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We obtain the analytical general solution of the linear fractional differential equations with
constant coefficients by Adomian decomposition method under nonhomogeneous initial value
condition, which is in the sense of the Caputo fractional derivative.

1. Introduction

Fractional differential equations are hot topics both in mathematics and physics. Recently, the
fractional differential equations have been the subject of intensive research. There are several
methods to obtain the solution, such as the Laplace transform method, power series method,
and Green function method. Many remarkable results for the fractional differential equations
can be found in the literature [1-11]. In particular, the Adomian decomposition method has
attracted the attention of many mathematicians [12-15].

For a better understanding of the fractional derivatives and for a physical understand-
ing of the fractional equations, the readers can refer to the recent publications in [16, 17].
Ebaid [18] suggested a modification of the Adomian method, and a few iterations lead
to exact solution. Das [19] compared the variational iteration method with the Adomian
method for fractional equations and found that the variational iteration method is much more
effective. For other methods of the fractional differential equations, especially the homotopy
perturbation method, variational iteration method and differential transform method were
presented in [20, 21].
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Consider the following n-term fractional differential equation with constant coeffi-
cients:

an[CDﬂ"]y(f) +a, [CDﬁna]y(t) ot [CDﬂl]y(t) + ao[cDﬂO]y(t) =f(t), (1.1)

wheren+1>p>n>f,.1>--->p1 >pPoand a; (i =0,1,...,n) is a real constant. In [12],
the authors obtain the particular solution of (1.1) of the homogeneous initial value problem
of the form

y'(0)=0, i=0,1,...,n (1.2)

However, it seems also more meaningful and more complicated for solving general
solution of (1.1) under nonhomogeneous initial value condition. Therefore, in this paper, we
will remove the restriction of the homogeneous initial value, consider the nonhomogeneous
initial value problems of the form

vi)=cy, i=01,...,n ji=12,...1L L-1<p<I, (1.3)

and obtain the analytical general solution of (1.1), which generalizes the result in [12].

We organize the paper as follows. In Section 2, we give some basic definitions and
properties. In Section 3, we obtain the analytical general solution of the linear fractional
differential equations by Adomian decomposition method. Some explicit examples are given
in Section 4.

2. Basic Definitions and Notations

Definition 2.1 (see [1]). The Riemann-Liouville integral of order p is defined by

1

a t—P t) = ——
PO =)

f t (t-7)P f(r)dr, p>0. (2.1)

From Definition 2.1, we clearly see that

T'(l+wv)

aDt_a((t - a)v) = m(t — a)v+a’ (22)
Df ((t-a)”) = %(t -a)”", (2.3)

where a > 0 and v is a real number.
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Definition 2.2 (see [1]). For f(t) € C™(m € N), the Caputo fractional derivative of f(t) is

defined by
Dm‘i”f(m)(t), m-1<p<m,
Soif =1 rw, pem
DUf,  p<o.
Therefore,

I'(1+v)

Tl+v+a) (t-a)™

D ((t-a)")=aDy"* ((t-a)") =
Lemma 2.3 (see [1]). If f(t) is continuous, then

Cy™ () (. o=rt £(n) LD (a)(t - a)
aDt f (t)—aDt f (t) (t) Z r( +1) , neZz.

Lemma 2.4 (see [1]). If f(t) is continuous, then

D" (D) f=aD," (aD ") fD=aD," f =D, F (0= 5D, (§

Lemma 2.5. If f(t) is continuous, then

(t— a)l 7P

m-1
CP(CH1 _ P _ Dgy— =2
ZDy <aDt>f(t)_aDt f®) j:ZOf] (a)l"(]'_q+p+1)/

wherem—-1<g<mand q < p.

Proof. From Definition 2.2 and Lemmas 2.3-2.4, we get

D7 (SD7) f() = D" (LDF™) F ) = D[ D7 (D) f )]

D DO 0] = "’*"[f(t) Z

- m=1 £(j) (a)(t- a)j—qﬂ’
aDq 14 £ — f ' )
JeLs ééro—q+p+n

D;”)f(t).

} fO(a)(t - a)
r@G+1)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)
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It is easy to see that

- a)

r( ) (2.10)

D" (SDY) £t = £(b) - Zﬂ“( yL-ar

Proposition 2.6 (see [12]). One has

(oo} [o0) [ee)
klz:o T knzzoakl,kzmknflkn = Z Z Ak k1K * (2.11)

m=0 ki,...,ku1,kn >0
ky++kp-1+k,=m

Proposition 2.7 (see [12]). More over, one has

Z Z Aley Jekenrky = Z Z Z Gy ey k-1 kn (2.12)

m=0 ky,... ky-1,kn>0 5=0 ki,...kyu-1>0k,=
ki+-+ky_1+k,=m k1+ +ky-1=5

3. The Analytical Solution of the Linear Constant Coefficient
Fractional Differential Equation

For simplicity, if a = 0, then we denote D or {D,” by DP or €D,

In this section, we use Adomian decomposition method to discuss the general form
of the linear fractional differential equations with constant coefficients, and apply and some
basic transformation and integration to obtain the solution of the equations.

Let us consider the following n-term linear fractional differential equations with
constant coefficients:

ay [CDﬂn]y(t) + an-1 [CD'EH]y(t) totm [CDﬂl]y(t) * aO[CDﬂO]y(t) - f(t),

y(ji)(o) = Cijis i=0,1,...,n, ji =1,2,...,L;, [ -1< ﬂi <l

(3.1)

wheren+1> f, >n>p,1---> p1 > po, a; and c;j, are real constants, Cpr= g Df denotes
Caputo fractional derivative of order a.
Applying €D~ to both sides of (1.1) and utilizing Lemma 2.5, we get

y(t) 4l n 1 CDﬁn—l_ﬁny(t) +oeee g ﬂO ﬁny(t)

n

(3.2)

by n G {Bn=Pi+]i
D)+ —Dai >y (0) —.
ng z_: T(1+pu=Pi+ji)
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By the Adomian decomposition method, we obtain the recursive relationship as
follows:

n

1 -8, 1 li—l )
vo®) = — D f(t) + — X a3y ()
n jiZO

n =0

tPn=Pi+ji
T(1+Bn—Pi+ji)

an— n-1—"Pn a “Pn
yl(t):—<a—1CDp p +..-+a—0CDﬂ0ﬂ>y0(t),

n n

2
_ 12 Gn1 PP, G0 CPoPa
ya(t) = (-1) < D +4— D ) yo(t), (33)

a‘r‘l n

Ap- n-1="Fn a “Pn s
lt) = () (22D DT
n n

By Adomian decomposition method, adding all terms of the recursion, we obtain the
solution of (1.1) as

y(t) = D ys(b)
5=0

o0 S
_ Z(_l)s<an—1 cpfrih L, % cDﬂo—ﬂn> Yo(t)

5=0 an n
1 & a a s G4
= — 1 s( n-1 Dﬁ"-lfﬂn 4ot _ODﬂO’ﬁn) D’ﬁn t
o ;( ) o 2, f()
1 & An1 _ ap s \°& i hn=Pitji
+ — -1 s<n_Dﬂn*1 Pn 4o+ _DﬁO ﬂn) a; (ji) 0 .
Zo( "%, an Zo ]Zoy Or s p i
Let
[oe] s
Il — lZ(_l)S ( an-1 Dﬂn,l—ﬂn 4ot @Dﬂ(]‘ﬂn) D‘ﬂnf(t)
a, < an an
(3.5)
ol li-1 n—Pitji
L= lz(_l)s<@DﬁH—ﬂn . @Dﬂo—ﬂn>s " 0 Sy (0) i
an 520 n an 20 ji=0 T(1+Bn—pi+ji)
Then,
y(t) =6+ L. (3.6)

Next, we estimate I; and I, respectively.
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For I, by [12] we obtain

S
_Z( 1) (EDﬂn%‘ﬁn + oo+ @Dﬂl)‘ﬁn) D‘ﬁnf(t),
Qn ay

a”sO

t o (_q1\m
:f S3E S mkk k)

0%nm=0 ™M ko kykna0
k0+k1+ +kr, 2=m (3_7)

y Hn 2 aP kP (t _ T) (ﬁn—ﬂn—l)m"'ﬂn"‘z;:[%(ﬂ"*l_ﬂf)kf_l
n

p=0

(m) ap-1 Bn—Bu-1
E _&nl ppupn dr.
ﬂn—ﬁn-1,ﬁn+z;~’;§(ﬂn-fﬂ;)kj( Py )f (r)dr

For I, by the initial conditions (2.10) we get

tPn=Pitji

s n -1
an-1 - ao - i
§ (-1)° ( DPr1=Pr 4 ...+ Z0 Do ﬂn> § ai§ y(h)(o) :
an i20 =0 T(1+Bn—Pi+ji)

ns=0

:_Z( I ko!kl!'s'!‘kn_ll<a;:)kn-l<a;:)kn-z._.<Z_:>"° (3.8)

n 20 ko k1,....kn-120
ko+ki++kp1=s

no Lol Bn=Pitji
X Dkn—l (pnfl_ﬁn)'*‘kan (ﬁn—z _ﬂn)+"'+k0 (ﬂO _pn) Z alZ

ci _
=0 ji=0 YT+ Bu=pi+ i)

Using formulas (2.2) and (2.3), the above expression can be written as

a3 () () ()
Meqlon. (
ay 520 Kokt oon g >0 ko.kl. knfl- ay ay an

k0+k1+---+kn_1 =5

i li-1 ) Pn=Pitji+kn-1 Bu=Pn-1)+kn-2 Gn=Pn2)+-+ko (Bn—Po)
X a; Cii.
S ET(A) T(A + kot (Br = Pac1) + kna(Br = Pu2) +---+ ko (Br — o))

K K k
S YED) o (“n—l) 1(%—2) (@)
- Teal oo [
"s 0 Kokt porkn 23>0 ko.kl. kn—l- an an ay

ko+ki+-+ky-1=s

tpn‘ﬁi"’]’i"’knfl (ﬁn_ﬂn—l )+kn72 (ﬁn _pn72)+'“+k0 (ﬁn —ﬂo)

Z”’lgc”‘r@wknl(ﬁn But) + Kn2(Br — ua) + - + Ko(n — o))
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n -1

1 & s!
= Z D(ﬂz -ji=1) _Z(_l)s Z
=0 ji=0 n s=0 ko k1 ,....kn-1 >0 kO'kl' e k”_1!

ko+ki+-+ky-1=s

() () ()
Qn Qn Qn
tﬂn’1+kn—l (ﬁn *ﬂn—l )*kn—Z (ﬂn*ﬁn—2)+"'+k0 (ﬂn*ﬂo)

" T(Bu+ kot (Br — Prt) + kn2(Bu — fn2) + -+ Ko (B — fi))

(3.9)

where o/ denotes 1 + f3, — f; + ji.
Using Propositions 2.6 and 2.7, the above solution is equivalent to the following form:

1 [ee] [*e]

7 ky-1+m (k +m)_'
%azzcl D — Z Z Z (-1) ' ']:1.1 kepq!

ji An 1520 m=0 koK1, K 230
k0+k1+ +ky, 2=m

. Ay k-1 Ay kn—2 N @ ko
an an an
tﬁn*1+kn—l (ﬂn’ﬁn—l)+kn—2(ﬁn*ﬂn—2)+'"+k0(ﬂn*ﬂ0)

" T(Bu+ kot (Br — Prr) + Kn2 (B — fz) + -+ ko (B — f0))

n

-1
- (- 1) m!
=Z ey D0 | LS 2 R Eo

20 ji=0 angz M SR S0 n-2:
ko+ki+-+kyp=m

kr
<TT" <_r> HBaPu ) SR (Pra=P) ka1

e

n 1=0

thnt(Bu—Pn-1)
(K-t (Bu = Puct) + (B = Pua )+ 3325 (Bus = Pi)Ks + )

X
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n ;-1 o 1 & (_1)m
=Za,-2c,-jip<ﬂt =3 > (miko k... kn)

i20 =0 Anmmy M SR S0
ko+ki+-+kyo=m
kr
N H:;g <Z_;) HBuuyms S5 Bur—Po)ks a1
(m) n-1 ﬁn*ﬂn—l
E - t
) ﬁn—ﬂn—llzglﬁ(ﬂnfl—ﬂz)kﬁﬂn( a, >
(3.10)
Therefore,
y(t) =L+1D
t ') m
-1
= - ( )' Z (m/ kO/ kl/-'~/kn—2)
0 an m=0 i ko,k1,‘..,kn,220
k0+k1+--»+k,,_2:m
k
n=2(Gp \* (Bu=Bu )Pt S8 (Bua—B) =1
<TL(2) " - mthrbemse ity
(m) ap-1 Bru—Pr-1
E ~ L Db
* ﬂn—ﬂn-l,ﬂn+z;‘;§<ﬂn-vﬁj>kf( an >f ()dr
(3.11)
n li—l L 1 o0 (_1)111
+ ZaizcijiD(ﬁi_]i_ ) _Z 1 Z (ml kO/ k1/~ . '/kn—z)
i20 =0 =0 M o kikn220
ko+ky+++kyo=m
ky )
T ( Z_:l > B SE2 Bua =Pk 1
% E(m) , <_ an-1 tﬂn_ﬂn—l>
Prprr 3 (Bur—P1) ks+pn an
where
m!
skoki,..., kyy) = ———m—+—, 3.12
(m; ko, k1 n-2) kolka! ko ( )
and Eiijl(y) is the Mittag-Leffler function
0 d & i+
E = -E = _ .
() ay e (¥) 7% FIYETESYEy (3.13)
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Substituting the Green function

Gn(t)zali(_l)m > (mikoky, ... ko)

T m=0 © o koki,kn220
ko+ki++kpo=m

-2 k
< T ( i ) ? LB ms P S (Brr—ppky 1 (3.14)
p=0 \ fn
(m) An1 pypnpos
E ———DFn
X ﬂn_ﬁn—hﬁn*z;:(%(ﬂn—l_ﬂj)kj < ay )
into the above expression, we know that
t n Ii-1 Bimji=1)
y(t) = f Gult = 1) f()dr + S a3 i, GP IV (1) (3.15)
0 i=0 ;=0

is the analytical general solution of (1.1).

4. Illustrative Examples

In order to verify our conclusions, we give some examples.
(1). Consider an initial value problem for the relaxation-oscillation equation (see [1])

Dy(t) + Ay(t) = f(t), t>0,

(4.1)
y0)=b;, j=12,...,m-1, m-l<a<m,
where b; are real constants.
Utilizing Lemma 2.5 and applying D~ to both sides of (4.1), we obtain
m-1 t]'
. (4.2)

—a =D ()
y(0)+ AD7y(0) = Df®) + Sy Oy
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According to the above procedure of solving the linear fractional differential equations
with constant coefficients and using the Adomian decomposition method, let

m-1
_ a () v
() = D0+ Sy O s
yi(t) = =AD" yo(t),

va(t) = —AD ™y (t) = (-A)’Dyo(t), 13)

ys(t) = _AD_uys—l (t) = (—A)SD_Sayo(t),

Adding all of the above terms, we obtain the solution of the equation by Adomian
decomposition method as follows:

y(t) = Zys(t
s=0

[oe]

= >, (=A)’ DY)

5=0

< (-s-1)a —sa (
=2 (-4°D f(t)+Z( ~A)'D ny()r(]+1)

tj+sa

- m-1 o
_ _ (s+1)a-1 . _ s
-3 et [ fOdr e 202 A Ty @

=ft S (t—T)“’l.M (T)dT + Zb pla=j- 1)[Zta 1 (A ]

0 I'(sa + a) I'(sa+ a)

- f (t=T)" Equ(~A(t - 7)%) f(T)dT + mz_lb,-D(”“f‘” [t“-lEa,a(—At“)]
0 j=0

I Gy(t - 1) f(T)dr + Zb DTG, (1),

j=0

where G, (t) = t*1E, (- At%).
It is easy to see that

y(t) = J'; Gy(t-1)f(T)dT + byD“ DGy (t), (0<a<1). (4.5)
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(2). Consider an initial value problem for the nonhomogeneous Bagley-Torvik
equation (see [5])

Ay'(t) + BED¥?y(t) + Cy(t) = f(t), t>0,

(4.6)
y?0)=a;, i=0,1,
where a; are real constants.
Utilizing Lemma 2.5 and applying D2 to both sides of (4.6), we obtain
1o _
y(H) + = [BD72y () + CD 2y ()]
0 (i ) t1/2+l

- _D R +Zy (0)r( 1) AZ‘/ Orez+9 (47)

_ D 2£(¢ ® (0 B —tl/m
== f(>+Zy ©) F(z+1) TA TG+

According to the above procedure of solving the linear fractional differential equation
with constant coefficients and using the Adomian decomposition method, let

N 1D_2 t 1 0/ fi B $1/2+i
yolt) = f()+i§y ONrasn *2a e

1 C/B
y1(t) = = [BD2y0(t) + CD?yo(t)] = - (EI + D’3/2>D’1/2y0(t),

C/B C\’/B ?
) =-5(e1+ D)0V = (-5) (S1+D°2) D2, )

C/B C\"/B "
) =5 (107D Py = (-3 ) (21077 D7t
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Adding all of the above terms, we obtain the solution of the equation by Adomian
decomposition method as follows:

y(t) = D ynlt)
n=0

n<§1+ D—3/2> —n/zz () LB 0P
C y F(1+1) YA TG+

n n-k
Zcsz<gl> D73k/2D7‘rl/2D—2f(t)

1 w© C nn - B n-k _ak/21n/? ti B t1/2+i
+Zaiz<_2) .G <EI> DD e Y A TG+

i=0 n=0 k=0

1 o] C n n n| B n-k
- _ = = (= —(3k/2+n/2+2)
‘ZZO< A> kz_o(n—k)!k!<CI> A

1 o C nn n! B n-k Gk /2em)2) ti B t1/2+i
+§“i1§)<"2) Z (- k)'k'(CI> b Ti+1) A TG/2+0)

k=0

= ljt§< £>ni <B1)n_k 1 (t_T)Sk/2+n/2+2—1f(T)dT
A)oG\ A) &n- k)'k' T(3k/2+n/2+2)

1 e nn B n-k ti+3k/2+1’l/2
+§0:“§3< )%n k)'k'< > T(i+3k/2+n/2+1)

B {1/2+i+(3k/2)+(n/2) ]

A T(i+3k/2+n/2+3/2)

1 (P& &/ C\""(k+m)! /B \" 1
—Zjokz_éné)(?) mlk! <EI> T(3/2k + (k +m/2) +2)

1 © o k+m m 3k /2+(k+m)/2+1
y C\ " (k +m)! /B ) ¢
.H(1-1) _ = SN
+§“‘D [ZZ< A) mik! (cI I‘(3/2k+(k+m)/2+2)]

w C k+m (k + m)| B m t3k/2+(k+m)/2+1
D/2=0) _
+Z“l [ZZ< A) mik! <CI> T(3/2k + (k +m)/2+2)
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(C/A> e $ (ke m)! (~(B/A)(t—7)"/%)"
Z Z m! T(k/2+m/2+3k/2+2)

; (C/A) o & kemy  (CBAE-)"
+AZaD(1) AZ D e R YAy

f(r)dr

0 k=0

m=0

+AZ“ p/2- z)[ Z( C/A b gy2el

o kemy  (-B/AE-T)Y2)"
* 2 "T((k/2) + (m/2) + (3k/2) +2)

-C/A . B
= Z( / ) T)zk 1E$>23k/2+2< Z(t UZ) f(r)dr

Oko

1- (- C/A) 2k+1 (k) B 1/2
+AZ‘1D( l)|: Z — ¢ +E1/23k/2+2 _Zt

1/2- (- C/A 2k+1 (k) B 1/2
+AZ‘1D( Z)I: Z T E a0 it

f Gs(t— 1) f(T)dT + AZa, [D<1 DGs(t) + DV2G, (t)]

i=0
(4.9)

where Gs(t) = (1/A) T2 ((-C/AF /kNPRIED) ) L (=(B/A)?).
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