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We investigate aH1-Galerkin mixed finite element method for nonlinear viscoelasticity equations
based on H1-Galerkin method and expanded mixed element method. The existence and
uniqueness of solutions to the numerical scheme are proved. A priori error estimation is derived
for the unknown function, the gradient function, and the flux.

1. Introduction

Consider the following nonlinear viscoelasticity-type equation:

utt − ∇ · (a(x, u)∇ut + b(x, u)∇u) = f(x, t), (x, t) ∈ Ω × J,
u(x, t) = 0, (x, t) ∈ ∂Ω × J,
u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω is a convex polygonal domain in R2 with the Lipschitz continuous boundary ∂Ω,
J = (0, T] is the time interval with 0 < T <∞, and u0(x) and u1(x) are, respectively, the initial
data functions defined onΩ. The deformation of viscoelastic solid under the external loads is
usually considered by means of this viscoelastic model [1–4], and the problem has a unique
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sufficiently smooth solution with the regularity condition provided that the given data u0(x),
u1(x), a(u), b(u), and f are sufficiently smooth [5].

For problem (1.1), by adopting finite element method, Lin et al. [6] established the
convergence of the finite element approximations to solutions of Sobolev and viscoelasticity
type of equations via Ritz-Volterra projection and an optimal-order error estimates in Lp (2 ≤
p < ∞). Latter, Lin and Zhang [7] presented a direct analysis for global superconvergence
for this problem without using the Ritz projection or its modified forms. Jin et al. [8] and
Shi et al. [9] employed the Wilson nonconforming finite element and a Crouzeix-Raviart
type nonconforming finite element on the anisotropic meshes to solve viscoelasticity-type
equations, and the global superconvergence estimations were obtained by means of post-
processing technique. Since the estimation of flux ∇u by the unknown scalar u is usually
indirect, thus the quantity of calculation of the finite element method is relatively large.

As an efficient strategy, mixed finite element methods received much attention in
solving partial differential equation in recent decades [10–16]. Compared with finite element
methods, mixed finite element methods can obtain the unknown scalar u and its flux
∇u directly, and; hence, it can decrease smoothness of solution space. However, the LBB
assumption is needed in the approximating subspaces and; hence, confines the choice of finite
element spaces.

On the base of the mixed finite element methods, Pani [17] proposed a new mixed
finite element method, called the H1-Galerkin mixed finite element procedure, to solve a
mixed system in unknown scalar and its flux. Compared with the standard mixed finite
methods, the new mixed finite element method does not require the LBB condition, and a
better order of convergence for the flux in L2 norm can be obtained if an extra regularity
on the solution holds. Recently, H1-Galerkin mixed finite element methods were applied
to differential equations [18–22]. However, the assumption needed for this method is not
suitable for the nonlinear equations and equations with a small tensor. To overcome this,
Chen and Wang [23] proposed H1-Galerkin expanded mixed finite element methods which
combines the H1-Galerkin formulation and the expanded mixed finite element methods
[24] to deal with a nonlinear parabolic equation in porous medium flow. This method can
compute the scalar unknown, its gradient, and its flux directly. Hence, it is suitable to the
case where the coefficient of the differential equation is a small tensor and cannot be inverted.
Motivated by this, we establish an H1-Galerkin expanded mixed finite element method for
the viscoelasticity-type equations.

The remainder of this paper is organized as follows. In Section 2, we first establish
the equivalence between viscoelasticity-type equations and their weak formulation by using
theH1-Galerkin expanded mixed finite element methods and then discuss the existence and
uniqueness of the formulation. In Section 3, we show that the H1-Galerkin expanded mixed
finite element method has the same convergence rate as that of the classical mixed finite
element methods without requiring the LBB consistency condition.

Throughout this paper, we use H to denote the space H(div,Ω) = {v ∈ (L2(Ω))d :

∇ · v ∈ L2(Ω)} with norm ‖v‖H(div;Ω) = (‖v‖2 + ‖∇ · v‖2)1/2 and H1
0(Ω) = {w ∈ H1(Ω) : w =

0 on ∂Ω}. For theoretical analysis, we also need the following assumptions on the functions
involved in problem (1.1).

Assumption 1.1. (1) There exist constants a1 and a2 such that 0 < a1 ≤ a(x, u), b(x, u) ≤ a2.
(2) The functions a(x, u), b(x, u), au(x, u), and bu(x, u) are Lipschitz continuous with

respect to u, and there exists C1 > 0 such that |∂a/∂u| + |∂b/∂u| + |∂2a/∂u2| + |∂2b/∂u2| ≤ C1.



Mathematical Problems in Engineering 3

2. H1-Galerkin Expanded Mixed Finite Element Discrete Scheme

2.1. Weak Formulation

To define theH1-Galerkin expanded mixed finite element procedure, we introduce vector

p = a(x, u)∇ut + b(x, u)∇u, σ = ∇u, (2.1)

and split (1.1) into a first-order system as follows:

utt − ∇ · p = f,

σ = ∇u,
p = a(u)σt + b(u)σ,

σ(x, 0) = ∇u0(x),
σt(x, 0) = ∇u1(x),

p(x, 0) = a(u0)∇u1(x) + b(u0)∇u0(x).

(2.2)

Then by Green’s formula we can further define the following weak formulation of problem
(2.2): find (u,σ,p) ∈ H1

0(Ω) ×H(div,Ω) ×H(div,Ω) such that

(σtt,q) + (∇ · p,∇ · q) = −(f,∇ · q), ∀q ∈ H(div,Ω),

(σ,∇v) = (∇u,∇v), ∀v ∈ H1
0(Ω),

(p,w) = (a(u)σt,w) + (b(u)σ,w), ∀w ∈ H(div,Ω),

σ(x, 0) = ∇u0(x),
σt(x, 0) = ∇u1(x),

p(x, 0) = a(u0)∇u1(x) + b(u0)∇u0(x).

(2.3)

In order to establish the equivalence between problem (2.2) and the weak form (2.3),
we need the following technical lemmas.

Lemma 2.1 (see [25]). LetΩ be a bounded domain with a Lipschitz continuous boundary ∂Ω. Then,
for any p ∈ H(div,Ω), there exists φ ∈ H2(Ω)

⋂
H1

0(Ω) and divergence free ψ ∈ H(div,Ω) such
that ∇ · ψ = 0 and p = ∇φ + ψ.

Lemma 2.2 (see [26]). LetΩ be a bounded domain with a Lipschitz continuous boundary ∂Ω. Then,
for any g ∈ L2(Ω), there exists p ∈ (H1(Ω))d ⊂ H(div,Ω) such that ∇ · p = g.

Now we are in a position to state our main result in this subsection.

Theorem 2.3. Under the conditions of Lemmas 2.1 and 2.2, (u,σ,p) ∈ H1
0(Ω) × H(div,Ω) ×

H(div,Ω) is a solution to the system (2.2) if and only if it is a solution to the weak form (2.3).
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Proof. It is easy to check that any solution to the system (2.2) is a solution to the weak form
(2.3). Hence, to prove the assertion, we only need to show that any solution to the weak form
(2.3) is a solution to the system (2.2).

First, taking w = p − a(u)σt − b(u)σ in the third equation of (2.3) leads to

(p − a(u)σt − b(u)σ,p − a(u)σt − b(u)σ) = 0, (2.4)

which implies

p = a(u)σt − b(u)σ. (2.5)

By Lemma 2.1, there exist φ ∈ H2(Ω)
⋂
H1

0(Ω) and divergence free ψ ∈ H(div,Ω)
such that ∇ · ψ = 0 and σ = ∇φ + ψ. Choosing σ = ∇φ + ψ in the second equation of (2.3)
yields

(∇φ + ψ,∇v) = (∇u,∇v), ∀v ∈ H1
0(Ω). (2.6)

By the divergence theorem [1], one has

(
ψ,∇v) = −(∇ · ψ, v) = 0, ∀v ∈ H1

0(Ω). (2.7)

Substituting (2.7) into (2.6) yields

(∇φ,∇v) = (∇u,∇v), ∀v ∈ H1
0(Ω), (2.8)

which means that

∇φ = ∇u, σ = ∇u + ψ. (2.9)

Inserting (2.5) and (2.9) into the first equation of (2.2) and applying the divergence theorem
to the first term, for any q ∈ H(div,Ω), one has

(utt,∇ · q) − (
ψtt,q

) − (∇ · (a(u)(∇ut + ψt
))
,∇ · q) + (∇ · (b(u)(∇u + ψ

))
,∇ · q) =

(
f,∇ · q).

(2.10)

Instituting q = ψt into (2.10) and using ∇ · ψt = 0 lead to

0 =
(
ψtt, ψt

)
=

1
2
d

dt

(
ψt, ψt

)
. (2.11)

Integrating from 0 to twith respect to time results in

(
ψt(x, t), ψt(x, t)

)
=
(
ψt(x, 0), ψt(x, 0)

)
. (2.12)
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Differentiating (2.9)with respect to t, one obtains

σt = ∇ut + ψt. (2.13)

By the fifth equation in (2.3), we deduce that

ψt(x, 0) = 0, (2.14)

which implies

ψt(x, t) = 0. (2.15)

Integrating the equation ψt(x, t) = 0 with respect to t from 0 to t gives

ψ(x, t) = ψ(x, 0). (2.16)

By (2.9) and the forth equation in (2.2), we deduce

ψ(x, t) = 0, (2.17)

which leads to

σ = ∇u. (2.18)

Therefore, (2.10) can equivalently be transformed into the following equation:

(utt,∇ · q) − (∇ · (a(u)∇ut + b(u)∇u),∇ · q) = (
f,∇ · q), ∀q ∈ H(div,Ω). (2.19)

For f, utt ∈ L2(Ω), by Lemma 2.2, there exists F ∈ H(div,Ω) such that ∇ · F = utt − f . Thus,
(2.19) reduces to

(∇ · p,∇ · q) = (∇ · F,∇ · q), ∀q ∈ H(div,Ω). (2.20)

Recalling Lemma 2.1, one concludes that

∇ · F = ∇ · p, (2.21)

that is,

utt − ∇ · p = f. (2.22)

Combining this with (2.5) and (2.18) results in the desired assertion, and this completes the
proof.
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2.2. Numerical Scheme

Let Th be a quasi-uniform family of subdivision of domain Ω; that is, Ω = ∪K∈ThK with h =
max {diam(K) : K ∈ Th}, and let Vh be the finite-dimensional subspaces ofH1

0(Ω) defined by

Vh =
{
vh ∈ H1

0(Ω);vh|K ∈ Pm(K)
}
, (2.23)

where Pm(K) denotes the space of polynomials of degree at most m on K. Moreover, we
denote the vector space in mixed finite element spaces with index k by Hh. It is well known
that bothHh and Vh satisfy the inverse property and the following approximation properties
[26, 27]:

inf
vh∈Vh

‖v − vh‖ + h‖v − vh‖1 ≤ Chm+1‖v‖m+1, v ∈ Hm+1(Ω),

inf
qh∈Wh

‖q − qh‖ ≤ Chk+1‖q‖k+1, qh ∈
(
Hk+1(Ω)

)d
.

(2.24)

Let Πh : H → Hh denote the Raviart-Thomas interpolation operator [28] which
satisfies

(∇ · (q −Πhq),∇ · qh) = 0, ∀qh ∈ Hh, (2.25)

and the following estimates [26, 28, 29]

‖q −Πhq‖ ≤ Chk+1‖q‖k+1, (2.26)

‖∇ · (q −Πhq)‖ ≤ Chk‖q‖k+1. (2.27)

With the above notations, the semidiscrete H1-Galerkin expanded mixed finite
element method for system (2.3) is reduced to find a triple (uh,σh,ph) ∈ Vh ×Hh ×Hh such
that

(σhtt,qh) + (∇ · ph,∇ · qh) = −(f,∇ · qh
)
, ∀qh ∈ Hh,

(σh,∇vh) = (∇uh,∇vh), ∀vh ∈ Vh,
(ph,wh) = (a(uh)σht,wh) + (b(uh)σh,wh), ∀wh ∈ Hh,

ph(x, 0) = Πhp(x, 0),

σh(x, 0) = Πh∇u0(x),
σht(x, 0) = Πh∇u1(x).

(2.28)

For theH1-Galerkin expanded mixed finite element scheme (2.28), we claim that there
exists a unique solution.
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In fact, set Vh = span {ϕi}Ni=1 and Hh = span {ψj}Mj=1. Then σh,ph ∈ Hh and uh ∈ Vh,
and; hence,

σh =
M∑

j=1

pi(t)ψi(x), ph =
M∑

j=1

λi(t)ψi(x), uh =
N∑

i=1

ui(t)ϕi(x). (2.29)

Taking qh = ψj , wh = ψj , j = 1, 2, . . . ,M, vh = ϕi, i = 1, 2, . . . ,N in (2.28) leads to

APtt + BΛ = F,

DU = CP,

AΛ =M(U)Pt +N(U)P,

(2.30)

where

A =
(
ψi(x), ψj(x)

)
M×M, P =

(
p1, p2, . . . , pM

)T
,

B =
(∇ · ψi(x),∇ · ψj(x)

)
M×M, Λ = (λ1, λ2, . . . , λM)T ,

D =
(∇ϕi(x),∇ϕj(x)

)
N×N, U = (u1, u2, . . . , uN)T ,

C =
(
ψi(x),∇ϕj(x)

)
N×M, M(U) =

(
a(U)ψi(x), ψj(x)

)
M×M,

N(U) =
(
b(U)ψi(x), ψj(x)

)
M×M, F = −(f,∇ · ψj(x)

)
M×1,

(2.31)

and P(0), Pt(0) are given.
Note that matrix A in (2.31) is positive definite. Thus, by the third equation in (2.30),

one has

Λ = A−1(MPt +N)P. (2.32)

Inserting the above equality into the first equation of (2.30) yields

APtt + BA−1MPt + BA−1NP = F. (2.33)

By the standard arguments on the initial-value problem of a system of ordinary differential
equations, we can obtain existence and uniqueness of P . The existence and uniqueness of U
and Λ follow from the existence and uniqueness of P .

3. Error Analysis

This section is devoted to the error estimates for the H1-Galerkin expanded mixed finite
element method.
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For error analysis in the following, we need to introduce a projection operator. Let
Rh : H1

0(Ω) → Vh be the Ritz projection defined by

(∇(u − Rhu),∇vh) = 0, ∀vh ∈ Vh. (3.1)

Then the following approximation holds [27]:

‖u − Rhu‖ + h‖∇(u − Rhu)‖ ≤ Chm+1‖u‖m+1. (3.2)

Let

p − ph = (p −Πhp) + (Πhp − ph) = η + ζ,

σ − σh = (σ −Πhσ) + (Πhσ − σh) = θ + ξ,

u − uh = (u − Rhu) + (Rhu − uh) = α + β.

(3.3)

Utilizing (2.3), (2.28), and auxiliary projections (3.1), (2.25), we can obtain the following error
equations:

(ξtt,qh) + (∇ · ζ,∇ · qh) = −(θt,qh), ∀qh ∈ Hh, (3.4)

(ξ,∇vh) =
(∇β,∇vh

) − (θ,∇vh), ∀vh ∈ Vh, (3.5)

(ζ,wh) − (a(uh)ξt,wh) − (b(uh)ξ,wh) = (σt(a(u) − a(uh)),wh) + (σ(b(u) − b(uh)),wh)

+(a(uh)θt,wh)+(b(uh)θ,wh)−
(
η,wh

)
, ∀wh ∈ Hh.

(3.6)

Theorem 3.1. Let (u,σ,p) and (uh,σh,ph) be the solutions to (2.3) and (2.28), respectively. Then
the following error estimates hold:

(a) ‖u − uh‖1 ≤ Chmin(k+1,m),

(b) ‖∇ · (σ − σh)‖ ≤ Chmin(k,m+1),

(c) ‖u − uh‖ + ‖σ − σh‖ + ‖p − ph‖ ≤ Chmin(k+1,m+1),

(3.7)

where k ≥ 1 andm ≥ 1 for d = 2, 3, and the positive constantC depends on ‖ut‖L∞(Hm+1), ‖u‖L∞(Hm+1),
‖pt‖L∞(Hk+1), ‖p‖L∞(Hk+1), ‖σt‖L∞(Hk+1), ‖σtt‖L∞(Hk+1), ‖σ‖L∞(Hk+1).

Proof. Since estimates of θ, η, and α can be obtained by (3.2) and (2.26), it suffices to estimate
ξ, ζ, and β.

Instituting wh = ξtt into (3.6) and qh = ζ in (3.4) gives

(∇ · ζ,∇ · ζ) + (a(uh)ξt, ξtt) + (b(uh)ξ, ξtt) = −(σt(a(u) − a(uh)), ξtt) − (σ(b(u) − b(uh)), ξtt)
− (a(uh)θt, ξtt) − (b(uh)θ, ξtt) +

(
η, ξtt

) − (θtt, ζ).
(3.8)
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It is easy to check that

(a(uh)ξtt, ξt) =
1
2
d

dt
(a(uh)ξt, ξt) − 1

2
(au(uh)uhtξt, ξt),

(b(uh)ξ, ξtt) =
d

dt
(b(uh)ξ, ξt) − (bu(uh)uhtξ, ξt) − (b(uh)ξt, ξt),

(
η, ξtt

)
=
d

dt

(
η, ξt

) − (
ηt, ξt

)
,

(σt(a(u) − a(uh)), ξtt) = d

dt
(σt(a(u) − a(uh)), ξt) − (σtt(a(u) − a(uh)), ξt)

− (σt(au(u)ut − au(uh)uht), ξt),

(σ(b(u) − b(uh)), ξtt) = d

dt
(σ(b(u) − b(uh)), ξt) − (σt(b(u) − b(uh)), ξt)

− (σ(bu(u)ut − bu(uh)uht), ξt),

(a(uh)θt, ξtt) =
d

dt
(a(uh)θt, ξt) − (au(uh)uhtθt, ξt) − (a(uh)θtt, ξt),

(b(uh)θ, ξtt) =
d

dt
(b(uh)θ, ξt) − (bu(uh)uhtθ, ξt) − (b(uh)θt, ξt).

(3.9)

Thus, (3.8) can be written as

(∇ · ζ,∇ · ζ) + 1
2
d

dt
(a(uh)ξt, ξt) +

d

dt
(b(uh)ξ, ξt)

=
1
2
(au(uh)uhtξt, ξt) + (bu(uh)uhtξ, ξt) + (b(uh)ξt, ξt) − (θtt, ζ)

+
d

dt

(
η, ξt

) − (
ηt, ξt

) − d

dt
(σt(a(u) − a(uh)), ξt)

+ (σtt(a(u) − a(uh)), ξt) + (σt(au(u)ut − au(uh)uht), ξt)

− d

dt
(σ(b(u) − b(uh)), ξt) + (σt(b(u) − b(uh)), ξt)

+ (σ(bu(u)ut − bu(uh)uht), ξt) − d

dt
(a(uh)θt, ξt) + (au(uh)uhtθt, ξt)

+ (a(uh)θtt, ξt) − d

dt
(b(uh)θ, ξt) + (bu(uh)uhtθ, ξt) + (b(uh)θt, ξt).

(3.10)
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Integrating this system from 0 to t yields

∫ t

0
‖∇ · ζ‖2dτ +

1
2
(a(uh)ξt, ξt) + (b(uh)ξ, ξt)

=
(
η, ξt

) − (σt(a(u) − a(uh)), ξt) − (σ(b(u) − b(uh)), ξt) − (a(uh)θt, ξt)

− (b(uh)θ, ξt) +
1
2

∫ t

0
(au(uh)uhtξt, ξt)dτ +

∫ t

0
(bu(uh)uhtξ, ξt)dτ +

∫ t

0
(b(uh)ξt, ξt)dτ

−
∫ t

0
(θtt, ζ)dτ −

∫ t

0

(
ηt, ξt

)
dτ +

∫ t

0
(σtt(a(u) − a(uh)), ξt)dτ

+
∫ t

0
(σt(au(u)ut − au(uh)uht), ξt)dτ +

∫ t

0
(σt(b(u) − b(uh)), ξt)dτ

+
∫ t

0
(σ(bu(u)ut − bu(uh)uht), ξt)dτ +

∫ t

0
(au(uh)uhtθt, ξt)dτ

+
∫ t

0
(a(uh)θtt, ξt)dτ +

∫ t

0
(bu(uh)uhtθ, ξt)dτ +

∫ t

0
(b(uh)θt, ξt)dτ.

(3.11)

In what follows, we, respectively, analyze the terms on the right-hand side of (3.11). By the
Cauchy-Schwartz inequality, we can bound the sixth term on the right-hand side of (3.11) as
follows:

∣∣∣∣∣

∫ t

0

1
2
(au(uh)uhtξt, ξt)dτ

∣∣∣∣∣
=

1
2

∣∣∣∣∣

∫ t

0
(au(uh)utξt, ξt)dτ +

∫ t

0

1
2
(au(uh)(uht − ut)ξt, ξt)dτ

∣∣∣∣∣

≤ C
∫ t

0
‖ξt‖2dτ + C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖αt‖2 +

∥∥βt
∥∥2 + ‖ξt‖2

)
dτ.

(3.12)

For the seventh term on the right-hand side of (3.11), one has

∣∣∣∣∣

∫ t

0
(bu(uh)uhtξ, ξt)dτ

∣∣∣∣∣
=

∣∣∣∣∣

∫ t

0
(bu(uh)(uht − ut)ξ, ξt) + (bu(uh)utξ, ξt)dτ

∣∣∣∣∣

≤ C
∫ t

0

(
‖ξt‖2 + ‖ξ‖2

)
dτ + C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖αt‖2 +

∥∥βt
∥∥2 + ‖ξ‖2

)
dτ.

(3.13)
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For the term
∫ t
0(σt(au(u)ut − au(uh)uht), ξt)dτ on the right side of (3.11), we have

∣
∣
∣
∣∣

∫ t

0
(σt(au(u)ut − au(uh)uht), ξt)dτ

∣
∣
∣
∣∣
=

∣
∣
∣
∣∣

∫ t

0
(σt(au(u) − au(uh))ut + au(uh)(ut − uht), ξt)dτ

∣
∣
∣
∣∣

≤ C
∫ t

0

(
‖α‖2 + ∥

∥β
∥
∥2 + ‖αt‖2 +

∥
∥βt

∥
∥2 + ‖ξt‖2

)
dτ.

(3.14)

Similarly,

∣
∣
∣
∣
∣

∫ t

0
(σ (bu(u)ut − bu(uh)uht), ξt)dτ

∣
∣
∣
∣
∣
≤
∫ t

0
|(σ (bu(u) − bu(uh))ut + bu(uh)(ut − uht), ξt)|dτ

≤ C
∫ t

0

(
‖α‖2 + ∥∥β

∥∥2 + ‖αt‖2 +
∥∥βt

∥∥2 + ‖ξt‖2
)
dτ,

∣∣∣∣∣

∫ t

0
(au(uh)uhtθt, ξt)dτ

∣∣∣∣∣
=

∣∣∣∣∣

∫ t

0
(au(uh)(uht − ut)θt, ξt)dτ +

∫ t

0
(au(uh)utθt, ξt)dτ

∣∣∣∣∣

≤ C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖αt‖2 +

∥∥βt
∥∥2 + ‖θt‖2

)
dτ

+ C
∫ t

0

(
‖θt‖2 + ‖ξt‖2

)
dτ,

∣∣∣∣∣

∫ t

0
(bu(uh)uhtθ, ξt)dτ

∣∣∣∣∣
≤
∫ t

0
|(bu(uh)(uht − ut)θ, ξt)|dτ +

∫ t

0
|(bu(uh)utθ, ξt)|dτ

≤ C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖αt‖2 +

∥∥βt
∥∥2 + ‖θ‖2

)
dτ

+ C
∫ t

0

(
‖θ‖2 + ‖ξt‖2

)
dτ.

(3.15)

Inserting (3.12)–(3.15) into (3.11) and using the Cauchy-Schwartz inequality lead to

∫ t

0
‖∇ · ζ‖2dτ +

1
2
(a(uh)ξt, ξt) + (b(uh)ξ, ξt)

≤ C
(∥∥η

∥∥2 + ‖ξt‖2 + ‖α‖2 + ∥∥β
∥∥2 + ‖θ‖2 + ‖θt‖2

)

+ C
∫ t

0

(
‖θtt‖2 + ‖θt‖2 + ‖ξt‖2 +

∥∥ηt
∥∥2 + ‖α‖2 + ∥∥β

∥∥2 + ‖ζ‖2
)
dτ

+ C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖αt‖2 +

∥∥βt
∥∥2 + ‖ξt‖2

)
dτ
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+ C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖θt‖2 + ‖θ‖2 + ‖ξ‖2

)
dτ

+ C
∫ t

0

(
‖θt‖2 + ‖θ‖2 + ‖ξ‖2 + ‖ξt‖2

)
dτ.

(3.16)

Integrating (3.16) from 0 to t, using the fact (b(uh)ξ, ξt) = (1/2)(d/dt)(b(uh)ξ, ξ) −
(1/2)(bu(uh)uhtξ, ξt) and the inequality

∫ t

0

∫ τ

0

∣
∣ψ(s)

∣
∣2dsdτ ≤ C

∫ t

0

∣
∣ψ(s)

∣
∣2ds, (3.17)

yields

‖ξ‖2 ≤ C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖αt‖2 +

∥∥βt
∥∥2 + ‖ξt‖2

)
dτ

+ C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖θt‖2 + ‖θ‖2 + ‖ξ‖2

)
dτ

+ C
∫ t

0

(
‖αt‖2 +

∥∥βt
∥∥2 + ‖α‖2 + ∥∥β

∥∥2 + ‖θt‖2

+‖θ‖2 + ‖θtt‖2 +
∥∥ηt

∥∥2 + ‖ξ‖2 + ‖ξt‖2 + ‖ζ‖2
)
dτ.

(3.18)

Thus, to estimate ‖ξ‖, we need to estimate ‖β‖, ‖βt‖, ‖ζ‖, and ‖ξt‖. Taking vh = β in (3.5) leads
to

(∇β,∇β) =
(
ξ,∇β) + (

θ,∇β). (3.19)

By the Cauchy-Schwartz inequality, we obtain

∥∥∇β∥∥ ≤ C(‖ξ‖ + ‖θ‖). (3.20)

Note that β ∈ Vh ⊂ H1
0(Ω) and ‖β‖ ≤ C‖∇β‖. We further have

∥∥β
∥∥ ≤ C(‖ξ‖ + ‖θ‖). (3.21)

Differentiating (3.5)with respect to t and choosing vh = βt gives

∥∥∇βt
∥∥ ≤ C(‖ξt‖ + ‖θt‖). (3.22)

Similarly, since β ∈ Vh ⊂ H1
0(Ω), one has ‖βt‖ ≤ ‖∇βt‖ ≤ C(‖ξt‖ + ‖θt‖).
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Taking wh = ζ in (3.6), one has

(ζ, ζ) = (a(uh)ξt, ζ) + (b(uh)ξ, ζ) + (σt(a(u) − a(uh)), ζ)
+ (σ(b(u) − b(uh)), ζ) + (a(uh)θt, ζ) + (b(uh)θ, ζ) −

(
η, ζ

)
.

(3.23)

By the Cauchy-Schwartz inequality, we obtain

‖ζ‖ ≤ C(‖ξ‖ + ‖θt‖ + ‖θ‖ + ∥
∥η

∥
∥ + ‖α‖ + ∥

∥β
∥
∥ + ‖ξt‖

)
. (3.24)

To bound ‖ξt‖2, we differentiate (3.6)with respect to t to obtain

(ζt,wh) − (a(uh)ξtt,wh) − (b(uh)ξt,wh)

= (au(uh)uhtξt,wh) + (bu(uh)uhtξ,wh)

+ (σtt(a(u) − a(uh)),wh) + (σt(au(u)ut − au(uh)uht),wh)

+ (σt(b(u) − b(uh)),wh) + (σ(bu(u)ut − bu(uh)uht),wh)

+ (a(uh)θtt,wh) + (au(uh)uhtθt,wh)

+ (b(uh)θt,wh) + (bu(uh)uhtθ,wh) −
(
ηt,wh

)
, ∀wh ∈ Hh.

(3.25)

Testing (3.25) with wh = ξtt and (3.4) with qh = ζt and combining the resulting equations
together lead to

(∇ · ζ,∇ · ζt) + (a(uh)ξtt, ξtt) + (b(uh)ξt, ξtt)

= −(au(uh)uhtξt, ξtt) − (bu(uh)uhtξ, ξtt)

− (σtt(a(u) − a(uh)), ξtt) − (σt(au(u)ut − au(uh)uht), ξtt)
− (σt(b(u) − b(uh)), ξtt) − (σ(bu(u)ut − bu(uh)uht), ξtt)
− (a(uh)θtt, ξtt) − (au(uh)uhtθt, ξtt) − (θt, ζt)

− (b(uh)θt, ξtt) − (bu(uh)uhtθ, ξtt) +
(
ηt, ξtt

)
.

(3.26)

Note that

(b(uh)ξt, ξtt) =
1
2
d

dt
(b(uh)ξt, ξt) − 1

2
(bu(uh)uhtξ, ξt),

(∇ · ζ,∇ · ζt) = 1
2
d

dt
(∇ · ζ,∇ · ζ),

(θt, ζt) =
d

dt
(θt, ζ) − (θtt, ζ).

(3.27)
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Thus, (3.26) can be rewritten as

1
2
d

dt
(∇ · ζ,∇ · ζ) + (a(uh)ξtt, ξtt) +

1
2
d

dt
(b(uh)ξt, ξt)

= −(au(uh)uhtξt, ξtt) − 1
2
(bu(uh)uhtξ, ξtt)

− (σtt(a(u) − a(uh)), ξtt) − (σt(au(u)ut − au(uh)uht), ξtt)
− (σt(b(u) − b(uh), ξtt) − (σ(bu(u)ut − bu(uh)uht), ξtt)

− (a(uh)θtt, ξtt) − (au(uh)uhtθt, ξtt) − d

dt
(θt, ζ) + (θtt, ζ)

−(b(uh)θt, ξtt) − (bu(uh)uhtθ, ξtt)) +
(
ηt, ξtt

)
.

(3.28)

Integrating (3.28) from 0 to t yields

(∇ · ζ,∇ · ζ) +
∫ t

0
(a(uh)ξtt, ξtt) + (b(uh)ξt, ξt)

= −
∫ t

0
(au(uh)uhtξt, ξtt)dτ − 1

2

∫ t

0
(bu(uh)uhtξ, ξtt)dτ

−
∫ t

0
(σtt(a(u) − a(uh)), ξtt)dτ −

∫ t

0
(σt(au(u)ut − au(uh)uht), ξtt)dτ

−
∫ t

0
(σt(b(u) − b(uh)), ξtt)dτ −

∫ t

0
(σ(bu(u)ut − bu(uh)uht), ξtt)dτ

−
∫ t

0
(a(uh)θtt, ξtt)dτ −

∫ t

0
(au(uh)uhtθt, ξtt)dτ − (θt, ζ) +

∫ t

0
(θtt, ζ)dτ

−
∫ t

0
(b(uh)θt, ξtt)dτ −

∫ t

0
(bu(uh)uhtθ, ξtt)dτ +

∫ t

0

(
ηt, ξtt

)
dτ.

(3.29)

For the first term on the right-hand side of (3.29), by the Cauchy-Schwarz inequality
and Young’s inequality, for sufficiently small constant ε > 0, it holds that

∣∣∣∣∣
−
∫ t

0
(au(uh)uhtξt, ξtt)dτ

∣∣∣∣∣
≤
∣∣∣∣∣

∫ t

0
(au(uh)(uht − ut)ξt, ξtt)dτ

∣∣∣∣∣
+

∣∣∣∣∣

∫ t

0
(au(uh)utξt, ξtt)dτ

∣∣∣∣∣

≤ C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖αt‖2 +

∥∥βt
∥∥2

)
dτ

+ C
∫ t

0
‖ξt‖2dτ + ε

(
1 + ‖ξt‖L∞(0,t;L∞)

)∫ t

0
‖ξtt‖2dτ.

(3.30)
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Similarly, we can bound (3.29) as follows:

‖∇ · ζ‖2 + ‖ξt‖2 +
∫ t

0
‖ξtt‖2dτ ≤ C‖ξt‖L∞(0,t;L∞)

∫ t

0

(
‖αt‖2 +

∥
∥βt

∥
∥2

)
dτ

+ ε
(
1 + ‖ξt‖L∞(0,t;L∞)

)∫ t

0
‖ξtt‖2dτ

+ C‖ξ‖L∞(0,t;L∞)

∫ t

0

(
‖αt‖2 +

∥
∥βt

∥
∥2
)
dτ

+ ε
(
1 + ‖ξ‖L∞(0,t;L∞)

)∫ t

0
‖ξtt‖2dτ

+ C
∫ t

0

(
‖ξ‖2 + ‖ζ‖2 + ‖θtt‖2 + ‖θt‖2 + ‖θ‖2

+‖α‖2 + ‖αt‖2 +
∥∥β

∥∥2 +
∥∥βt

∥∥2 +
∥∥ηt

∥∥2 + ‖ξt‖2
)
dτ

+ ‖θt‖‖ζ‖.
(3.31)

In the following error analysis, we make an induction hypothesis:

(
‖ξt‖L∞(0,t;L∞) + ‖ξ‖L∞(0,t;L∞)

)
≤ 1. (3.32)

Utilizing (3.32), (3.24), (3.22), (3.21), and Young’s inequality, one can reduce (3.31) to

‖∇ · ζ‖2 + ‖ξt‖2 ≤ C
(
‖ξ‖2 + ‖θt‖2 + ‖θ‖2 + ‖α‖2 + ∥∥η

∥∥2
)

+ C
∫ t

0

(
‖ξ‖2 + ‖θtt‖2 + ‖θt‖2 + ‖θ‖2 + ‖α‖2 + ‖αt‖2 +

∥∥ηt
∥∥2 + ‖ξt‖2

)
dτ.

(3.33)

Then by Gronwall’s inequality, we obtain

‖∇ · ζ‖2 + ‖ξt‖2 ≤ C
(
‖ξ‖2 + ‖θt‖2 + ‖θ‖2 + ‖α‖2 + ∥∥η

∥∥2
)

+ C
∫ t

0

(
‖ξ‖2 + ‖θtt‖2 + ‖θt‖2 + ‖θ‖2 + ‖α‖2 + ‖αt‖2 +

∥∥ηt
∥∥2

)
dτ.

(3.34)

Furthermore, by (3.24) and (3.34), one has

‖ζ‖2 ≤ C
(
‖ξ‖2 + ‖θt‖2 + ‖θ‖2 + ‖α‖2 + ∥∥η

∥∥2
)

+ C
∫ t

0

(
‖ξ‖2 + ‖θtt‖2 + ‖θt‖2 + ‖θ‖2 + ‖α‖2 + ‖αt‖2 +

∥∥ηt
∥∥2
)
dτ.

(3.35)
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Therefore, by the estimates of ‖β‖, ‖βt‖, ‖ζ‖, and ‖ξt‖, it follows that

‖ξ‖2 ≤ C
∫ t

0

(
‖ξ‖2 + ‖θtt‖2 + ‖θt‖2 + ‖θ‖2 + ‖α‖2 + ‖αt‖2 +

∥
∥η

∥
∥2 +

∥
∥ηt

∥
∥2

)
dτ. (3.36)

Applying Gronwall’s inequality to the above equation and using the estimates of projection
operators give

‖ξ‖2 ≤ C
∫ t

0

(
‖θtt‖2 + ‖θt‖2 + ‖θ‖2 + ‖α‖2 + ‖αt‖2 +

∥
∥η

∥
∥2 +

∥
∥ηt

∥
∥2

)
dτ

≤ Chmin(2k+2,2m+2)
(
‖ut‖2L∞(Hm+1) + ‖u‖2

L∞(Hm+1) + ‖pt‖2L∞(Hk+1)

+‖p‖2L∞(Hk+1) + ‖σt‖2L∞(Hk+1) + ‖σtt‖2L∞(Hk+1) + ‖σ‖2
L∞(Hk+1)

)
.

(3.37)

Inserting the estimate of ‖ξ‖ into (3.34) yields

‖ξt‖2 ≤ Chmin(2k+2,2m+2). (3.38)

Thus, the estimates of β and ζ follow from the estimate of ξ.
Finally, according to the proof of the induction hypothesis in [23, 30], we can prove that

the inductive hypothesis (3.32) holds. In fact, when t = 0, then ξ(0) = 0, ξt(0) = 0. Note that
‖ξ‖L∞(0,t;L∞) + ‖ξt‖L∞(0,t;L∞) is continuous w.r.t. t. Then, we conclude that there exists t1 ∈ (0, T]
such that

‖ξ‖L∞(0,t1;L∞) + ‖ξt‖L∞(0,t1;L∞) ≤ 1. (3.39)

Set t∗ = sup t1. Thus, ‖ξ‖L∞(0,t∗;L∞) + ‖ξt‖L∞(0,t∗;L∞) ≤ 1. Therefore, we have

‖ξ(t∗)‖ + ‖ξt(t∗)‖ ≤ Chmin(k+1,m+1). (3.40)

By inverse estimates, we deduce that, for any 0 ≤ t ≤ t∗, it holds that

‖ξ‖L∞(0,t;L∞) + ‖ξt‖L∞(0,t;L∞) ≤ Chmin(k+1,m+1)−d/2. (3.41)

Then we can take h > 0 sufficiently small such that

‖ξ‖L∞(0,t∗;L∞) + ‖ξt‖L∞(0,t∗;L∞) < 1. (3.42)

Again, by the continuity of ‖ξ‖L∞(0,t;L∞) + ‖ξt‖L∞(0,t;L∞), we conclude that there exists a positive
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constant δ such that

‖ξ‖L∞(0,t∗+δ;L∞) + ‖ξt‖L∞(0,t∗+δ;L∞) ≤ 1, (3.43)

which contracts to the definition of t∗. This completes the proof of the induction hypothesis.
Combining (3.21), (3.37), (3.2), (2.26), (2.27)with the estimates of auxiliary projections

and utilizing the triangle inequality, we can derive the desired result.

Remark 3.2. By Theorem 3.1 and the standard embedding theorem, we can obtain the L∞

estimate for d = 1 and 2 as follows:

‖u − uh‖L∞(L∞) ≤ C2|lnh|d−1hmin(k+1,m+1). (3.44)

4. Conclusion

In this paper, H1-Galerkin mixed finite element method combining with expanded mixed
element method is discussed for nonlinear viscoelasticity equations. This method solves the
scalar unknown, its gradient, and its flux, directly. It is suitable for the case that the coefficient
of the differential is a small tensor and does not need to be inverted. Furthermore, the
formulation permits the use of standard continuous and piecewise (linear and higher-order)
polynomials in contrast to continuously differentiable piecewise polynomials required by
the standardH1-Galerkin methods and is free of the LBB condition which is required by the
mixed finite element methods.

There are also some important issues to be addressed in the area; for example, one
can consider numerical implementation and mathematical and numerical analysis of the full
discrete procedure. This is an important and challenging topic in the future research.
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