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In the application of fuzzy reasoning, researchers usually choose the membership function
optionally in some degree. Even though the membership functions may be different for the
same concept, they can generally get the same (or approximate) results. The robustness of the
membership function optionally chosen has brought many researchers’ attention. At present,
many researchers pay attention to the structural interpretation (definition) of a fuzzy concept,
and find that a hierarchical quotient space structure may be a better tool than a fuzzy set for
characterizing the essential of fuzzy concept in some degree. In this paper, first the uncertainty of a
hierarchical quotient space structure is defined, the information entropy sequence of a hierarchical
quotient space structure is proposed, the concept of isomorphism between two hierarchical
quotient space structures is defined, and the sufficient condition of isomorphism between two
hierarchical quotient space structures is discovered and proved also. Then, the relationships among
information entropy sequence, hierarchical quotient space structure, fuzzy equivalence relation,
and fuzzy similarity relation are analyzed. Finally, a fast method for constructing a hierarchical
quotient space structure is presented.

1. Introduction

Since the fuzzy set theory was proposed by Zadeh in 1965 [1], it has been successfully
applied to many application areas, such as fuzzy control, fuzzy reasoning, fuzzy clustering
analysis, and fuzzy decision. A fuzzy set interprets fuzzy concept with some membership
function, and, as a fundamental tool for revealing and analyzing uncertain problem, it
has been frequently used in many real-world applications. When people are faced with
the interpretation problem of the membership function generally in the applications,
though each person has his/her own option about the meaning of the same subjective
concept such as “tall” and “big” and he/she always has his/her membership function for
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the same fuzzy concept such as triangular, trapezoidal, or Gaussian, they can get the same (or
approximate) results. The robustness of the optionally chosen membership functions attracts
many researches’ attention [2–6]. Lin [2] interpreted memberships as probabilities. Liang
and Song [3] regarded the membership function value as an independent and identically
distributed random variable and proved that the mean of membership functions exists for
all the elements of the universe of discourse. Unfortunately, these results were obtained
based on a strong assumption; that is, the membership function value is assumed to be an
independent and identically distributed random variable. Lin [4] presented a topological
definition of the fuzzy set by using neighborhood systems, discussed the properties of fuzzy
set from its structure, and proposed the concept of granular fuzzy set. Lin’s works provide
a structural interpretation of member function. Afterward, B. Zhang and L. Zhang [5, 6]
developed a structural definition of membership function and found that, for a fuzzy set
(concept), it may probably be described by different types of membership functions, as
long as the structures of these membership functions are the same, they characterize the
fuzzy set (i.e., concept) with the same property. That is to say, although these membership
functions are different in appearance, they are the same in essence. The structural description
is more essential to a fuzzy concept than the membership function. This structure is called
hierarchical quotient space structure in quotient space theory developed by B. Zhang and
L. Zhang [6]. As a well-known fact, it is one of the basic characteristics in human problem
solving that a person has a kind of ability to conceptualize the world at different granularities
and translate from one abstraction level to others easily. Such is a powerful ability of human
being to deal with complex problem [5]. According to Zadeh’s viewpoints [7, 8], both rough
set theory [9] and quotient space theory can be used to describe a “crisp” granule world,
while fuzzy set can be used to describe a “fuzzy” granule world. However, “fuzzy” granule
and “crisp” granule are relative; that is, the “fuzzy” granule and “crisp” granule are two
kinds of different manifestations of a concept in different granularity levels, and they can be
transformed into each other with the changing of granularity [10]. Li et al. [11] presented
that uncertainty (fuzzy) and certainty (crisp) are not opposite absolutely, and they can be
transformed into each other in some degree. The fuzzy quotient space theory [10] combining
fuzzy set theory and quotient space theory was proposed by B. Zhang and L. Zhang. It was a
bridge from “fuzzy” granule world to “crisp” granule world and could better uncover the
characteristics of human beings dealing with uncertain problems and better interpret the
relationship between “fuzziness” and “crispness.” Many important conclusions about the
fuzzy quotient space theory could be referred to [10], and the fuzzy quotient space theory for
the cut relation of fuzzy equivalence relation with any threshold was discussed by Zhang
et al. [12]. In fuzzy quotient space theory, a fuzzy equivalence relation and a hierarchical
quotient space structure are one to one, and the hierarchical quotient space structure is a
structural description of fuzzy equivalence relation.

The isomorphic fuzzy equivalence relations have the same hierarchical quotient space
structure [10]; that is, they have the same classification ability to the objects in domain X.
Therefore, the different fuzzy similarity relations may induce the same fuzzy equivalent
relation, and the different fuzzy equivalent relations may have the same hierarchical quotient
space structure and classification result as long as they are isomorphic. Recently, as a
kind of structural description of a fuzzy concept, the hierarchical quotient space structure
attracts many researchers’ attention. The further study about hierarchical quotient space
structure of fuzzy equivalence relation with ε-similarity could be referred to [13]. Tsekouras
et al. [14] proposed a hierarchical fuzzy clustering approach. Pedrycz and Reformat [15]
presented a hierarchical fuzzy C-means (FCM) method in a stepwise discovery of structure
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in data. Tang et al. [16] discussed the sufficient condition of isomorphism between fuzzy
similarity relations and uncovered the relationships between fuzzy similarity relation and
fuzzy equivalence relation. Although each person has his/her own membership function
for the same concept, and he/she may get the different fuzzy similarity relations, he/she
may finally obtain the same (or isomorphic) fuzzy equivalent relation which can produce the
same hierarchical quotient space structure and classification of objects in the domainX. What
is the reason that the different fuzzy similarity relations can produce the same hierarchical
quotient space structure and the same classification? How can we measure the classification
quality of a hierarchical quotient space structure? How much information (knowledge) does
a hierarchical quotient space structure contain? How can we measure the uncertainty of a
hierarchical quotient space structure? These fundamental issues in hierarchical quotient space
theory remain open. In this paper, the fuzzy similarity relation, the fuzzy equivalence relation,
the hierarchical quotient space structure, and the entropy sequence of a hierarchical quotient
space structure are studied. A fast-constructing hierarchical quotient space structure method
is presented. These works uncover the nature of the hierarchical quotient space structure
further.

The paper is organized as follows. Some relevant preliminary concepts are reviewed
briefly in Section 2. In Section 3, the information entropy sequence of a hierarchical quotient
space structure is discussed. In Section 4, a fast-constructing hierarchical quotient space
structure method is presented. The paper is concluded in Section 5.

2. Preliminary Concepts

For convenience, some preliminary concepts are reviewed or defined at first. Let X be a
Cantor set.

Definition 2.1 (see [6]). Let ˜R be a fuzzy relation on X. If it satisfies,

(1) for all x ∈ X, ˜R(x, x) = 1,

(2) for all x, y ∈ X, ˜R(x, y) = ˜R(y, x),

then ˜R is called a fuzzy similarity relation on X.

Definition 2.2 (see [6]). Let ˜R be a fuzzy relation on X. If it satisfies,

(1) for all x ∈ X, ˜R(x, x) = 1,

(2) for all x, y ∈ X, ˜R(x, y) = ˜R(y, x),

(3) for all x, y, z ∈ X, ˜R(x, z) ≥ supy∈X min( ˜R(x, y), ˜R(y, z)),

the ˜R is called a fuzzy equivalence relation on X and is denoted by R.

Proposition 2.3 (see [17]). Let ˜R be a fuzzy similarity relation on X, and let ̂R denote the transitive
closure of ˜R. Then, for all m ≥ n, ̂R = ˜Rm.

According to Proposition 2.3, a fuzzy equivalence relation can be induced from a fuzzy
similarity relation by ˜R → ˜R2 → ( ˜R2)2 → · · · → ˜R2k = ̂R. Where k ≥ log2n.

Proposition 2.4 (see [17]). LetR be a fuzzy equivalence relation onX, andRλ = {(x, y) | R(x, y) ≥
λ} (0 ≤ λ ≤ 1), then Rλ is a crisp equivalence relation on X, Rλ is called cut-relation of R.
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Proposition 2.4 shows that Rλ is a crisp equivalence relation on X, and its
corresponding quotient space is denoted by X(λ). Let R be a fuzzy equivalence relation on
X, S = {R(x, y) | x, y ∈ X}, S is called the value domain of R.

Definition 2.5 (see [6]). Let R be a fuzzy equivalence relation on X, and S is the value domain
of X. The set πX(R) = {X(λ) | λ ∈ S} is called the hierarchical quotient space structure of R.

Example 2.6. Let X = {x1, x2, x3, x4, x5}, and R1 is a fuzzy equivalence relation on X, the
corresponding relation matrix MR1 is defined as follows,

MR1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0.4 0.8 0.5 0.5

0.4 1 0.4 0.4 0.4

0.8 0.4 1 0.5 0.5

0.5 0.4 0.5 1 0.6

0.5 0.4 0.5 0.6 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.1)

Its corresponding quotient space sequence is defined as follows,

X(λ1) = {{x1, x2, x3, x4, x5}}, where 0 ≤ λ1 ≤ 0.4;

X(λ2) = {{x1, x3, x4, x5}, {x2}}, where 0.4 < λ2 ≤ 0.5;

X(λ3) = {{x1, x3}, {x2}, {x4, x5}}, where 0.5 < λ3 ≤ 0.6;

X(λ4) = {{x1, x3}, {x2}, {x4}, {x5}}, where 0.6 < λ4 ≤ 0.8;

X(λ5) = {{x1}, {x2}, {x3}, {x4}, {x5}}, where 0.8 < λ5 ≤ 1.

(2.2)

So, a hierarchical quotient space structure induced by the fuzzy equivalence relation R1 is
πX(R1) = {X(λ1), X(λ2), X(λ3), X(λ4), X(λ5)}, which is shown in Figure 1.

In addition, a pyramid model can be established based on the number of block in each
layer of the hierarchical quotient space structure, which is shown in Figure 2.

However, the different fuzzy equivalence relations may become into the same
hierarchical quotient space structure. In Example 2.6, if the relation matrix MR2 of the fuzzy
equivalence relation R2 is defined as follows:

MR2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0.2 0.9 0.6 0.6

0.2 1 0.2 0.2 0.2

0.9 0.2 1 0.6 0.6

0.6 0.2 0.6 1 0.7

0.6 0.2 0.6 0.7 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.3)

thenR2 can become into the same quotient space sequence and the same hierarchical quotient
space structure as R1; that is, πX(R1) = πX(R2).
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Figure 1: The hierarchical quotient space structure πX(R1) of R1.
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Figure 2: The pyramid model of a hierarchical quotient space structure.

Definition 2.7 (see [16]). Let R1 and R2 be two fuzzy equivalence relations on X; if they have
the same hierarchical quotient space structure, that is, πX(R1) = πX(R2), then R1 and R2 are
called isomorphic, denoted by R1

∼= R2.

Proposition 2.8 (see [13]). Let R1 and R2 be two fuzzy equivalence relations on X, for any
x, y, u, v ∈ X; if R1(x, y) < R1(u, v) ⇔ R2(x, y) < R2(u, v) and R1(x, y) = R1(u, v) ⇔ R2(x, y) =
R2(u, v), then R1

∼= R2.

Definition 2.9 (see [18]). Let R1 and R2 be two fuzzy equivalence relations on X; for any
x, y, u, v ∈ X, if R1(x, y) ≤ R1(u, v) ⇒ R2(x, y) ≤ R2(u, v) and R2(x, y) < R2(u, v) ⇒
R1(x, y) < R1(u, v), then R1 and R2 are called homomorphism, denoted by R1 � R2.

Proposition 2.10 (see [18]). Let R1 and R2 be two fuzzy equivalence relations on X; if R1 � R2,
then πX(R2) ⊆ πX(R1).
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A fuzzy equivalence relation R can be induced by the fuzzy similarity relation ˜R by
computing the transitive closure of ˜R, then R is called a fuzzy equivalence relation derived
from ˜R.

Definition 2.11. Let ˜R1 and ˜R2 be two fuzzy similarity relations on X, and R1 and R2 are fuzzy
equivalence relations derived from ˜R1 and ˜R2, respectively. If R1 = R2, then ˜R1 and ˜R2 are
called isomorphism, denoted by ˜R1 ∼ ˜R2. If R1

∼= R2, then ˜R1 and ˜R2 are called similarity,
denoted by ˜R1 ∼ ˜R2.

From the viewpoints of both clustering and classification, the isomorphic fuzzy
similarity relations can induce the same hierarchical quotient space structure, and have the
same ability of clustering (or classification) for objects in X. However, the different hier-
archical quotient space structures maybe have the same clustering (or classification) ability.
There is few correlative research works. For discussing the uncertainty of a hierarchical
quotient space structure, in this paper, the information entropy sequence of hierarchical
quotient space structure is defined, and the relationship between hierarchical quotient space
structure and information entropy sequence is analyzed in detail.

3. The Information Entropy Sequence of Hierarchical
Quotient Space Structure

A hierarchical quotient space structure can uncover the essential characteristics of a fuzzy
concept better than a fuzzy set. However, how to measure uncertainty of the hierarchical
quotient space structure is still an open question. Information entropy is a very useful tool for
measuring the uncertainty of vague information, and it has been studied based on the rough
set and fuzzy set in the literature. For instance, Liang et al. [19, 20] analyzed the uncertainty
of the rough set from the perspective of information entropy, conditional entropy, mutual
information, and knowledge granule and presented a new rough entropy. Zhang et al. [21]
presented a cognition model based on granular computing and analyzed the uncertainty of
human cognition with different granularity levels. Fan [22] Miao et al. [23, 24] discussed
the relationships among the knowledge granule, knowledge roughness, and information
entropy from the viewpoint of both granular computing and information representation.
Wang et al. [25] studied fuzzy entropy of rough sets in different granularity levels. However,
in the previous studies, the questions of how to measure the information entropy of a
hierarchical quotient space structure and what changing regularities the information entropy
of a hierarchical quotient space structure have with different granularity are not discussed.
In this section, the information entropy sequence of a hierarchical quotient space structure is
proposed and discussed in detail.

Definition 3.1 (see [19]). Let X = {x1, x2, . . . , xn} be a nonempty finite set, P ′ = {P ′
1, P

′
2, . . . , P

′
l}

and P ′′ = {P ′′
1 , P

′′
2 , . . . , P

′′
m} are two partition spaces on X. If, for all P ′

i ∈ P ′, (∃P ′′
j ∈P ′′(P ′

i ⊆ P ′′
j )),

then P ′ is finer than P ′′, denoted by P ′ ≺P ′′.

Definition 3.2 (see [19]). Let X = {x1, x2, . . . , xn} be a nonempty finite set, P ′ = {P ′
1, P

′
2, . . . , P

′
l
}

and P ′′ = {P ′
1, P

′′
2 , . . . , P

′′
m} are two partition spaces on X. If P ′ ≺P ′′ and there exist P ′

i ∈
P ′(∃Pj

′′∈P ′′(P ′
i ⊂ P ′′

j )), then P ′ is strictly finer than P ′′, denoted by P ′ ≺ P ′′.

Each layer of the hierarchical quotient space structure πX(R) is a partition on X that
is, it is denoted by X(λ). If 0 ≤ λ1 < λ2 < · · · < λt ≤ 1, then X(λt)≺X(λt−1)≺ · · · ≺X(λ1).
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Definition 3.3. Let R be a fuzzy equivalence relation on X, let πX(R) = {X(λ1), X(λ2), . . . ,
X(λt)} be its corresponding hierarchical quotient space structure, and X(λt) ≺ X(λt−1) ≺ · · · ≺
X(λ1). Let Li = |X(λi)| (i = 1, 2, . . . , t), the sequence L(πX(R)) = {L1, L2, . . . , Lt} is called the
partition sequence of πX(R) (where | · | denotes the cardinality of a set).

Obviously, any one partition sequence of the hierarchical quotient space structure
πX(R) is a positive integer sequence, and L1 < L2 < · · · < Lt. The information entropy
[19, 20, 22–25] of a partition space has been studied by many researchers. Here, we discuss
the information entropy sequence of a hierarchical quotient space structure based on classical
Shannon information entropy.

Definition 3.4. Let R be a fuzzy equivalence relation on X, let πX(R) = {X(λ1), X(λ2), . . . ,
X(λt)} be its corresponding hierarchical quotient space structure, and let L(πX(R)) =
{L1, L2, . . . , Lt} be a partition sequence of the hierarchical quotient space structure πX(R).
Assume that X(λi) = {Xi1, Xi2, . . . , XiLi} (it is a partition on X). The information entropy
HX(λi) of X(λi) is defined as follows:

HX(λi) = −
Li
∑

k=1

|Xik|
|X| ln

( |Xik|
|X|
)

. (3.1)

Theorem 3.5. Let R be a fuzzy equivalence relation on X, and let πX(R) = {X(λ1), X(λ2), . . . ,
X(λn)} be its hierarchical quotient space structure, then the entropy sequence H(πX(R)) =
{HX(λ1),HX(λ2), . . . ,HX(λt)} under Definition 3.4 is a strictly monotonic increasing
sequence.

Proof. It follows from the definition of the hierarchical quotient space structure that X(λt) ≺
X(λt−1) ≺ · · · ≺ X(λ1); that is, X(λi−1) is a quotient space of X(λi). Let X(λi) = {Xi1, Xi2, . . . ,
XiLi} and X(λi−1) = {Xi−1,1, Xi−1,2, . . . , Xi−1,Li−1}. Each subblock Xi−1,j (1 ≤ j ≤ Li−1) in X(λi−1)
is a combination of one or more subblocks in X(λi). For simplicity, and without any loss of
generality, we assume that only a subblockXi−1,j inX(λi−1) is a combination of two subblocks
in X(λi); that is, Xi−1,j = Xi,p ∪Xi,q, other subblocks in X(λi−1) are equal to the corresponding
rest subblocks in X(λi), respectively. Thus

HX(λi−1) = −
Li−1
∑

k=1

|Xi−1,k|
|X| ln

( |Xi−1,k|
|X|

)

= −
j−1
∑

k=1

|Xi−1,k|
|X| ln

( |Xi−1,k|
|X|

)

−
Li−1
∑

k=j+1

|Xi−1,k|
|X| ln

( |Xi−1,k|
|X|

)

−
∣

∣Xi−1,j
∣

∣

|X| ln

(∣

∣Xi−1,j
∣

∣

|X|

)

= −
j−1
∑

k=1

|Xi,k|
|X| ln

( |Xi,k|
|X|

)

−
Li
∑

k=j+1

|Xi,k|
|X| ln

( |Xi,k|
|X|

)

−
∣

∣Xi,p

∣

∣ +
∣

∣Xi,q

∣

∣

|X| ln

(∣

∣Xi,p

∣

∣ +
∣

∣Xi,q

∣

∣

|X|

)

.

(3.2)
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Because

∣

∣Xi,p

∣

∣ +
∣

∣Xi,q

∣

∣

|X| ln

(∣

∣Xi,p

∣

∣ +
∣

∣Xi,q

∣

∣

|X|

)

=

∣

∣Xi,p

∣

∣

|X| ln

(∣

∣Xi,p

∣

∣ +
∣

∣Xi,q

∣

∣

|X|

)

+

∣

∣Xi,q

∣

∣

|X| ln

(∣

∣Xi,p

∣

∣ +
∣

∣Xi,q

∣

∣

|X|

)

>

∣

∣Xi,p

∣

∣

|X| ln

(∣

∣Xi,p

∣

∣

|X|

)

+

∣

∣Xi,q

∣

∣

|X| ln

(∣

∣Xi,q

∣

∣

|X|

)

,

(3.3)

so

HX(λi−1) < −
j−1
∑

k=1

|Xi,k|
|X| ln

( |Xi,k|
|X|

)

−
Li
∑

k=j+1

|Xi,k|
|X| ln

( |Xi,k|
|X|

)

−
∣

∣Xi,p

∣

∣

|X| ln

(∣

∣Xi,p

∣

∣

|X|

)

−
∣

∣Xi,q

∣

∣

|X| ln

(∣

∣Xi,q

∣

∣

|X|

)

= HX(λi) (2 ≤ i ≤ n),

(3.4)

the sequence {HX(λ1),HX(λ2), . . . ,HX(λt)} is a strictly monotonic increasing sequence; that
is, HX(λ1) < HX(λ2) < · · · < HX(λt).

Theorem 3.5 shows that the information entropy sequence of a hierarchical quotient
space structure is a monotonic increasing sequence with the partition (or quotient space)
becoming finer; that is, the finer the partition in a hierarchical quotient space structure, the
bigger its information entropy.

Definition 3.6. Let X = {x1, x2, . . . , xn} be a nonempty finite set, and let Pk(X) =
{X1, X2, . . . , Xk} be a partition space on X, Pk(X) is called k-order partition on X (where
|Pk(X)| = k).

Definition 3.7. Assume that Pk(X) = {X1, X2, . . . , Xk} is a k-order partition onX, and let |X1| =
a′
1, |X2| = a′

2, . . ., and |Xk| = a′
k
. Arranging the sequence {a′

1, a
′
2, . . . , a

′
k
} in increasing order, we

obtain a new increasing sequence {a1, a2, . . . , ak} denoted by I(k). I(k) is called a subblock
sequence of the partition Pk(X).

Obviously, two different k-order partitions on X may have the same subblock
sequence I(k).

Definition 3.8. LetX = {x1, x2, . . . , xn} be a nonempty finite set, let Pk(X) = {X1, X2, . . . , Xk} be
a partition space on X, and let I1(k) = {a1, a2, . . . , ak} be a subblock sequence of the partition
Pk(X). I2(k) = {a1, a2, . . . , ap + 1, . . . , aq − 1, . . . , ak} is called a σ-displacement of I1(k), where
p < q, ap + 1 < aq − 1, and I2(k) keeps its increasing property.

A σ-displacement is equal to minus one from some “bigger” element and add one to
some “smaller” element, and the sequence still keeps monotonically increasing in a subblock
sequence.

Example 3.9. Let I1(4) = {1, 2, 4, 5} be a subblock sequence, then I2(4) = {1, 3, 4, 4} is derived
from I1(4) through the σ-displacement once.
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Theorem 3.10. If a subblock sequence I2(k) is derived from I1(k) through the σ-displacement once,
thenH(I1(k)) < H(I2(k)).

Proof. Let I1(k) = {a1, a2, . . . , ak}, I2(k) = {a1, a2, . . . , ai+1, . . . , aj −1, . . . , ak}, a1+a2+ · · ·+ak =
n, then

H(I2(k)) = −
k
∑

i=1

al

n
ln

al

n
+
ap

n
ln

ap

n
+
aq

n
ln

aq

n
− ap + 1

n
ln

ap + 1
n

− aq − 1
n

ln
aq − 1
n

. (3.5)

Let f(x) = −(x/n) ln(x/n) − ((m − x)/n) ln((m − x)/n) (where m = ap + aq), then
f ′(x) = (1/n) ln((m − x)/x).

Let f ′(x) = 0, we have a solution; that is, x = m/2. In addition, because f ′′(x) =
(−m/n(m − x)x) < 0, when 0 ≤ x ≤ (m/2), f(x) is monotonic increasing function.

Let x = ap and y = ap + 1, where ap + 1 < aq − 1; that is, x < y ≤ (m/2) = (ap + aq)/2.
Due to the monotonicity of f(x), f(y) − f(x) > 0; that is,

ap

n
ln

ap

n
+
aq

n
ln

aq

n
− ap + 1

n
ln

ap + 1
n

− aq − 1
n

ln
aq − 1
n

> 0. (3.6)

Therefore,

H(I2(k)) = −
k
∑

i=1

al

n
ln

al

n
+
(

ap

n
ln

ap

n
+
aq

n
ln

aq

n

)

−
(

ap + 1
n

ln
ap + 1
n

+
aq − 1
n

ln
aq − 1
n

)

> −
(

ap + 1
n

ln
ap + 1
n

+
aq − 1
n

ln
aq − 1
n

)

> −
k
∑

i=1

al

n
ln

al

n
= H(I1(k)).

(3.7)

Theorem 3.10 shows that through the σ-displacement once, the information entropy
of a subblock sequence will increase. In the case of nonconfusion, the information entropy
of a partition and the information entropy of its corresponding subblock sequence can be
deemed as the same value. If two different partitions P ′

k
(X) and P ′′

k
(X) on X have the same

subblock sequence I(k), then they should have the same information entropy sequence. So,
from viewpoint of the entropy, they contain the same information. However, if two subblock
sequences I1(k)/= I2(k) on X, then H(I1(k))/=H(I2(k)), which is discussed in Theorem 3.11
as follows.

Theorem 3.11. Let X = {x1, x2, . . . , xn} be a nonempty finite set. For any two k-order partitions
P ′
k
(X) and P ′′

k
(X) based on X, their corresponding subblock sequences are I1(k) and I2(k),

respectively. If I1(k)/= I2(k), then H(I1(k))/=H(I2(k)), where H(I1(k)) and H(I2(k)) denote the
information entropy of partitions P ′

k(X) and P ′′
k (X) based on Definition 3.4, respectively (2 ≤ k ≤ n).

Proof. Firstly we prove that the conclusion in Theorem 3.11 holds in the case of k = 2.
Assume that P(X) = {X1, X2}, let |X1| = x and |X2| = n − x, then a 2-order subblock
sequence is obtained; that is, I(2) = {x, n − x}. Supposing that x < (n/2) (if n is even) or
x < ((n − 1)/2) (if n is odd). We haveH(P(X)) = −(x/n) ln(x/n) − ((n − x)/n) ln((n − x)/n).
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Let f(x) = −(x/n) ln(x/n) − ((n − x)/n) ln((n − x)/n), then f ′(x) = −(1/n) ln(x/n) −
(1/n) + (1/n) ln((n − x)/n) + (1/n) = (1/n) ln((n − x)/x). Letting f ′(x) = 0, we can obtain
the solution x = n/2. Since f ′′(x) = (−1/(n − x)x) < 0, when x = n/2, f(x) achieves
its maximum value. Thus, when x < n/2 (n is even) or x < (n − 1)/2 (n is odd), f(x)
is a monotonic increasing function; that is, information entropy H(P(X)) is a monotonic
increasing function. If x > n/2 (n is even) or x > (n + 1)/2 (n is odd), the 2-order subblock
sequence I(2) = {x, n − x} becomes I(2) = {n − x, x}; it is the same as that when x < n/2 (n is
even) or x < (n−1)/2 (n is odd). Therefore, when k = 2 and I1(k)/= I2(k),H(I1(k))/=H(I2(k))
holds.

When k ≥ 3, the idea to prove them is the same as k = 2. For the limitation of paper
length, we only discuss the case of k = 3 (similar to other situations) in this paper. Assume
that there are two different 3-order partitions P ′

3(X) and P ′′
3 (X) and their corresponding

subblock sequences I1(3) and I2(3) are different. Let I1(3) = {a1, a2, a3}, I2(3) = {b1, b2, b3},
and I1(3)/= I2(3). If only one element in I1(3) is equal to the element of I2(3) (e.g., let a1 = b1,
then a2 /= b2 and a3 /= b3), due to the former conclusion in case of k = 2,H(P ′

3(X))/=H(P ′′
3 (X))

is held. If all elements in I1(3) are not equal to that in I2(3), then we get the conclusion from
the following three cases (other cases can be transformed into one of the after-mentioned
three conditions):

(1) a1 > b1, a2 > b2, and a3 < b3. I2(3) can be replaced by I1(3) through many times of
σ-displacements. By Theorem 3.10,H(I1(3))/=H(I2(3)).

(2) a1 > b1, a2 < b2, and a3 < b3. I2(3) can be also replaced by I1(3) through many times
of σ-displacements. By Theorem 3.10, H(I1(3))/=H(I2(3)).

(3) a1 > b1, a2 < b2, and a3 > b3. I2(3) cannot be replaced by I1(3) directly through the σ-
displacement once, but I1(3) can be replaced by I3(3) = {a1, a2+(a3−b3), b3} through
the σ-displacement once. By Theorem 3.10, H(I1(3)) < H(I3(3)) < H(I2(3)) holds.
SoH(I1(3))/=H(I2(3)) holds.

Given a hierarchical quotient space structure πX(R), we can easily obtain its
corresponding information entropy sequence {H(I(n1)),H(I(n2)), . . . ,H(I(ns)), . . .} (where
{n1, n2, . . . , ns, . . .} is the subsequence of natural number sequence {1, 2, 3, . . . , n, . . .}).
Theorem 3.11 shows that the different subblock sequences can have different information
entropy sequences. According to Theorem 3.5 and Theorem 3.11, the different hierarchical
quotient space structures which have the same subblock sequence should have the same
information entropy sequence {H(I(n1)),H(I(n2)), . . . ,H(I(ns)), . . .}, the same information,
and the same ability for classification (clustering). Both the information entropy sequence
and the subblock sequence of a hierarchical quotient space structure are one to one.
The information entropy sequence {H(I(n1)),H(I(n2)), . . . ,H(I(ns)), . . .} uncovers the
uncertainty of a hierarchical quotient space structure. Therefore, we can analyze the
information (uncertainty) of a hierarchical quotient space structure with its information
entropy sequence.

Definition 3.12. Let πX(R1) and πX(R2) be two hierarchical quotient space structures derived
from the fuzzy equivalence relations R1 and R2 on X, and their partition sequences
are L(πX(R1)) = {L11, L12, . . . , L1r} and L(πX(R2)) = {L21, L22, . . . , L2s}, respectively.
Let {I(L11), I(L12), . . . , I(L1r)} and {I(L21), I(L22), . . . , I(L2s)} denote their corresponding
subblock sequences of each layer in πX(R1) and πX(R2), respectively. If L(πX(R1)) =
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L(πX(R2)) (obviously, where r = s and I(L1i) = I(L2i), i = 1, 2, . . . , r), then πX(R1) and πX(R2)
are called isomorphism, denoted by πX(R1) � πX(R2).

Example 3.13. Assume that X = {1, 2, 3, 4, 5, 6}, and there are two hierarchical quotient space
structures πX(R1) and πX(R2) on X as follows:

πX(R1) = {{{1, 2, 3}, {4, 5, 6}}; {{1, 2}, {3}, {4, 5, 6}}; {{1}, {2}, {3}, {4, 5, 6}}},

πX(R2) = {{{1, 5, 6}, {2, 3, 4}}; {{1, 5}, {6}, {2, 3, 4}}; {{1}, {5}, {6}, {2, 3, 4}}},
(3.8)

namely,

{{1, 2, 3}, {4, 5, 6}}
↓

{{1, 2}, {3}, {4, 5, 6}}
↓

{{1}, {2}, {3}, {4, 5, 6}},
πX(R1)

{{1, 5, 6}, {2, 3, 4}}
↓

{{1, 5}, {6}, {2, 3, 4}}
↓

{{1}, {5}, {6}, {2, 3, 4}}.
πX(R2)

(3.9)

Obviously, L(πX(R1)) = L(πX(R2)) = {2, 3, 4}, and I(L11) = I(L21) = {3, 3}, I(L12) = I(L22) =
{1, 2, 3}, and I(L13) = I(L23) = {1, 1, 1, 3}. Therefore, πX(R1) � πX(R2).

From the viewpoint of classification (clustering) analysis, if two hierarchical quotient
space structures are isomorphic, they have the same classification abilities of the objects in
the set of X. From the viewpoint of information entropy, if two hierarchical quotient space
structures are isomorphic, they have the same information entropies. Based on Theorem 3.11,
Theorem 3.14 is given as follows.

Theorem 3.14. Let πX(R1) and πX(R2) be two hierarchical quotient space structures derived
from fuzzy equivalence relations R1 and R2 on X, respectively. If L(πX(R1)) = L(πX(R2)) and
H(πX(R1)) = H(πX(R2)), then πX(R1) � πX(R2).

Proof. Since L(πX(R1)) = L(πX(R2)), πX(R1) has the same number of layer as πX(R2), each
layers of both πX(R1) and πX(R2) has the same number of the subblock. Let L(πX(R1)) =
L(πX(R2)) = {k1, k2, . . . , kr}. For any ki (1 ≤ i ≤ r), according to Theorem 3.11, if
I1(ki)/= I2(ki), H(I1(ki))/=H(I2(ki)) (1 ≤ i ≤ r). Therefore, if H(πX(R1)) = H(πX(R2)),
πX(R1) � πX(R2) is held.

In Theorem 3.14, the condition L(πX(R1)) = L(πX(R2)) is very important. If this
condition is not held, then Theorem 3.14 is not held. Theorem 3.14 reveals the importance
of information entropy sequence. The uncertainty of a hierarchical quotient space structure
may be characterized by the information entropy sequence, the partition sequence, and the
subblock sequence. The different fuzzy similarity relations may induce the isomorphic fuzzy
equivalence relations on X, and the isomorphic fuzzy equivalence relations may produce the
same or isomorphic hierarchical quotient space structures which have the same uncertainty
(or information entropy sequence).
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Table 1: The relationships between fuzzy relations and hierarchical quotient space structure.

˜R1 and ˜R2 R1 and R2 πX(R1) and πX(R2) H(πX(R1)) and H(πX(R2))
Isogeny but not Similarity ( .=) Similarity (∼) Isomorphism (�)

Same (=)Similarity but not Isomorphism (∼) Isomorphism (∼=)
Same (=)Isomorphism but not Same (∼) Same (=)

Same (=)

Definition 3.15. Let ˜R1 and ˜R2 be two fuzzy similarity relations onX, and let R1 and R2 be two
fuzzy equivalence relations derived from ˜R1 and ˜R2, respectively. If πX(R1) � πX(R2), then
˜R1 and ˜R2 are called isogenous fuzzy similarity relations, denoted by ˜R1

.= ˜R2. If R1 and R2

are not isomorphic, but πX(R1) � πX(R2), then R1 and R2 are called similar fuzzy equivalence
relation, denoted by R1 ∼ R2.

According to Definitions 2.7, 2.11, and 3.15, the relationships among the information
entropy sequence, the hierarchical quotient space structure, the fuzzy equivalence relation
and the fuzzy similarity relation are shown in (3.10) and Table 1.

R1
induce−→ πX(R1)

R2
induce−→ πX(R2)

⎫

⎬

⎭

=⇒
⎧

⎨

⎩

if πX(R1) = πX(R2), then R1
∼= R2,

if πX(R1) � πX(R2), then R1 ∼ R2,

˜R1
induce−→ R1

˜R2
induce−→ R2

⎫

⎬

⎭

=⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

if R1 = R2, then ˜R1 ∼ ˜R2,

if R1
∼= R2, then ˜R1 ∼ ˜R2,

if R1 ∼ R2, then ˜R1
.= ˜R2,

(3.10)

Note. R1 and R2 are two fuzzy equivalence relations derived from two fuzzy similarity
relations ˜R1 and ˜R2 on X, respectively.

4. A Fast Constructing Hierarchical Quotient Space Structure Method

In Section 3, in order to obtain a classification (clustering) result (or a hierarchical quotient
space structure), first we should establish a fuzzy similarity relation ˜R on X. Then a fuzzy
equivalence relation R is derived from the fuzzy similarity relation ˜R by the transitive closure
operation. Finally, a kind of classification (or clustering) result is obtained. Many literature
studies [26] have discussed about how to efficiently transform a fuzzy similarity relation
into a fuzzy equivalence relation, and many important results have been obtained. In spite
of these previous studies, the efficiency of obtaining classification (or clustering) result can
be further improved through directly constructing a hierarchical quotient space structure
from a fuzzy similarity relation. In this section, a fast constructing hierarchical quotient space
structure method is discussed, and this method can effectively improve the efficiency of the
classification(or clustering).
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Assume that X = {x1, x2, . . . , xn}, ˜R is a fuzzy similarity relation on X, and its
corresponding relation matrix is defined by M( ˜R) = (rij)n×n. Let r̃ij = ˜R(xi, xj) stand for
the similarity degree between objects xi and xj according to some similarity degree criterion.
M( ˜R) is a n × nmatrix as follows:

M
(

˜R
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r̃11 r̃12 · · · r̃1n

r̃21 r̃22 · · · r̃2n

...
...

. . .
...

r̃n1 r̃n2 · · · r̃nn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.1)

Because M( ˜R) is reflexive and symmetric, that is, r̃ij = r̃ji and r̃ii = 1 (i = 1, 2, . . . , n),
the matrix M( ˜R) may be constructed by elements r̃12, r̃13, . . . , r̃1n, r̃23, r̃24, . . . , r̃2n, r̃34, . . . , r̃3n,
. . . , r̃n−1,n. We reorder the sequence r̃12, r̃13, . . . , r̃1n, r̃23, r̃24, . . . , r̃2n, r̃34, . . . , r̃3n, . . . , r̃n−1,n in
degressive order. If the same element occurs, just leaves one of them, and discards others,
then we can obtain a new degressive sequence denoted by = {λ1, λ2, . . . , λt} (t ≤ n(n −
1)/2), where 1 ≥ λ1 > λ2 > · · · > λt > 0. Because the maximal number of layers
in hierarchical quotient space structure is n, only anterior n numbers in the sequence
λ = {λ1, λ2, . . . , λt} is useful for constructing a hierarchical quotient space structure, and
other values are ignored. In some layers (it is a quotient space on X) of the hierarchical
quotient space structure, if xi and xj are indiscernible, then they must be located in the same
subblock.

Theorem 4.1. Let the relation matrix of the fuzzy similarity relation ˜R be M( ˜R) = (r̃ij)n×n, let R be
fuzzy equivalence relation derived from ˜R, and its matrix is denoted by M(R) = (rij)n×n. If r̃ij ≥ λ,
then xi and xj are located in the same subblock in quotient space X(λ) of the hierarchical quotient
space structure πX(R).

Proof. If r̃ij ≥ λ, r̃(2)ij denotes the element of matrix M( ˜R2); according to Proposition 2.3, we

have r(2)ij =
∨

1≤k≤n(rik ∧ rkj). Since rii = 1, when k = i, we have r(2)ij ≥ r̃ij . rij ≥ r̃
(2)
ij ≥ r̃ij ≥ λ, that

is, R(xi, xj) ≥ λ and (xi, xj) ∈ Rλ. So, if r̃ij ≥ λ in the quotient space X(λ) (the partition X(λ)
is induced by the equivalence relation Rλ) of the hierarchical quotient space structure πX(R),
xi and xj are located in the same subblock.

Corollary 4.2. Let the matrix of fuzzy similarity relation ˜R be M( ˜R) = (r̃ij)n×n, let R be a fuzzy
equivalence relation derived from ˜R, and let its matrix beM(R) = (rij)n×n. If r̃ij ≥ λ and r̃jk ≥ λ, then
xi, xj , and xk are located in the same subblock in the quotient space X(λ) of the hierarchical quotient
space structure πX(R).

Based on Theorem 4.1 and Corollary 4.2, a fast constructing hierarchical quotient space
structure method is presented in Algorithm 1

There is an example to illuminate Algorithm 1.
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Let X = {x1, x2, . . . , xn}.
Input: A fuzzy similarity relation matrixM( ˜R) = (r̃ij)n×n
Output: A hierarchical quotient space structure πX(R) (Where R is a fuzzy equivalence
relation derived from ˜R)
Step 1 Using the matrixM( ˜R) = (r̃ij)n×n, a similarity degree sequence λ = {λ1, λ2, . . . , λt}
can be obtained.
Step 2 For k = 1 to n

{If r̃ij ≥ λk , xi and xj are located in the same subblock, else xi and xj are located
in the different subblock respectively. A quotient space X(λk) is constructed}
{if X(λk) = {X}, go to Step3}

Step 3 End
Step 4 A hierarchical quotient space structure πX(R) is obtained.

Algorithm 1

Example 4.3. Let X = {x1, x2, x3, x4, x5, x6}; according to some similarity degree criterion, a
similarity relation matrix can be established; that is,

M
(

˜R
)

=
(

r̃ij
)

n×n =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0.928 0.888 0.838 0.788 0.758

0.928 1 0.955 0.902 0.848 0.815

0.888 0.955 1 0.941 0.886 0.852

0.838 0.902 0.941 1 0.940 0.940

0.788 0.848 0.886 0.940 1 0.965

0.758 0.815 0.852 0.940 0.965 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.2)

Step 1. Because the similarity relation matrix M( ˜R) = (r̃ij)n×n is reflexive and symmetrical,
we only need to consider its upper triangular matrix. A similarity degree sequence λ =
{0.965, 0.955, 0.941, 0.940, 0.928, 0.902} is obtained from ( ˜R).

Step 2. When λ1 = 0.965, r̃56 = 0.965, the first quotient space

X(0.965) = {{x1}, {x2}, {x3}, {x4}, {x5, x6}} (4.3)

is constructed, which is the first layer in πX(R).
When λ2 = 0.955, r̃56 > 0.955 and r̃23 = 0.955, the second quotient space

X(0.955) = {{x1}, {x2, x3}, {x4}, {x5, x6}} (4.4)

is constructed, which is the second layer in πX(R).
When λ3 = 0.941, r̃56 > 0.941, r̃23 > 0.941 and r̃34 = 0.941, the third quotient space

X(0.941) = {{x1}, {x2, x3, x4}, {x5, x6}} (4.5)

is constructed, which is the third layer in πX(R).
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When λ4 = 0.940, r̃56 > 0.940, r̃23 > 0.940, r̃34 > 0.940, r̃45 = 0.940 and r̃46 = 0.940, the
fourth quotient space

X(0.940) = {{x1}, {x2, x3, x4, x5, x6}} (4.6)

is constructed, which is the fourth layer in πX(R).
When λ5 = 0.928, r̃56 > 0.928, r̃23 > 0.928, r̃34 > 0.928, r̃45 > 0.928, r̃46 > 0.928 and

r̃12 = 0.928, the fifth quotient space

X(0.928) = {{x1, x2, x3, x4, x5, x6}} (4.7)

is constructed, which is the fifth layer in πX(R).
Since X(0.928) = {X}, the whole hierarchical quotient space structure is successfully

constructed, and it is

πX(R) = {X(0.965), X(0.955), X(0.941), X(0.940), X(0.928)}. (4.8)

5. Conclusions

Due to human various subjective ideas and evaluation criteria, the same fuzzy concept
might have different memberships which leads to different fuzzy similarity relations.
However, if these fuzzy similarity relations are isomorphic, then they will induce to the
same hierarchical quotient space structure. If different hierarchical quotient space structures
have the same information entropy sequence and the same subblock sequence, then
they have the same classification (clustering) ability and contain the same information.
Therefore, the information entropy sequence is a very useful attribute for measuring the
uncertainty of a hierarchical quotient space structure. In this paper, the information entropy
sequence of a hierarchical quotient space structure is discussed, through the analysis of the
relationships among information entropy sequence, hierarchical quotient space structure,
fuzzy equivalence relation, and fuzzy similarity relation. A fast-constructing hierarchical
quotient space structure method is presented. This further reveals the essential of a
hierarchical quotient space structure. In real world, “fuzziness” and “crispness” are relative
and can be transformed into each other with different granularity. The hierarchical quotient
space structure is just a bridge between the fuzzy granule world and the clear granule world,
and the research on uncertainty of the hierarchical quotient space structure will contribute to
develop both granular computing theory and information entropy theory.
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