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This paper presents analytical solutions for the problem of skewed thick plates under transverse
load on a Winkler foundation, which has not been reported in the literature. The thick plate
solution is obtained by using a framework of an oblique coordinate system. First, the governing
differential equation in that system is derived, and the solution is obtained using deflection
and rotation as derivatives of the potential function developed here. This method is applicable
for arbitrary loading conditions, boundary conditions, and materials. The solution technique is
applied to two illustrative application examples, and the results are compared with numerical
solutions. The two approaches yielded results in good agreement.

1. Introduction

Plates resting on an elastic foundation are important structural elements that are used in a
wide range of applications including foundation structures and concrete pavements of roads.
In the past few decades, there have been efforts to analytically investigate the behavior of
plates resting on an elastic foundation. Most of the work has been performed on rectangular
plates and circular plates. For example, Timoshenko and Woinowsky-Krieger [1] provided
an analytical solution for rectangular thin plates, and Celep [2] presented the behavior of
circular thin plates on an elastic foundation.

Due to its mathematical complexity, there are very few studies which have considered
skewed plates on an elastic foundation. Kennedy [3] was the first to develop an analytical
solution as polynomial series for skewed isotropic thin plates with four edges clamped
on an elastic foundation. Ng and Das [4] and Chell et al. [5] developed an analytical
solution as trigonometric series for skewed sandwich thin plates on an elastic foundation.
Though these studies are informative, they have limitations in terms of loading and
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Figure 1: A skewed plate in an oblique coordinate system.

boundary conditions. All of the solutions developed by the above researchers can handle only
uniformly distributed load, and a designated boundary condition. The solutions by Kennedy
[3] and Ng and Das [4] are limited to clamped plates, and that of Chell et al. [5] is limited to
simply supported plates.

In addition, there is another issue; these methods are applicable only to thin plates of
which the thickness-to-side ratio is less than 1/20 because Kirchhoff plate theory has been
employed to develop the governing equation in these studies. Though the Kirchhoff theory
is widely used in plate analysis, it suffers from under predicting deflections when thick
plates are analyzed because it neglects the effect of the transverse shear deformation [6].
To resolve this issue, the Mindlin theory [7, 8], which relaxes the perpendicular restriction for
transverse normals, was developed so that the effect of transverse shear deformation could be
considered. Several studies which have employed the Mindlin theory for analysis are worth
mentioning. For example, Kobayashi and Sonoda [9] developed an analytical solution for
rectangular thick plates with two opposite edges, simply supported. In their research, Levy-
type trigonometric series solutions were derived. Liew et al. [10] and Liu [11] solved the
rectangular thick plate problem by the differential quadrature method and offered a number
of numerical results under several boundary conditions. Though there are some studies
dealing with rectangular thick plates, there has been no research analyzing skewed thick
plates.

In the present manuscript, analytical solutions for skewed thick plates on an elastic
foundation with arbitrary boundary and loading conditions are newly developed based on
the Mindlin theory. The Winkler foundation, which is the simplest model to represent the
elastic foundation, is employed here. The present method is new in the following two aspects.
First of all, the present method has developed analytical solutions based on the Mindlin
theory for skewed thick plates, and such solutions have never previously been developed
in the literature. Second, the present method allows arbitrary loading conditions, boundary
conditions, and materials.
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Figure 3: Convergence study of the center deflection of a clamped isotropic 30-degree skewed thick plate
under uniform loading.

We first show the derivation of a governing equation in a framework of an oblique
coordinate system, and then it is solved using trigonometric series. The governing equation
in this system is derived and the solution is obtained using the deflection and rotation
as derivatives of a potential function. The solution technique is applied to an illustrative
application example with different skew angles and modulus of foundations, and the results
are compared with the commercial finite element package ANSYS [12]. The present approach
is in reasonable agreement with the FEM solution.

2. Governing Equation under the Oblique Coordinate System

When a plate’s boundary profile is a parallelogram, the oblique Cartesian coordinate system
can be advantageous. We first present the concept of the oblique coordinate system and then
show the governing differential equation of skewed thick plates on a Winkler foundation
based on the Mindlin theory. The authors have developed an analytical solution for skewed
thick plates without an elastic foundation in [13], and the formulas developed in this
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chapter have utilized the relationships developed in the research. Figure 1 shows the oblique
coordinate system spanned by theX andY axes, alongwith the rectangular coordinate system
x and y, with angleXOY denoted as skew angle α. ParallelogramABCD in Figure 1 represents
the skewed plate of interest, and the edge lengths CD and AD are 2a and 2b, respectively.

The relationship between the rectangular and oblique coordinate systems can be
written as follows [14, 15]:

(
X

Y

)
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(
1 −cotα
0 cscα

)(
x

y

)
,

⎛
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(2.1)

where φX and φY are, respectively, the rotations normal to the X and Y axes. The
corresponding relationships for stress, strain, moment, and shear force under the two
coordinate systems are also available in [14]. They are readily derivable according to the
principles of statics and continuummechanics. Their corresponding quantities in the oblique
system are derived in this research effort. The resulting flexural stiffness matrix under the
oblique coordinate system [Do] is related to its counterpart in the rectangular system [Dr] as
follows [16]:

[DO] =

⎛
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⎞
⎟⎟⎠[Dr]

⎛
⎜⎜⎝

1 0 0

cos2α sin2α sinα cosα

2 cosα 0 sinα

⎞
⎟⎟⎠

−1

. (2.2)

The flexural stiffness matrices relate the moments to the curvatures in the respective
coordinate systems. For example, [Dr] in the rectangular coordinate system for isotropic
material is [1]:

[Dr] =
Et3

12
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, (2.3)
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where E is Young’s modulus, ν is Poisson’s ratio, and t is the thickness of the plate. Note that
(2.2) is also applicable for other, more complex situations, such as orthotropic or anisotropic
materials. By using the flexural stiffness matrices, the moment-strain relationship of the
rectangular and oblique coordinate systems can be described as in the following (2.4) and
(2.5), respectively [6]:
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⎪⎪⎩
Mx

My
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In this derivation, the Mindlin theory is applied, which assumes that strains are linearly
distributed along the thickness direction in the plate’s cross-section.

Similarly, the extensional stiffness matrix in the oblique coordinate system [AO] is
related to that of the rectangular system [Ar] as follows [13]:

[AO] =

(
cosα − sinα

0 1

)
[Ar]

(
1 0

− tanα secα

)
. (2.6)

The extensional stiffness matrix relates the shear forces to the shear strains. For example, [Ar]
for isotropic material is

[Ar] =
Et

2(1 + ν)

(
1 0

0 1

)
. (2.7)
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By using the extensional stiffness matrices, the relationships between the shear force and
deflection, rotation angle of the rectangular and oblique coordinate system can be described
as in the following (2.8) and (2.9), respectively, [6]:
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where w is the transverse deformation perpendicular to the plane of the plate, and Ks is the
shear correction factor to account for nonuniform transverse shear distribution. Hereafter, the
components in [Do] and [Ao] are referred to using their respective elements D11 to D33 and
A44 to A55 as follows:

[DO] =

⎡
⎢⎢⎣
D11 D12 D13

D12 D22 D23

D13 D23 D33

⎤
⎥⎥⎦, [AO] =

[
A55 A45

A45 A44

]
, (2.10)

where the diagonal components of [DO] relate the moments to the curvatures in the same
directions. The off-diagonal terms relate the same moments to the curvatures in other
directions due to the Poisson’s effect and coordinate system obliquity. Similarly, the diagonal
components of [Ao] relate the shear forces to the shear strains in the same directions, and
off-diagonal terms to the shear strains in other directions due to obliquity.

The following (2.11) to (2.13) are equilibrium conditions of the skewed plates shown
in Figure 1.

Equilibrium of force in the z direction (perpendicular to the plane of the plate)

∂QX

∂X
+
∂QY

∂Y
= −Q + kw. (2.11)

Equilibrium of moments along the X-axis

∂MY

∂Y
+
∂MXY

∂X
= QY . (2.12)

Equilibrium of moments along the Y-axis

∂MX

∂X
+
∂MXY

∂Y
= QX, (2.13)
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Figure 4: Truncation effect for convergence for center deflection of clamped isotropic 30-degree skewed
thick plate under uniform loading.

where Q in (2.11) is the load normal to the upper surface of the plate, and k is the modulus
of the foundation. By substituting (2.5), (2.9), and (2.10) into (2.11) to (2.13), the following
(2.14) to (2.16) are obtained in the oblique system:
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(2.16)

To make the solution process simpler, a new function ψ is introduced below to represent
the condition of the skewed thick plate. We assume that w consists of terms up to the 4th
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derivative, and φX and φY up to the 3rd derivative of ψ, with respect to the spatial variables
X and Y. The following relations in (2.17) to (2.19) are obtained to satisfy (2.15) and (2.16).
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w has only even derivatives and φX and φY have only odd derivatives though it is assumed
that w, φX , and φY may have both even and odd derivatives. This is because the coefficients
of odd derivatives of w and the coefficients of even derivatives of φX and φY should be 0 to
satisfy (2.14) to (2.16). By substituting these relations into (2.14), the governing equation of
the Mindlin skewed thick plate is then formulated as a 6th-order partial differential equation
as follows:

L
(
ψ
)
= −Q, (2.20)
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where L is a linear differential operator in the oblique coordinate system
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3. Analytical Solution in Series Form

In this section, a general solution to the governing differential equation (2.11) is developed
as the sum of a fundamental (homogeneous) and a particular (nonhomogeneous) solution,
detailed separately, as follows.

3.1. Homogeneous Solution

The homogeneous solution ψh is the solution to (2.20) for Q = 0, obtained as a trigonometric
series in (3.1) below

ψh =
∞∑
h=1

(AhC1X1 + iBhC1X2 + ChC2X1 + iDhC2X2 + EhC3X1 + iFhC3X2 +GhS1X1 + iHhS1X2

+ IhS2X1 + iJhS2X2 +KhS3X1 + iLhS3X2 +MhC1Y1 + iNhC1Y2 +OhC2Y1 + iPhC2Y2

+QhC3Y1 + iRhC3Y2 + ShS1Y1 + iThS1Y2 +UhS2Y1 + iVhS2Y2 +WhS3Y1 + iXhS3Y2),
(3.1)

where i =
√−1 is the imaginary unit, and CeXf , CeYf , SeXf , and SeYf trigonometric functions

are as follows:

CeXf = cos
πh(X + λeYY )

2a
+ (−1)f+1 cos

πh
(
X + λeYY

)
2a

,
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SeXf = sin
πh(X + λeYY )

2a
+ (−1)f+1 sin

πh
(
X + λeYY

)
2a

,

CeYf = cos
πh(λeXX + Y )

2b
+ (−1)f+1 cos

πh
(
λeXX + Y

)
2b

,

SeYf = sin
πh(λeXX + Y )

2b
+ (−1)f+1 sin

πh
(
λeXX + Y

)
2b

,

(
e = 1, 2, 3, f = 1, 2

)
,

(3.2)

where the bar on λ denotes the conjugate of λ. λ1X , λ2X , λ3X , λ1Y , and λ2Y , and λ3Y are the
eigenvalues to be obtained by satisfying L(ψh) = 0. For example, λeX is derived by solving
the following equation:

L

(
cos

πh(λeXX + Y )
2a

+ sin
πh(λeXX + Y )

2a

)
= 0. (3.3)

The trigonometric function ψh in (3.1) has 24l unknowns Ah, Bh, Ch, . . ., and Xh(h =
1, 2, 3, . . . , l), with l being the number of the trigonometric terms needed for convergence.
In addition, as for the coefficients of real parts (Ah, Ch, . . ., and Wh), (l + 1) terms are
considered so that 12 more unknowns (Al+1, Cl+1, . . ., andWl+1) can be determined. Therefore,
the homogeneous solution ψh has 24l+12 unknowns, and these will be determined according
to the boundary conditions discussed below.



12 Mathematical Problems in Engineering

0.25

0.2

0.15

0.1

0.05

0

N
on

d
im

en
si
on

al
d
efl

ec
ti
on

−1 −0.5 0 0.5 1
X/2a

Analytical (K = 3)
Analytical (K = 5)
Analytical (K = 7)

ANSYS (K = 3)
ANSYS (K = 5)
ANSYS (K = 7)

Figure 7: Analytical and numerical solutions by ANSYS of the deflection of a clamped isotropic skewed
thick plate under uniformly distributed load. (Skew angle = 30◦).

1

0.9

0.8

0.7

0.6

w
/
w

of
16
00

el
em

en
ts
m
od

el

0 1000 2000 3000 4000 5000 6000 7000
Number of elements

K = 3
K = 5
K = 7

Figure 8: Convergence study of the center deflection of an orthotropic 30-degree skewed thick plate under
concentrated loading.

3.2. Particular Solution

For a particular solution in the series form, the transverse load Q in (2.20) is expanded to a
trigonometric series as follows:

Q(X, Y )

=
∞∑

j=1,2...

∞∑
k=1,2...

cosα
ab

∫b

−b

∫a
−a

Q
(
ξ,η

)
sin

jπ(ξ+a)
2a

sin
kπ

(
η+b

)
2b

dξ dη sin
jπ(X+a)

2a
sin

kπ(Y+b)
2b

.

(3.4)
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Figure 9: Truncation effect for convergence for maximum deflection of an orthotropic 30-degree skewed
thick plate under concentrated loading.

Equation (3.4) can express any transverse load, such as a uniformly distributed load, a
concentrated load, a line load, or a patch load. Therefore, the particular solution ψp for (2.20)
can be written in a series form as

ψp =
m∑

j=1,2,...

m∑
k=1,2,...

Kjk cos
jπ(X + a)

2a
cos

kπ(Y + b)
2b

+ Ljk sin
jπ(X + a)

2a
sin

kπ(Y + b)
2b

, (3.5)

where Kjk and Ljk are to be determined to satisfy (2.20) and (3.4), and m is the number of
the trigonometric terms needed for convergence. The general solution for ψ is derived as the
sum of the homogeneous solution and the particular solution as

ψ = ψh + ψp. (3.6)

Since no unknowns exist in the particular solution, the total number of unknowns in the
general solution is still 24l + 12, as in the homogeneous solution.

4. Determination of Unknown Constants for Series Solution

Using the Mindlin theory, the boundary conditions for various edges are given below for
determining the unknown constants in the homogeneous solution. The normal and tangential
directions to the edge are denoted here using the subscripts n and s, respectively. The
moments on the edges are noted using these subscripts in a way that is consistent with
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Figure 10: Analytical and numerical solutions by ANSYS of the deflection of an orthotropic skewed thick
plate under concentrated load. (Skew angle = 90◦).
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Figure 11: Analytical and numerical solutions by ANSYS of the deflection of an orthotropic skewed thick
plate under concentrated load. (Skew angle = 60◦).

the directions of the stresses thereby induced. Namely,Mn is for the moment causing normal
stresses andMs is the torsional moment inducing shear stresses.

(1) Clamped (C) : w = 0, φn = 0, φs = 0. (4.1)

(2) Soft simply supported (SS1) : w = 0, Mn = 0, φs = 0. (4.2)
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Figure 12: Analytical and numerical solutions by ANSYS of the deflection of an orthotropic skewed thick
plate under concentrated load. (Skew angle = 30◦).

(3) Hard simply supported (SS2) : w = 0, Mn = 0, Ms = 0. (4.3)

(4) Free (F) : Mn = 0, Ms = 0, Qn = 0. (4.4)

Note that the Kirchhoff theory treats SS1 and SS2 in (4.2) and (4.3) as having the same
boundary condition. The difference between them is explained graphically in Figure 2. The
boundary condition of SS1 restricts the tangential rotation by supporting two points in the
cross-section, thereby generating a nonzero torsional moment. In contrast, the boundary
condition of SS2 supports the plate only at one point in the cross-section, allowing a tangential
rotation and generating no twisting moment. The boundary conditions in (4.1) to (4.4) can
be unified as follows:

Γd(X, Y ) = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d = 1, 2, 3
(
edge CD in Figure 1

)
d = 4, 5, 6

(
edge AB in Figure 1

)
d = 7, 8, 9

(
edge BC in Figure 1

)
d = 10, 11, 12

(
edge AD in Figure 1

)
,

(4.5)

where Γ1(X, Y ) to Γ12(X, Y ) represent the left hand side of (4.1) to (4.4). Γ1(X, Y ) to Γ12(X, Y )
are expanded as a Fourier series as follows for the solution method pursued in this paper:

Γd(X, Y ) =
a0d
2

+
∞∑
c=1

(
acd cos

(
cπX

a

)
+ bcd sin

(
cπX

a

))
,

(d = 1, 2, . . . , 6)
(
for the edge of Y = b,−b),
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Table 1: Deflection at the center of clamped skewed thick plates under uniform loading. The numbers
in parentheses show the difference between these results and the analytical solution developed in this
research.

Skew angle K = 3 K = 5 K = 7

90◦
Present study 1.39462 0.92291 0.42018

ANSYS 1.39304 (0.11%) 0.92125 (0.18%) 0.41751 (0.64%)
Mindlin et al. [7] 1.393 (0.12%) 0.921 (0.20%) N/A

60◦ Present study 0.90921 0.67795 0.36392
ANSYS 0.90472 (0.49%) 0.67779 (0.02%) 0.36196 (0.54%)

30◦ Present study 0.17597 0.16528 0.13701
ANSYS 0.17541 (0.32%) 0.16417 (0.67%) 0.13537 (0.12%)

Table 2: Deflection at the center of orthotropic skewed thick plates under concentrated loading. The
numbers in parentheses show the difference between these results and the analytical solution developed
in this research.

Skew angle K = 3 K = 5 K = 7

90◦ Present study 1.71091 0.45867 0.05467
ANSYS 1.69742 (0.79%) 0.45247 (1.35%) 0.05393 (1.35%)

60◦ Present study 1.90910 0.78330 0.18668
ANSYS 1.8925 (0.87%) 0.77793 (0.69%) 0.18562 (0.57%)

30◦ Present study 2.16008 1.48826 0.72032
ANSYS 2.13448 (1.19%) 1.46995 (1.23%) 0.71173 (1.19%)

Γd(X, Y ) =
a0d
2

+
∞∑
c=1

(
acd cos

(
cπY

b

)
+ bcd sin

(
cπY

b

))
,

(d = 7, 8, . . . , 12)
(
for the edge of X = a,−a),

(4.6)

where coefficients a0d, acd, and bcd are Fourier coefficients for the boundary condition
Γd(X, Y ). Because of the need for truncation, l terms are kept for each of the 12 boundary
conditions so that a total of 12(2l+1) equations are established for the same number of Fourier
coefficients that have the 24l + 12 unknowns included to be solved for.

5. Application Examples

In this section, two application examples are presented using the developed analytical
solution for skewed thick plates. They are also compared with solutions published in
[10] and the FEM analysis result obtained using the commercial package ANSYS 11. In
the analysis by ANSYS, 2D 8-node quadrilateral plate elements (SHELL99) appropriate
for thick plate analysis are used for the skewed plates with various skewed angles. The
numbers of nodes and elements are 4961 and 1600, respectively. The convergence figure
of transverse displacements along with the number of nodes is provided for both of the
application examples. In addition, the effect on convergence of the number of terms l and m
in the fundamental and particular solutions is studied. In the following examples, the shear
correction factor Ks is taken to be 5/6 since this factor is commonly used in plate analyses.
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5.1. Isotropic Clamped Skewed Thick Plate under
Uniformly Distributed Load

Isotropic skewed thick plates are analyzed here. As an external force, uniformly distributed
load q0 is applied, and, as skewed angles, α = 30◦, 60◦, and 90◦ are employed. The geometrical
properties used in this research are a = b, and t = 0.2a. The clamped boundary condition is
used for all edges. The modulus of foundation k is expressed in a dimensionless form as

K = (16a4k/D)1/4. D is the bending stiffness and is expressed as D = Et3/12(1 − ν2) for the
isotropic plate. K = 3, 5, and 7 are employed here.

As a first step, convergence of the finite element model is checked. Figure 3 shows the
convergence figure of transverse displacements w at the center of the plates when α is 30◦.
It can be concluded that the finite element model converges adequately when the number of
elements = 1600. Similar results are confirmed for other α.

Then, the numbers of terms in the series solution l and m are determined. The
deflection w at the center of the plates for (l,m) = (5, 55) and (7, 35) differs by less than
0.1% from that of (l,m) = (7, 55) as in Figure 4 when α = 30◦ and K = 7. It can be concluded
that the solution is already convergent while truncated at (l,m) = (7, 55), and similar results
are observed for other α and K. Therefore, l = 7 and m = 55 are employed in this example.

Figures 5, 6, and 7 give a comparison between the present method and FEM analysis
using ANSYS for the deflection w for α = 30◦, 60◦, and 90◦ along line HF defined in Figure 1
and on the top of the plate. Note that the deflection is expressed in a dimensionless form
as 1000wD/16q0a4. For the plate of α = 90◦, results in the literature [10] are also shown
in the figure. In addition, Table 1 also shows the comparison results between the present
solution, FEM, and literature at the center of the plate. The results show that our analytical
and numerical solutions agree with each other very well.

5.2. Orthotropic Skewed Thick Plate under Concentrated Load

Orthotropic thick skewed plates are analyzed in this example, with the following material
and geometrical properties: Ey = 0.5Ex, Gxy = 0.3Ex, Gxz = 0.1Ex, Gyz = 0.08Ex, νxy = 0.2,
a = b, t = 0.3a, where Ex and Ey are Young’s modulus along the x and y directions, νxy is
the major Poisson’s ratio, and Gxy, Gxz, and Gyz are the shear modulus in the xy, xz, and
yz planes. These values determine [Dr], [Do], [Ar], and [Ao] in (2.2) and (2.6). The external
transverse force is a concentrated force of Q0 applied at (X, Y ) = (−a/2, b/2). Plates with
skew angle α = 30◦, 60◦, and 90◦ and the modulus of foundation of K = 3, 5, and 7 are
analyzed here, where K is expressed in a dimensionless form as K = (16a4k/D11)

1/4, and
D11 is the bending stiffness which is expressed as D11 = Ext

3/12(1 − νxyνyx). To show the
applicability of this method for the arbitrary boundary condition, the following complex
boundary condition is applied in this example: AB in Figure 1 is soft, simply supported
condition (SS1), BC is clamped (C), CD is free (F), and DA is a hard, simply supported
condition (SS2).

As with the previous example, the convergence of the finite element model should be
checked. Figure 8 shows the convergence study of transverse displacements w at the center
of the plates when α is 30◦. It can be concluded that the finite element model converges
adequately when the number of elements = 1600. Similar results are confirmed for other α.

In addition, the numbers of terms including l and m in (3.1) and (3.5) need to be
determined. Figure 9 shows the deflectionw at the point where a concentrated load is applied
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for skew angle α = 30◦ and K = 7, as one of the cases considered, for various l and m values.
It is seen that the deflection at (l,m) = (9, 115) is well converged. Similar results are observed
for other cases. Therefore (l,m) = (9, 115) is employed here and is also used as the reference
for comparison.

For this example, because no previous work in the literature has been found reporting
a similar experience, only FEM analysis results by ANSYS are employed for comparison
with our analytical solution results. Table 2 shows comparison results of the deflection at
the center of the plate (X, Y ) = (0, 0). The deflection is expressed in a dimensionless form as
100wD11/4Q0a

2.
Figures 10, 11, and 12 indicate the results for deflection along line HF in Figure 1.

The results indicate that the response behavior for this case is much more complex than the
examples above, due to nonsymmetric loading and boundary conditions. Due to the oblique
coordinate system, the load at (X, Y ) = (−a/2, b/2) has different relative relations to the
interested responses on Y = 0, along with different skew angles. For example, this causes the
peak responses of the deflection to move towards the center of the plate with the skew angle
decreasing from 90 to 30 degrees, and it makes the deflection of α = 30◦ larger than that of
α = 90◦.

6. Conclusions

The governing differential equation of skewed thick plates on an elastic foundation in an
oblique coordinate system is formulated for the first time in this paper. This work allows
derivation of an analytical solution for any boundary condition, loading condition, and
material, also for the first time reported. All response quantities including shear forces,
moments, stresses, strains, deflections, and rotation angles can be readily derived from
the proposed potential function ψ. The two illustrative examples show that the analytical
solutions are in good agreement with those reported in literature and numerical solutions
by FEM. Further validation of the analytical solution developed here will be provided by an
experimental test.

It is also worth noting that the approach to the governing differential equation and
its analytical solution developed in this study can be used for further studies including,
but not limited to, continuous plate analysis and dynamic analysis, for which only
numerical solutions exist. These studies are in progress now and may contribute additional
understanding of the behavior of a structure on an elastic foundation.
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