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In the present note, we study slant and hemislant submanifolds of an LP-cosymplectic manifold
which are totally umbilical. We prove that every totally umbilical proper slant submanifold M

of an LP-cosymplectic manifold M is either totally geodesic or if M is not totally geodesic in M
then we derive a formula for slant angle of M. Also, we obtain the integrability conditions of the
distributions of a hemi-slant submanifold, and then we give a result on its classification.

1. Introduction

AmanifoldMwith Lorentzian paracontact metric structure (φ, ξ, η, g) satisfying (∇Xφ)Y = 0
is called an LP-cosymplectic manifold, where ∇ is the Levi-Civita connection corresponding
to the Lorentzian metric g on M. The study of slant submanifolds was initiated by Chen
[1]. Since then, many research papers have appeared in this field. Slant submanifolds are the
natural generalization of both holomorphic and totally real submanifolds. Lotta [2] defined
and studied these submanifolds in contact geometry. Later on, Cabrerizo et al. studied slant,
semi-slant, and bislant submanifolds in contact geometry [3, 4]. In particular, totally umbilical
proper slant submanifold of a Kaehler manifold has also been studied in [5]. Recently, Khan
et al. [6] studied these submanifolds in the setting of Lorentzian paracontact manifolds.

The idea of hemi-slant submanifolds was introduced by Carriazo as a particular
class of bislant submanifolds, and he called them antislant submanifolds [7]. Recently,
these submanifolds are studied by Sahin for their warped products [8]. In this paper, we
study slant and hemi-slant submanifolds of an LP-cosymplectic manifold. We prove that a
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totally umbilical proper slant submanifold M is either totally geodesic in M or if it is not
totally geodesic, then the slant angle θ = tan−1(

√
g(X, Y)/η(X)η(Y)). Also, we define hemi-

slant submanifolds of an LP-contact manifold. After we find integrability conditions of the
distributions, we investigate a classification of totally umbilical hemi-slant submanifolds of
an LP-cosymplectic manifold.

2. Preliminaries

Let M be a n-dimensional paracontact manifold with the Lorentzian paracontact metric
structure (φ, ξ, η, g), that is, φ is a (1, 1) tensor field, ξ is a contravariant vector field, η is a
1-form, and g is a Lorentzian metric with signature (−,+,+, . . . ,+) on M, satisfying [9],

φ2 = X + η(X)ξ, η(ξ) = −1, φξ = 0, η ◦ φ = 0, rank
(
φ
)
= n − 1, (2.1)

g
(
φX, φY

)
= g(X, Y) + η(X)η(Y), η(X) = g(X, ξ), (2.2)

for all X, Y ∈ TM.
A Lorentzian paracontact metric structure onM is called a Lorentzian para-cosymplectic

structure if ∇φ = 0, where ∇ denotes the Levi-Civita connection with respect to g. The
manifold M in this case is called a Lorentzian para-cosymplectic (in brief, an LP-cosymplectic)
manifold [10]. From formula ∇φ = 0, it follows that ∇Xξ = 0.

Let M be a submanifold of a Lorentzian almost paracontact manifold M with
Lorentzian almost paracontact structure (φ, ξ, η, g). Let the induced metric on M also be
denoted by g, then Gauss and Weingarten formulae are given by

∇XY = ∇XY + h(X, Y), (2.3)

∇XN = −ANX +∇⊥
XN, (2.4)

for any X, Y in TM and N in T⊥M, where TM is the Lie algebra of vector field in M and
T⊥M is the set of all vector fields normal to M. ∇⊥ is the connection in the normal bundle, h
is the second fundamental form, and AN is the Weingarten endomorphism associated with
N. It is easy to see that

g(ANX, Y) = g(h(X, Y),N). (2.5)

For any X ∈ TM, we write

φX = PX + FX, (2.6)

where PX is the tangential component and FX is the normal component of φX. Similarly for
N ∈ T⊥M, we write

φN = BN + CN, (2.7)

where BN is the tangential component and CN is the normal component of φN.



Mathematical Problems in Engineering 3

The covariant derivatives of the tensor fields φ, P , and F are defined as

(
∇Xφ

)
Y = ∇XφY − φ∇XY, ∀X, Y ∈ TM, (2.8)

(
∇XP

)
Y = ∇XPY − P∇XY, ∀X, Y ∈ TM, (2.9)

(
∇XF

)
Y = ∇⊥

XFY − F∇XY, ∀X, Y ∈ TM. (2.10)

Moreover, for an LP-cosymplectic manifold, one has

(
∇XP

)
Y = AFYX + Bh(X, Y), (2.11)

(
∇XF

)
Y = Ch(X, Y) − h(X, PY). (2.12)

A submanifold M is said to be totally umbilical if

h(X, Y) = g(X, Y)H, (2.13)

whereH is the mean curvature vector. Furthermore, if h(X, Y) = 0 for all X, Y ∈ TM, thenM
is said to be totally geodesic, and if H = 0, thenM is minimal inM.

A submanifold M of a paracontact manifold M is said to be a slant submanifold if for
any x ∈ M andX ∈ TxM−〈ξ〉, the angle between φX and TxM is constant. The constant angle
θ ∈ [0, π/2] is then called slant angle of M. The tangent bundle TM of M is decomposed as

TM = D ⊕ 〈ξ〉, (2.14)

where the orthogonal complementary distribution D of 〈ξ〉 is known as the slant distribution
on M. If μ is φ-invariant subspace of the normal bundle T⊥M, then

T⊥M = FTM ⊕ μ. (2.15)

Khan et al. [6] proved the following theorem for a slant submanifoldM of a Lorentzian
paracontact manifold M with slant angle θ.

Theorem 2.1. Let M be a submanifold of an LP -contact manifold M such that ξ ∈ TM, then M is
slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that

P 2 = λ
(
I + η ⊗ ξ

)
. (2.16)

Furthermore, if θ is slant angle of M, then λ = cos2θ.
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Thus, one has the following consequences of formula (2.16):

g(PX, PX) = cos2θ
[
g(X, Y) + η(X)η(Y)

]
, (2.17)

g(FX, FY) = sin2θ
[
g(X, Y) + η(X)η(Y)

]
, (2.18)

for any X, Y ∈ TM.

3. Totally Umbilical Proper Slant Submanifold

In this section, we consider M as a totally umbilical proper slant submanifold of an LP-
cosymplectic manifold M. Such submanifolds we always consider tangent to the structure
vector field ξ.

Theorem 3.1. A nontrivial totally umbilical proper slant submanifold M of an LP-cosymplectic
manifold M is either totally geodesic or if it is not totally geodesic in M, then the slant angle
θ = tan−1(

√
g(X, Y)/η(X)η(Y)), for any X, Y ∈ TM.

Proof. For any X, Y ∈ TM, (2.11) gives

(
∇XP

)
Y = AFYX + Bh(X, Y). (3.1)

Taking the product with ξ and using (2.9), we obtain

g(∇XPY, ξ) = g(AFYX, ξ) + g(Bh(X, Y), ξ). (3.2)

Using (2.5) and the fact thatM is totally umbilical, the above equation takes the form

−g(PY,∇Xξ) = g(H,FY)η(X) + g(X, Y)g(BH, ξ). (3.3)

Then, from the characteristic equation of LP-cosymplectic manifold, we obtain

0 = g(H,FY)η(X). (3.4)

Thus, from (3.4), it follows that either H ∈ μ or M is trivial.
Now, for an LP-cosymplectic manifold, one has, from (2.8),

∇XφY = φ∇XY, (3.5)

for any X, Y ∈ TM. From (2.3) and (2.6), we obtain

∇XPY +∇XFY = φ(∇XY + h(X, Y)). (3.6)
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Again using (2.3), (2.4), and (2.6), we get

∇XPY + h(X, PY) −AFYX +∇⊥
XFY = P∇XY + F∇XY + φh(X, Y). (3.7)

As M is totally umbilical, then

∇XPY + h(X, PY) −AFYX +∇⊥
XFY = P∇XY + F∇XY + g(X, Y)φH. (3.8)

Taking the inner product with φH and using the fact thatH ∈ μ, we obtain

g
(
h(X, PY), φH

)
+ g

(
∇⊥

XFY, φH
)
= g

(
F∇XY, φH

)
+ g(X, Y)g

(
φH, φH

)
. (3.9)

Then from (2.2) and (2.13), we get

g(X, PY)g
(
H,φH

)
+ g

(
∇⊥

XFY, φH
)
= g

(
F∇XY, φH

)
+ g(X, Y)‖H‖2. (3.10)

Again, using (2.2) and the fact that H ∈ μ, then φH is also lies in μ; thus, we obtain

g
(
∇⊥

XFY, φH
)
= g(X, Y)‖H‖2. (3.11)

Then, from (2.4), we derive

g
(
∇XFY, φH

)
= g(X, Y)‖H‖2. (3.12)

Now, for any X ∈ TM, one has

(
∇Xφ

)
H = ∇XφH − φ∇XH. (3.13)

Using the fact that as M is an LP-cosymplectic manifold, we obtain

∇XφH = φ∇XH. (3.14)

Using (2.4), (2.6), and (2.7), we obtain

−AφHX +∇⊥
XφH = −PAHX − FAHX + B∇⊥

XH + C∇⊥
XH. (3.15)

Taking the product in (3.15) with FY for any Y ∈ TM and using the fact C∇⊥
XH ∈ μ, the

above equation gives

g
(
∇⊥

XφH, FY
)
= −g(FAHX, FY). (3.16)
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Using (2.18), we obtain

g
(
∇XFY, φH

)
= sin2θ

[
g(AHX, Y) + η(AHX)η(Y)

]
, (3.17)

then, from (2.5) and (2.13), we get

g
(
∇XFY, φH

)
= sin2θ

[
g(X, Y) + η(X)η(Y)

]‖H‖2. (3.18)

Thus, from (3.12) and (3.18), we derive

[
cos2θg(X, Y) − sin2θη(X)η(Y)

]
‖H‖2 = 0. (3.19)

Hence, (3.19) gives either H = 0 or if H /= 0, then the slant angle of M is θ =
tan−1(

√
g(X, Y)/η(X)η(Y)). This proves the theorem completely.

4. Hemislant Submanifolds

In the following section, we assume that M is a hemi-slant submanifold of an LP-
cosymplectic manifold M such that the structure vector field ξ tangent to M. First, we
define a hemi-slant submanifold, and then we obtain the integrability conditions of the
involved distributions D1 and D2 in the definition of a hemi-slant submanifold M of an LP-
cosymplectic manifold M.

Definition 4.1. A submanifold M of an LP-contact manifold M is said to be a hemi-slant
submanifold if there exist two orthogonal complementary distributions D1 andD2 satisfying

(i) TM = D1 ⊕D2 ⊕ 〈ξ〉,
(ii) D1 is a slant distribution with slant angle θ /=π/2,

(iii) D2 is totally real that is, φD2 ⊆ T⊥M.

If μ is φ-invariant subspace of the normal bundle T⊥M, then in case of hemi-slant
submanifold, the normal bundle T⊥M can be decomposed as

T⊥M = FD1 ⊕ FD2 ⊕ μ. (4.1)

In the following, we obtain the integrability conditions of involved distributions in the
definition of hemi-slant submanifold.

Proposition 4.2. Let M be a hemi-slant submanifold of an LP-cosymplectic manifold M, then the
anti-invariant distribution D2 is integrable if and only if

AFZW = AFWZ, (4.2)

for any Z,W ∈ D2.
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Proof. For any Z,W ∈ D2, one has

φ[Z,W] = φ∇ZW − φ∇WZ. (4.3)

Using (2.8), we obtain

φ[Z,W] = ∇ZφW − ∇WφZ. (4.4)

Then, from (2.4), we derive

φ[Z,W] = −AFWZ +∇⊥
ZFW +AFZW − ∇⊥

WFZ. (4.5)

As D2 is an anti-invariant distribution, then the tangential part of (4.5) should be identically
zero; hence, we obtain the required result.

Proposition 4.3. Let M be a hemi-slant submanifold of an LP-cosymplectic manifold M, then the
invariant distribution D1 ⊕ 〈ξ〉 is integrable if and only if

g
(
h(X, PY) − h(Y, PX) +∇⊥

XFY − ∇⊥
YFX, FZ

)
= 0, (4.6)

for any X, Y ∈ D1 ⊕ 〈ξ〉 and Z ∈ D2.

Proof. For any X, Y ∈ D1 ⊕ 〈ξ〉, one has

φ[X, Y] = φ∇XY − φ∇YX. (4.7)

Then, from (2.8) and the fact thatM is LP-cosymplectic, we obtain

φ[X, Y] = ∇XφY − ∇YφX. (4.8)

Using (2.6), we get

φ[X, Y] = ∇XPY +∇XFY − ∇YPX − ∇YFX. (4.9)

Thus, from (2.3) and (2.4), we derive

φ[X, Y] = ∇XPY + h(X, PY) −AFYX +∇⊥
XFY − ∇YPX − h(Y, PX) +AFXY − ∇⊥

YFX.
(4.10)

Taking the product in (4.10) with FZ, for any Z ∈ D2, we obtain

g
(
φ[X, Y], FZ

)
= g

(
h(X, PY) +∇⊥

XFY − h(Y, PX) − ∇⊥
YFX, FZ

)
. (4.11)
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Thus, the assertion follows from (4.11) after using (2.2) and the fact that ξ is tangential to
D1.

Now, we consider M as a totally umbilical hemi-slant submanifold of an LP-
cosymplectic manifold M. For any X, Y ∈ TM, one has

∇XφY = φ∇XY. (4.12)

Using this fact, if we take for any Z,W ∈ D2, then from (2.3) and (2.4), the above equation
takes the form

−AFWZ +∇⊥
ZFW = φ(∇ZW + h(Z,W)). (4.13)

Thus, on using (2.6) and (2.7), we obtain

−AFWZ +∇⊥
ZFW = P∇ZW + F∇ZW + Bh(Z,W) + Ch(Z,W). (4.14)

Equating the tangential components, we get

P∇ZW = −AFWZ − Bh(Z,W). (4.15)

Taking the product with V ∈ D2, we obtain

g(P∇ZW, V ) = −g(AFWZ, V ) − g(Bh(Z,W), V ). (4.16)

Using (2.2), (2.5), and the fact that PW = 0, for any W ∈ D2, thus, the above equation takes
the form

0 = g(h(Z, V ), FW) + g(Bh(Z,W), V ). (4.17)

As M is totally umbilical, we derive

0 = g(Z, V )g(H,FW) + g(Z,W)g(BH,V ). (4.18)

Thus, (4.18) has a solution if either Z = W = V = ξ, that is, dimD2 = 1 or H ∈ μ or D2 = {0}.
Hence, we state the following theorem.

Theorem 4.4. Let M be a totally umbilical hemi-slant submanifold of an LP-cosymplectic manifold
M, then at least one of the following statements is true:

(i) the dimension of anti-invariant distribution is one, that is, dimD2 = 1,

(ii) the mean curvature vectorH ∈ μ,

(iii) M is proper slant submanifold ofM.
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