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This work emphasizes solving the problem of parameter estimation for a human immunodefi-
ciency virus (HIV) dynamical model by using an improved differential evolution, which is called
the hybrid Taguchi-differential evolution (HTDE). The HTDE, used to estimate parameters of an
HIV dynamical model, can provide robust optimal solutions. In this work, the HTDE approach
is effectively applied to solve the problem of parameter estimation for an HIV dynamical model
and is also compared with the traditional differential evolution (DE) approach and the numerical
methods presented in the literature. An illustrative example shows that the proposed HTDE
gives an effective and robust way for obtaining optimal solution, and can get better results than
the traditional DE approach and the numerical methods presented in the literature for an HIV
dynamical model.

1. Introduction

Recently, the mathematical modeling of the epidemiology and immunology dynamics of
human immunodeficiency virus (HIV) has been proven to be valuable in understanding
the HIV pathogenesis (see, e.g., [1–15] and the references therein). Many of the proposed
approaches only work under the assumption that the parameters of the HIV dynamical
models are known in advance. However, in the real world, it may be difficult to determine
the parameters because of the complexity of HIV dynamical models. Therefore, in recent
years, it has become a hot issue for estimating the parameters of the HIV dynamical models
(see, e.g., [16–25] and the references therein). On the other hand, for solving the problem
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of parameter estimation in the HIV dynamical models, the methods of estimation such
as the Bayesian approach [17, 21], the online estimation algorithm [18], the Monte Carlo
technique [20], the numerical method with combined Adomian/Alienor approach [22],
the multiple time point method [23], the nonlinear least squares method [24], and the
multistage smoothing-based method and spline-enhanced nonlinear least squares approach
[25] have been presented in the literature. In particular, Miao et al. [24] introduced
the differential evolution (DE), a global optimization algorithm, to solve the nonlinear
least squares problem to avoid the local minima and convergence difficulty in nonlinear
optimization.

The DE [26] has received considerable attention concerning its potential as a new
optimization technique for complex nonlinear problems and has been successfully used in
various areas (see, e.g., [27–34] and the references therein). The main specific feature of the
DE as an optimization method is its implicit parallelism, which is a result of the evolution
and the hereditary-like process. The advantages of using a DE for solving the optimization
problems are its global solution finding property, simple but powerful search capability, easy-
to-understand concept, compact structure, having only a few control parameters, ease of use,
and high convergence characteristics [35, 36].

The DEs are designed by using the concept of evolutionary algorithms, such as
multipoint searching, mutation operation crossover operation and selection operation, but
crossover operation based on the random process is not a systematic reasoning way for
breeding better offspring (or trial individual vectors). Therefore, in order to seek the optimal
breeding in the DEs such that the efficiency of the DEs for estimating all the parameters
in the HIV dynamical model [37] can be further promoted, the purpose of this paper
is to propose a new DE approach by introducing a systematic reasoning. This proposed
new DE approach is named the hybrid Taguchi-differential evolution (HTDE). The HTDE
combines the DE [26]with the Taguchi method [38, 39]. The Taguchi method, a robust design
approach, uses many ideas from statistical experimental design, where some of the factors
(or individuals) are related, for evaluating and implementing improvements in products,
processes, and equipment. Factors (or individuals) are called related when the desirable
experimental region of some factors (or individuals) depends on the level settings of other
factors (or individuals). Two major tools used in the Taguchi method are (i) signal-to-noise
ratio (SNR)whichmeasures quality, and (ii) orthogonal arrays which are used to studymany
design parameters simultaneously [40, 41]. In the HTDE, the Taguchi method is to provide a
new systematic crossover operation to replace the original crossover operation of DE. Then,
the systematic reasoning ability of the Taguchi-method-based crossover operation is used to
breed better individuals in order to generate the representative individuals to be the new
potential offspring (or trial vectors). So, the Taguchi-method-based crossover operation can
enhance DEs, such that the HTDE can be robust, statistically sound, and quickly convergent.
Thus, the HTDE can be an efficient optimization algorithm to deal with the problem of
parameter estimation for an HIV dynamical model, which is also regarded an optimization
problem.

This paper is organized as follows. Section 2 describes the HTDE for solving the
parameter estimation problem of an HIV dynamical model. In Section 3, we evaluate the
efficiency of the proposed HTDE by comparing our results with those obtained from the
traditional DE approach and the numerical methods of Manseur et al. [22] respectively,
by using the same example given by Manseur et al. [22]. Finally, Section 4 offers some
conclusions.
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2. Parameter Estimation of an HIV Dynamical Model with
HTDE Approach

In this paper, the following three-dimensional model of HIV [22, 37] described by

ẋ1(t) = S − dx1(t) − βx1(t)x3(t), (2.1a)

ẋ2(t) = βx1(t)x3(t) − μ1x2(t), (2.1b)

ẋ3(t) = kx2(t) − μ2x3(t), (2.1c)

is considered, where x1(t) denotes amount (quantity) of healthy CD4+ T cells, x2(t) denotes
the infected CD4+ T cells, x3(t) denotes the viral load, and the positive constants S, d, β, μ1, k,
and μ2 denote the system parameters for an HIV dynamical model described as the rate of
production of the healthy cells, the death rate of the health calls, the infection rate of healthy
cells CD4 by virus HIV, the death rate of infected cells, the rate of production of free virus, and
the death rate of free virus, respectively. Equation (2.1a) denotes the population dynamics
of the healthy cells. In the presence of HIV, the healthy cells interact with the virus and its
reproduction rate decreases according to the term −βx1(t)x3(t). Equation (2.1b) denotes the
population dynamics of the infected cells. The growth of infected cells is proportional to the
amount of healthy cells infected by virus and will be discounted by the amount of cells in
destruction −μ1x2(t). Equation (2.1c) represents the dynamics of the concentration of free
virus. The free virus increases in proportion to the infected cells kx2(t), and depend on this
natural decline rate −μ2x3(t).

Remark 2.1. In clinical practice, it is difficult to measure the amount of healthy CD4+ T cells.
The measurement of total CD4+ T cells in blood may not be representative of the total
body pool of CD4+ T cells that are involved in HIV infection. In addition, the variation of
total CD4+ T cells counts in blood is large [23]. Therefore, in this paper, for evaluating the
performance of the proposed HTDE approach to an HIV dynamical model given byManseur
et al. [22], and comparing the results obtained from our proposed HTDE approach with those
from the traditional DE approach [26] and the numerical methods given by Manseur et al.
[22]. By using the same example, we assume the measurements of viral load and T cells
(either the amount of healthy CD4+ T cells or the total number of CD4+ T cells) are available.

When estimating the system parameters, suppose the structures of the system is
known in advance, and thus the HIV dynamical model can be described as follows:

˙̃x1(t) = ̂S − ̂dx̃1(t) − ̂βx̃1(t)x̃3(t), (2.2a)

˙̃x2(t) = ̂βx̃1(t)x̃3(t) − μ̂1x̃2(t), (2.2b)

˙̃x3(t) = ̂kx̃2(t) − μ̂2x̃3(t), (2.2c)

which is expected to match the actual HIV dynamical model (2.1a)–(2.1c), where the positive
constants ̂S, ̂d, ̂β, μ̂1, ̂k, and μ̂2 are the estimated parameters of an HIV dynamical model, and
x̃i(t) (i = 1, 2, 3) denote the state variables of an HIV dynamical model obtained from the
estimated parameters { ̂S, ̂d, ̂β, μ̂1, ̂k, μ̂2}.
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The parameter estimation problem of an HIV dynamical model considered here is to
search for the optimal parameters ̂S, ̂d, ̂β, μ̂1, ̂k, and μ̂2 such that the performance index

J =
3
∑

i=1

T
∑

n=0
(xi(n) − x̃i(n))

2 (2.3)

is minimized, where n is referred to as the sampling time point, T is the total number of
sampling, and after a period of transient process, a set of state variables is selected as the
initial state vector [x1(0), x2(0), x3(0)] for the parameter estimation. This is equivalent to the
optimization problem:

minimize J = f
(

̂S, ̂d, ̂β, μ̂1, ̂k, μ̂2

)

≡ f(a1, a2, . . . , a6) (2.4)

subject to xi ≤ ai ≤ xi (i = 1, 2, . . . , 6), and ai are the positive real numbers, where xi and
xi are the lower and upper bounds of ai given from the practical consideration, respectively.
That is, the estimated parameters {a1, a2, . . . , a6} are generated at random from within user-
defined bounds [xj , xj]. Due to there often being multiple local optima in the landscape of
the performance index J , it is difficult to obtain the global optimal parameters. Therefore, the
proposed HTDE approach will be applied to search for the global or close-to-global optimal
parameters ai (i = 1, 2, . . . , 6) such that the performance index J is minimized. Therefore,
the parameter estimation problem of an HIV dynamical model can become an optimization
problem (2.4), where (2.4) is a nonlinear function with the continuous variables.

Remark 2.2. It is obvious that if one set of estimated parameters {a1, a2, . . . , a6} is specified,
then x̃i(t) (i = 1, 2, 3) can be determined from the HIV dynamical model (2.2a)–(2.2c), and
thus the value of the performance index (2.3) corresponding to this set of {a1, a2, . . . , a6}
can be calculated. Given another set of estimated parameters {a1, a2, . . . , a6}, there obtains
another value of the performance index (2.3). That is, the value of the performance index
(2.3) is actually dependent on the set of estimated parameters {a1, a2, . . . , a6}. Therefore; it is
assumed that there is no measurement error in this paper

The HTDE combines the traditional DE [26] with the Taguchi method [38, 39]. In the
HTDE, the Taguchi method is inserted between the crossover operations of a DE. Then, by
using two major tools (signal-to-noise ratio and orthogonal arrays) of the Taguchi method,
the systematic reasoning ability of the Taguchi method is incorporated in the crossover
operations to systematically select the better genes to achieve the crossover operations, and
consequently enhance the DEs [32]. The detailed steps of the HTDE are described as follows.
The detailed description of the Taguchi method can be found in the books presented by
Taguchi et al. [38] and Wu [39].

Detailed Steps: HTDE

Step 1 (parameter setting). The population size ps, the number of generationsNg, the positive
real mutation scaling factor F, and the user-defined bounds [xi, xi] (i = 1, 2, . . . , 6).
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Step 2 (initialization). In the real coding representation, each individual is encoded as a vector
of floating point numbers, with the same length as the vector of decision parameters. For
convenience and simplicity, an individual XG

i is denoted as

XG
i =

[

xG
i1, x

G
i2, x

G
i3, x

G
i4, x

G
i5, x

G
i6

]

, (2.5)

where G denotes the current generation, xG
ij (j = 1, 2, . . . , 6) denote the estimated parameters

(i.e., {a1, a2, . . . , a6}), i = 1, 2, . . . , ps. The initial values of xG
ij are chosen at random from

within user-defined bounds [xj , xj].

Step 3. Generate a uniformly distributed random number α, where α ∈ [0, 1].

Step 4. Let xG
ij = xj + α(xj − xj), where xG

ij denotes the jth element of XG
i in (2.5). Repeat six

times and produce an individual vector [xG
i1, x

G
i2, x

G
i3, x

G
i4, x

G
i5, x

G
i6].

Step 5. Repeat the above two steps ps times and produce ps initial feasible individual vectors
XG

i (i = 1, 2, . . . , ps).

Step 6. Initialize the iteration index I = 1.

Step 7. Set the initial target index i = 1.

Step 8 (mutation operation). In every generation, each individual vector XG
i (i = 1, 2, . . . , ps)

in the population becomes a target vector. For each target vector XG
i ,DE applies a differential

mutation operation to generate a mutated individual VG+1
i , according to

VG+1
i = XG

j + F
(

XG
n −XG

q

)

, (2.6)

where XG
j ,X

G
n , and XG

q are randomly selected from the population such that j, n, and q

belong to {1, 2, . . . , ps} and i /= j /=n/= q; F is a mutation scaling factor which controls the
evolution rate. In the event that mutation causes an element vG+1

ij in the vector VG+1
i =

[vG+1
i1 , vG+1

i2 , vG+1
i3 , vG+1

i4 , vG+1
i5 , vG+1

i6 ] (i.e., {a1, a2, . . . , a6}) to shift outside the allowable interval
[xj , xj], then vG+1

ij is set to xj if v
G+1
ij < xj , and xj if vG+1

ij > xj . The mutated vector VG+1
i will

be used in the following Taguchi-method-based crossover operation as a donor vector for
breeding a better offspring or trial vector UG+1

i .

Detailed Steps: Taguchi-Method-Based Crossover Operation

Substep 8.1. Set m = 1. Take the three columns of the orthogonal array L4(23) to allocate the
three factors XG

j ,X
G
n , and XG

q with two levels (individuals), respectively.

Substep 8.2. Calculate the performance index J with (2.3) and the signal-to-noise ratio with
smaller-the-better characteristic for the new individual VG+1

i using (2.6).

Substep 8.3. Ifm > 4, then go to Substep 8.4. Otherwise,m = m + 1, return to Substep 8.2, and
continue through Substep 8.3.
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Figure 1: Average convergence results of performance index in 100 independent runs by using the HTDE
and the DE, respectively, for the HIV dynamical model.

Substep 8.4. Calculate the effects of the various factors.

Substep 8.5. One optimal trial vectorUG+1
i is generated based on the results from Substep 8.4.

Step 9. Add one to the target index i. If i < ps, then go to Step 8.

Step 10. Add one to the iteration index I. If I < Ng, then go to Step 7.

Step 11. Stop and display the optimal individual vector (i.e., the optimal parameters
{a1, a2, . . . , a6}) and its performance index J .

3. Results and Comparisons

In this section, we evaluated the performance of the proposed HTDE approach to an
HIV dynamical model given by Manseur et al. [22] and compared the results obtained
from our proposed HTDE approach with those from the traditional DE approach [26],
and the numerical methods with combined Adomian/Alienor approach and the classical
optimization method with Levenberg-Marquardt approach given by Manseur et al. [22] by
using the same example. Besides, for the sake of fair comparisons between our proposed
HTDE approach and the traditional DE approach, the same evolutionary environments used
in this paper are the population size ps = 100, the same maximum number of generations
Ng = 100, the mutation scaling factor F = 0.8, and the same search interval [xj , xj] =
(0, 2] (j = 1, 2, . . . , 6) for the estimated parameters {a1, a2, . . . , a6}, respectively.

The actual parameters of an HIV dynamical model with initial condition
[x1(0) x2(0) x3(0)] = [1 0.2 0.8] that will be estimated are assumed to be S = 1, d =
0.8, β = 1, μ1 = 0.8, k = 1, and μ2 = 0.01078 [22]. In the following, we will apply the
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Figure 2: Average convergence results of 100 independent runs by using the HTDE and the DE,
respectively, for the estimated parameter a1 of the HIV dynamical model.
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Figure 3: Average convergence results of 100 independent runs by using the HTDE and the DE,
respectively, for the estimated parameter a2 of the HIV dynamical model.

proposed HTDE to find the optimal parameters { ̂S, ̂d, ̂β, μ̂1, ̂k, μ̂2} (i.e., {a1, a2, . . . , a6}) such
that the performance index J (2.3) is minimized, where the sampling time is 0.1 second, and
the total sampling number T is 10.

For the HIV dynamical models (2.1a)–(2.1c) and (2.2a)–(2.2c), after using the
proposed HTDE to execute 100 independent runs, we can get the best values, the mean
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Figure 4: Average convergence results of 100 independent runs by using the HTDE and the DE,
respectively, for the estimated parameter a3 of the HIV dynamical model.
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Figure 5: Average convergence results of 100 independent runs by using the HTDE and the DE,
respectively, for the estimated parameter a4 of the HIV dynamical model.

values, and the standard deviation of the obtained data for the estimated parameters, the
performance index and the computational time with Intel(R) Core(TM)2 Duo CPU 2.80GHz
and 2.00GBRAM as shown in Tables 1 and 2, respectively. On the other hand, if we employ
the traditional DE to execute 100 independent runs, we can also get the best values, the
mean values, the standard deviation of the obtained data for the estimated parameters, the
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Figure 6: Average convergence results of 100 independent runs by using the HTDE and the DE,
respectively, for the estimated parameter a5 of the HIV dynamical model.
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Figure 7: Average convergence results of 100 independent runs by using the HTDE and the DE,
respectively, for the estimated parameter a6 of the HIV dynamical model.

performance index and the computational time with Intel(R) Core(TM)2 Duo CPU 2.80GHz
and 2.00GBRAM as shown in Tables 1 and 2, respectively. Besides, the estimated parameters
and the performance indices are obtained from two transformations by using the combined
Adomian/Alienor method and a class optimization method with the Levenberg-Marquardt
method [22], respectively, are also shown in Table 1. Figures 1, 2, 3, 4, 5, 6 and 7 show the
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Figure 8: Responses of x1(t) by using the HTDE and the DE, respectively, for the HIV dynamical model.
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Figure 9: Responses of x2(t) by using the HTDE and the DE, respectively, for the HIV dynamical model.

average convergence results of performance index J and estimated parameters {a1, a2, . . . , a6}
with respect to the number of generations in 100 independent runs by using the proposed
HTDE and the traditional DE, respectively, for the HIV dynamical model. The responses of
the x1(t), x2(t), and x3(t) for the HIV dynamical model with the mean values of the estimated
parameters in 100 independent runs obtained from the proposed HTDE and the traditional
DE are, respectively, shown in Figures 8, 9, and 10.
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Figure 10: Responses of x3(t) by using the HTDE and the DE, respectively, for the HIV dynamical model.

From Table 1 and Figures 1–10, the following results can be observed: (i) the proposed
HTDE can obtain better results including the best values of estimated parameters and
performance index, and the mean values of estimated parameters and performance index
than the traditional DE and the numerical methods presented by Manseur et al. [22]; (ii) the
proposed HTDE gives a smaller standard deviation of the obtained data for the estimated
parameters and the performance index than the traditional DE, so the proposed HTDE has a
stable solution quality; (iii) the average convergence results for the proposedHTDE are better
than those of the traditional DE in 100 independent runs regarding the estimated parameters
and the performance index as well as the proposed HTDE has a better solution convergence
quality; (iv) although the computational time of the proposed HTDE is about four times the
traditional DE, the better estimated parameters and performance index are concerned rather
than the computational time in the problem of parameter estimation for an HIV dynamical
model. Thus, it can be concluded that the proposed HTDE approach can give a more
effective and robust way for finding the actual parameters than the traditional DE approach
[26] and the numerical methods presented by Manseur et al. [22] for the HIV dynamical
model.

4. Conclusions

An HTDE approach has been presented in this paper based on the Taguchi-method-based
crossover operation for solving the problem of parameter estimation for an HIV dynamical
model under the minimization of a performance index (2.3). The HTDE can be easily
employed to find the system parameters of an HIV dynamical model. An illustrative example
regarding an HIV dynamical model has shown that the proposed HTDE approach is effective
and robust to estimate the system parameters of an HIV dynamical model, and outperforms
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Table 1: Comparison of results for the estimated parameters and the performance index with 100
independent runs for the HIV dynamical model.

Approach Best value Mean value Standard deviation

HTDE

̂S 1.0000 1.0000 0.0003
̂d 0.8000 0.8000 0.0003
̂β 1.0000 1.0000 0.0002

μ̂1 0.8000 0.8000 0.0003
̂k 1.0000 1.0000 0.0005

μ̂2 0.01078 0.01079 0.0002

J 3.62 × 10−10 2.86 × 10−9 2.09 × 10−9

DE

̂S 1.0209 1.1582 0.2750
̂d 0.7636 0.9497 0.2692
̂β 1.0034 1.0544 0.1591

μ̂1 0.7919 0.8877 0.2848
̂k 1.0131 1.2349 0.2199

μ̂2 0.01073 0.10865 0.09900

J 0.0007924 0.0021460 0.0010318

[1pt]

Transformation 1
proposed by
Manseur et al. [22]

̂S 0.964

̂d 0.856
̂β 0.928

μ̂1 0.715 NA NA
̂k 0.98

μ̂2 0.009

J 0.0010

Transformation 2
proposed by
Manseur et al. [22]

̂S 0.724
̂d 0.582
̂β 0.97

μ̂1 0.3785 NA NA
̂k 0.9409

μ̂2 0.1058

J 0.02036

Levenberg-
Marquardt method
presented by
Manseur et al. [22]

̂S 0.79
̂d 0.67
̂β 0.85

μ̂1 0.705 NA NA
̂k 0.88

μ̂2 0.021

J 0.07

the traditional DE approach [26] and the numerical methods presented byManseur et al. [22].
Although this HTDE approach is proposed under the framework of HIV dynamical model,
it should be generally applicable to any optimization problem.
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Table 2: Comparison of results for the computational time (in minute) with 100 independent runs for the
HIV dynamical model.

Approach Best value Mean value Standard deviation
HTDE 21.97 22.01 0.06
DE 4.89 4.93 0.01
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