and correlative
matrix with respect to parameter vector ξ. The norm ‖ · ‖p is chosen as ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞
norms.

Suppose that the functions f0, fi (i = 1, . . . , m) in (2.3) are continuously differentiable
with respect to x and ξ. Then we can facilitate the min-max model (2.3).

(i) Objective function f0

We make an approximation for the objective function at ξ ∈ Uτ as follows:

f0
(
x, ξ̂ + τDδ

)
≈ f0

(
x, ξ̂

)
+ τ

(∇ξf0, Dδ
)∣∣

ξ=ξ̂

= f0
(
x, ξ̂

)
+ τ

(
DT∇ξf0, δ

)∣∣∣
ξ=ξ̂

.
(2.5)

Here (a, b) means the internal product of vector. From the bounded property of Uτ and the
formula (a, b) ≤ ‖a‖p‖b‖q, we have the following derivation:

sup
ξ∈Uτ

f0(x, ξ) = max
ξ∈Uτ

f0(x, ξ) ≈ f
(
x, ξ̂

)
+ τmax

‖δ‖p≤1

(
DT(∇ξf0, δ

))
∣∣∣∣∣
ξ=ξ̂

= f0
(
x, ξ̂

)
+ τ

∥∥∥∥
(
DT∇ξf0

)
ξ=ξ̂

∥∥∥∥
q

= f0
(
x, ξ̂

)
+ τ

∥∥∥((∂ξf0
)
D
)
ξ=ξ̂

∥∥∥
q
,

(2.6)

where q satisfies 1/p + 1/q = 1, DT is the adjoint of D, and ∇f = (∂f)T .
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(ii) Constraint function fi (i = 1, . . . , m)

Similarly, for the constraint: supu∈Uτ
fi ≤ 0, we have that

max
ξ∈Uτ

f i(x, ξ) ≈ fi
(
x, ξ̂

)
+ τ

∥∥∥((∂ξfi
)
D
)
ξ=ξ̂

∥∥∥
q
. (2.7)

From (2.6) and (2.7), we obtain the approximation problem of (2.3) under U = Uτ :

min
u

f0
(
x, ξ̂

)
+ τ

∥∥∥
(
∂ξf0

(
x, ξ̂

))
D
∥∥∥
q

s.t. fi
(
x, ξ̂

)
+ τ

∥∥∥
(
∂ξfi

(
x, ξ̂

))
D
∥∥∥
q
≤ 0, (i = 1, . . . , m).

(2.8)

We call (2.8) the counterpart of RO (2.3).

Remark 2.1. (i) The optimization problem of (2.8) is an ordinary optimization with the known
estimate point ξ̂.

(ii) If fi (i = 0, 1, . . . , m) is a linear function with respect to the parameter vector ξ, then
the derivation is accurate, that is, the approximate equality becomes equality.

(iii) The RO approach can be extended for solving the following general optimization
problem:

min
(x,u)

f(x, u, ξ)

s.t. h(x, u, ξ) = 0,

g(x, u, ξ) ≤ 0,

(2.9)

where the variables x ∈ Rnx and u ∈ Rnu represent state variable and control variable,
respectively. ξ ∈ Rl is the system parameter ξ ∈ Uτ defined in (2.4). h : R(nx+nu+nl) → Rnx .

Similar to Theorem 3.1 in [16], we have the following feasibility with respect to the
original uncertain optimization, which shows that the feasibility is controlled by τ defined in
set U.

Theorem 2.2. Let x̂ be strictly feasible to (2.8) at point ξ̂ with τ > 0. Assume that in the set Uτ ,
∇ξfi(x̂, ξ) is Lipschitz continuous with modulo L. Then it holds that

fi(x̂, ξ) ≤
(
L

2

)
‖D‖2τ2, (i = 1, . . . , m), ∀ξ ∈ Uτ . (2.10)

3. RO-Based Generation Self-Scheduling under Price Uncertainty

In this section, by using the RO method, we will set up the self-scheduling model under
uncertain price. We call it RO-based generation self-scheduling throughout this paper.
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3.1. Self-Scheduling Problem in Power Systems

A generation self-scheduling can be defined by the following nonlinear programming:

max
PG∈Π

f(PG, λ), (3.1)

where the decision variable is the generation output PG, and λ is the power price. The
objective and constraints (feasible region) are defined as follows.

(i) Objective function

f(PG, λ) represents the profit (return) of generating company

f(PG, λ) = λTPG −
NG∑
i=1

Ci(PGi). (3.2)

Here Ci(PGi) is the generator cost function, which is defined by a quadratic function

Ci(PGi) = ai + biPGi + ciP
2
Gi for i = 1, . . . ,NG. (3.3)

(ii) Feasible regionΠ

The feasible regionΠ of PG consists of power generation limits, dc network model constraint,
intact network line flow constraints, and security constraints (see [3, 17] for the definition of
Π):

(1) power generation limits

Pmin
Gi ≤ PGi ≤ Pmax

Gi , (3.4)

(2) DC network model

0 ≤ Pi +
∑
j∈k(i)

aij

(
δi − δj

) ≤ PDi, (3.5)

(3) intact network line flow constraints

−Tmax
ij ≤ Tij = −aij

(
δi − δj

) ≤ Tmax
ij , (3.6)

(4) security constraints following the outage of lines m1k1 to mrkr in terms of flows in
the intact network

−T̂max
ij ≤ T̂ij +

r∑
l=1

ωlTmlkl ≤ T̂max
ij , (3.7)

where the variables and parameters have the following meaning.
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k(i) is the set of nodes connected to node i; Pi is power injection at node i(= 0 or PGi);
Pmax
Gi and Pmin

Gi represent the maximum and minimum limit of PGi; PDi is the forecasted power
demand at node i; Tij expresses the intact power flow on line ij; T̂ij is the contingent power
flow on line ij; Tmax

ij : and T̂max
ij are the prefault and postfault (emergency) rating of line ij; Vi

denotes the voltage magnitude at node i; aij is electrical susceptance; δi expresses the voltage
angle at node i, δ1 = 0; ωl is the lth element of the row vector of load transfer coefficients.

(iii) Power price

λ is the vector of locational marginal prices (LMPs). Here we assume that the price is
uncertain parameter with the following version:

λ = λ + ζ (3.8)

or

λ = λ +Aζ, (3.9)

where price λ is the given power price as an estimated value and ζ is a price fluctuation. The
matrixA is an associated matrix of node price. The uncertain parameter of price is specialized
by ζ.

3.2. RO-Based Generation Self-Scheduling Model

According to the uncertain generation self-scheduling problem (3.1), we will consider the
robust (or called worst-case) version under some special set of ζ ∈ U. Note that in such
model, the uncertain parameter (i.e., price) is just in the objective with a linear version. We
transfer the uncertain model (3.1) to a deterministic optimization by

max
PG

inf
ζ∈U

f(PG, λ)

s.t. PG ∈ Π.

(3.10)

Since the RO-basedmodel (3.10) has a complicatedmin-max structure of optimization,
we will facilitate the model and obtain the correspondent counterpart of RO problem. To this
end, we consider two special cases of uncertain price set U in (3.8) and (3.9) as

U =
{
ζ | eTζ = 0, ζ ≤ ζ ≤ ζ

}
,

U =
{
ζ | eTAζ = 0, ‖ζ‖ ≤ 1

}
,

(3.11)

where e denotes the vector of ones and ζ and ζ are given constant vectors. The above two sets
are called box uncertainty and ellipsoidal uncertainty, respectively.
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Remark 3.1. Note that for solving the same generation self-scheduling, the main difference
between our method and ones in [3–5] is twofold. First, our method is based on the RO
approach and without the prediction of random variables. This is easily done in practical
application, whereas the method in [3–5] depends on the distribution of uncertain power
price, which needs a forecast of uncertain price. Second, two methods have a different focus
on the problem. Our approach considers optimization under the worst-case, and [3–5] solved
the problem under probability level of risk measure.

In the remainder of two subsections, our aim is to reformulate the optimization
problem (3.10) to an ordinary optimization for cases of uncertain cases (3.11).

3.3. Counterpart of RO-Based Self-Scheduling with Box Uncertainty

Since the set U is bounded, the objective function of (3.10) can be rewritten as

max
PG∈Π

inf
ζ∈U

f(PG, λ) = max
PG∈Π

min
ζ∈U

[(
λ + ζ

)T
PG −

NG∑
i=1

(
ai + biPGi + ciP

2
Gi

)]
. (3.12)

Computing directly, we have

F(PG) ≡ min
ζ∈U

[(
λ + ζ

)T
PG −

NG∑
i=1

(
ai + biPGi + ciP

2
Gi

)]

=
(
λ
)T

PG −
NG∑
i=1

(
ai + biPGi + ciP

2
Gi

)
+min

ζ∈U
ζTPG.

(3.13)

We will use the duality theorem of linear programming to analyze the term
minζ∈UζTPG. Define the corresponding Lagrangian function as

L
(
ζ, z, δ, γ

)
= ζTPG − zeTζ + δT

(
ζ − ζ

)
+ γT

(
ζ − ζ

)
. (3.14)

It holds that

∇ζL
(
ζ, z, δ, γ

)
= PG − ze − δ + γ = 0, (3.15)

which follows

max
(z,δ,γ)

min
ζ

L
(
ζ, z, δ, γ

)
= max

(z,δ,γ)

{
δTζ − γTζ : PG − ze − δ + γ = 0, δ ≥ 0, γ ≥ 0

}
. (3.16)

From the duality theorem of linear programming, we have

min
ζ∈U

ζTPG = max
(z,δ,γ)

min
ζ

L
(
ζ, z, δ, γ

)
. (3.17)
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Then (3.13) can be reformulated as

F(PG)

=max
(z,δ,γ)

{(
λ
)T

PG−
NG∑
i=1

(
ai + biPGi + ciP

2
Gi

)
+
(
δTζ − γTζ

)
: PG − ze − δ + γ = 0, δ ≥ 0, γ ≥ 0

}
.

(3.18)

Finally, problem (3.10)with a box uncertainty can be reformulated as

max
PG

inf
ζ∈U

f(PG, λ) = max
(PG,z,δ,γ)

[(
λ
)T

PG −
NG∑
i=1

(
ai + biPGi + ciP

2
Gi

)
+
(
δTζ − γTζ

)]

s.t. PG ∈ Π,

PG − ze − δ + γ = 0, δ ≥ 0, γ ≥ 0.

(3.19)

Remark 3.2. The reformulation (3.19) is an ordinary quadratic nonlinear programming if Π is
linear with respect to PG, which can be solved easily by many solution methods.

3.4. Counterpart of RO-Based Self-Scheduling with Ellipsoidal Uncertainty

Similarly to the box uncertainty, we define a function as

F(PG) ≡ min
ζ∈U

[(
λ +Aζ

)T
PG −

NG∑
i=1

(
ai + biPGi + ciP

2
Gi

)]

=
(
λ
)T

PG −
NG∑
i=1

(
ai + biPGi + ciP

2
Gi

)
+min

ζ∈U
ζTATPG.

(3.20)

Consider the term

min
ζ∈U

ζTATPG (3.21)

with U = {ζ | eTAζ = 0, ‖ζ‖ ≤ 1}. The correspondent Lagrangian function of (3.21) is

L
(
ζ, μ, ν

)
= ζTATPG − μ

(
eTAζ

)
+ ν

(
ξTξ − 1

)
with ν ≥ 0. (3.22)

Note that we use a relation of ‖ζ‖ ≤ 1 ⇔ ζTζ ≤ 1. From the optimal condition, we have

∇ζL
(
ζ, μ, ν

)
= ATPG − μATe + νζ = 0, eTAζ = 0, ‖ζ‖ ≤ 1, ν ≥ 0. (3.23)
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This indicates that at the optimal point (ζ, μ, ν), it holds that

min
ζ∈U

L
(
ζ, μ, ν

)
=
(
ATPG − μATe + νζ

)T
ζ − ν = −ν. (3.24)

Define an auxiliary variable σ and let σ ≡ νζ; it holds that

∇ζL
(
ζ, μ, ν

)
= ATPG − μATe + σ = 0. (3.25)

On the other hand, from ‖ζ‖ ≤ 1 we have

ν2‖ζ‖2 = ‖σ‖2 ≤ ν2 =⇒ ‖σ‖ ≤ ν. (3.26)

Note that above relationship involves ν ≥ 0.
Combining with (3.23)–(3.26) and the duality theorem of convex programming, we

obtain

min
ζ∈U

ζTPG = max
(μ,ν)

min
ζ∈U

L
(
ζ, μ, ν

)
= max

(μ,ν,σ)

{
−ν : ATPG − μATe + σ = 0, ‖σ‖ ≤ ν

}
. (3.27)

Therefore, the RO-based self-scheduling with ellipsoidal uncertainty is reformulated
as

max
PG

inf
ζ∈U

f(PG, λ) = max
(PG,μ,ν,σ)

[(
λ
)T

PG −
NG∑
i=1

(
ai + biPGi + ciP

2
Gi

)
− ν

]

s.t. PG ∈ Π,

ATPG − μATe + σ = 0, ‖σ‖ ≤ ν.

(3.28)

Remark 3.3. The reformulation (3.28) is a quadratic cone programming if the feasible regionΠ is
linear with respect to variable PG.

Two reformulations (3.19) and (3.28) are typical determinate optimization problems,
which can be solved by many effective algorithms (see [18]). Furthermore, except the
uncertainty with respect to price λ, other data can be chosen as uncertain variable, such as (i)
the cost coefficients of generators (ai, bi, ci), (ii) the forecasted power demand at buses PDi,
(iii) the bound of variables in constraints.

4. Numerical Examples for Self-Scheduling

In order to validate the RO-based self-scheduling approach, this section provides numerical
examples. Some comparing approach with paper [3] are also done, and the sensitivity with
respect to the uncertainty set is analyzed.
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Table 1: Given data and estimate LMPs.

Bus Pmin
G Pmax

G a b c λn

no. [MW] [MW] [$/h] [$/MWh] [$/MW2h] [$/MWh]
1 50 200 0 2 0.00375 3
2 20 80 0 1.75 0.00175 3
5 15 50 0 1 0.0625 3
8 10 35 0 3.25 0.00834 5
11 10 40 0 3 0.025 5
13 12 40 0 3 0.025 5

G G
1

3

2

4 6

5 7

28

8

13
12 16

17

14 18

15
19

20

23 24

22 21

25

26

29

27

10

9
11

30

G G

G

Figure 1: The IEEE 30-bus system.

4.1. Tested System

We choose the same example in [3] as the tested system, that is, IEEE-30 system with six
generator buses, which are bus-1,2,5,8,11,13, respectively, see Figure 1.

Consider the mathematical model (3.1)–(3.6). Here we omit the security (3.7). The
network, load, and generator data for this system are given in [17]. The coefficients in the
cost function and the bound of generation outputs are specified in Table 1, together with the
values of forecast (nominal) LMPs.

The given constants PDi and Tmax
ij in the DC network model constraints (3.5) and in

the intact network line flow constraints (3.6) are reported in Tables 2 and 3, respectively.

4.2. Uncertain Set and Algorithm

In the numerical test, we consider the case of uncertain box set, that is,

U =
{
ζ | eTζ = 0, ζ ≤ ζ ≤ ζ

}
. (4.1)
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Table 2: DC network model bounds.

Bus no. 1 2 3 4 5 6 7 8 9 10
PDi 0 21.7 2.4 7.6 94.2 0 22.8 30 0 5.8
Bus-no 11 12 13 14 15 16 17 18 19 20
PDi 0 11.2 0 6.2 8.2 3.5 9 3.2 19.5 2.2
Bus-no 21 22 23 24 25 26 27 28 29 30
PDi 17.5 0 3.2 8.7 0 3.5 0 0 2.4 10.6

Table 3: Intact network line flow.

fbus 1 1 2 3 2 2 4 5 6 6 6
tbus 2 3 4 4 5 6 6 7 7 8 9
Tmax
ij 130 130 65 130 130 65 90 70 130 32 65

fbus 6 9 9 4 12 12 12 12 14 16 15
tbus 10 11 10 12 13 14 15 16 15 17 18
Tmax
ij 32 65 65 65 65 32 32 32 16 16 16

fbus 18 19 10 10 10 10 21 15 22 23 24
tbus 19 20 20 17 21 22 22 23 24 24 25
Tmax
ij 16 32 32 32 32 32 32 16 16 16 16

fbus 25 25 28 27 27 29 8 6
tbus 26 27 27 29 30 30 28 28
Tmax
ij 16 16 65 16 16 16 32 32

The fluctuation bound of price is set as a ratio of the estimated price λ, that is, let

ζ = n%λ, ζ = −ζ. (4.2)

Here n is the ratio constant. For example, n = 5 means that the fluctuation bound of price is
5% of λ. In the following tests, we will calculate the RO-based self-schedular by different n
values.

The RO-based self-scheduling with uncertain price is the model (3.19), which is a
typical quadratic programming. Then we test the system by Quadprog file in MATLAB
toolbox.

4.3. Computational Results

(1) Optimal profit and output of generations

For case n = 5, we solve the counterpart of RO and obtain the output of generations and the
optimal profit as follows:

PG1 = 128.09MW, PG2 = 35.00MW, PG5 = 18.09MW,

PG8 = 35.00MW, PG11 = 30.00MW, PG13 = 37.22MW,

fmax(PG) = 241.4$/h.

(4.3)
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Table 4: Computing results of two methods.

CRP RO
β fmax n fmax

0.9 216.34 5 214.4
0.95 210.40 6 210.71
0.99 207.43 7 207.05

100

120

140

160

180

200

220

240
Profit of IEEE-30 with n

Pr
ofi

t(
$/

h)

0 5 10 15 20 25 30 35 40

Percent n

Figure 2: Relation of optimal profit and n.

With the different n values, we obtain the different profit. The results are reported in Figure 2.
The curve indicates that the good estimate value of price (i.e., the small fluctuation n) will
result in high profit. For the big n, the obtained profit is conservative.We also make some
comparison with paper [3] and find that when n is chosen the value between 5.0–7.0, the
computing values, are closed for two methods, see Table 4. Here CRP represents the results
in [3], and RO indicates the results in this paper.

(2) Optimal output of generators with different n

For the different choice n, we obtain the different output of generators. The optimal self-
scheduling of three cases is reported in Table 5. Comparing with the computing results in [3]
(see Table 3 in [3]), we find that the value of RO method is conservative. This is identical to
the theory analysis since the RO-based approach is set up in the worst-case.

(3) Sensitivity analysis of optimal output of generators

In order to test the effect of turbulence value n, we repeat to solve the RO model by using the
different n. The computing results for six generators are shown in Figures 3, 4, 5, 6, 7, and 8.

From the results, we can see that for each generator, they have different sensitivity.

(i) The output PG1 of the slack bus-1 is decreasing when the value n is increasing.
Especially, it has a big decrease for n ≥ 10.
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Table 5: Optimal output of generators.

PG at bus-bar [MW] n = 5 n = 10 n = 15

1 128.09 127.77 125.66

2 35.00 35.00 35.00

5 18.09 20.47 22.74

8 35.00 35.00 35.00

11 30.00 30.00 30.00

13 37.22 35.17 35.00
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Figure 3: Optimal output of bus-1 with different n.
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Figure 4: Optimal output of bus-2 with different n.
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Output of bus-5 with n
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Figure 5: Optimal output of bus-5 with different n.

Output of bus-8 with n
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Figure 6: Optimal output of bus-8 with different n.

(ii) The outputs PG2, PG8, PG11 at bus-2, bus-8, and bus-11 are not sensitive with respect
to the variety of n. This is favorable for the persistent output of the generator, and
reduces the times of on-off generators.

(iii) The output PG5 at bus-5 is increasing in a linear version with respect to n, which
means that the bus-5 is sensitive.

(iv) The output PG13 at bus-13 is decreasing sharply when n from 1 to 10. It almost takes
on a stability state when n ≥ 10.

The above analysis can provide some message to generation company for the self-
scheduling and then guides the bidding action of generation company.
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Output of bus-11 with n
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Figure 7: Optimal output of bus-11 with different n.
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Figure 8: Optimal output value of bus-13 with different n.

5. Conclusion

This paper presents a new methodology to study the generation of self-scheduling in power
market. Based on robust optimization (RO), a new self-schedulingmodel is established under
uncertain price. The counterpart of the model is a quadratic-type programming, which can
be solved by many optimization algorithms. IEEE-30 system is chosen as a tested system.
The computing results show that the newmethod is promising. Comparing our method with
other stochastic methods (e.g., CVaR approach), the computing result is conservative. From
viewpoint of practical applications, the new approach is very suitable for case where the
prediction of random variables is difficult. On the other hand, the robust consideration can
ensure the security requirements of the systems.
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We just consider the uncertain price with respect to the price-taker in this study. In fact,
the proposed method can be extended to other uncertain cases for self-scheduling, such as
the price-maker schedular problem and the uncertainty for cost parameters or load demand.
Moreover, other related optimization problems in electricitymarket can be adopted RO-based
approach. For example, the bidding analysis and the optimal power flow (OPF) with new
energy source. These are worthy problems of our further research.
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