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We give a sufficient condition (the solvability of two standard equations) of Sylvester matrix by
using the displacement structure of the Sylvester matrix, and, according to the sufficient condition,
we derive a new fast algorithm for the inversion of a Sylvester matrix, which can be denoted as
a sum of products of two triangular Toeplitz matrices. The stability of the inversion formula for
a Sylvester matrix is also considered. The Sylvester matrix is numerically forward stable if it is

nonsingular and well conditioned.

1. Introduction

Let R[x] be the space of polynomials over the real numbers. Given univariate polynomials

f(x),g(x) € R[x], a1 #0, where

1

f(x)=ax" + ax™ + -+ apa,

a1 20,  g(x) =bix" +box™ " 4+ by, by #0.

Let S denote the Sylvester matrix of f(x) and g(x) :

/a1 as

An+1 \

An+1
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bm bm+1
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Sylvester matrix is applied in many science and technology fields. The solutions of
Sylvester matrix equations and matrix inequations play an important role in the analysis and
design of control systems. In determining the greatest common divisor of two polynomials,
the Sylvester matrix plays a vital role, and the magnitude of the inverse of the Sylvester matrix
is important in determining the distance to the closest polynomials which have a common
root. Assuming that all principal submatrices of the matrix are nonsingular, in [1], Jing Yang
etal. have given a fast algorithm for the inverse of Sylvester matrix by using the displacement
structure of m + n-order Sylvester matrix.

By using the displacement structure of the Sylvester matrix, in this paper, we give
a sufficient condition (the solvability of two standard equations) of Toeplitz matrix, and,
according to the sufficient condition, we derive a new fast algorithm for the inversion
of a Sylvester matrix, which can be denoted as a sum of products of two triangular
Toeplitz matrices. At last, the stability of the inversion formula for a Sylvester matrix is also
considered. The Sylvester matrix is numerically forward stable if it is nonsingular and well
conditioned.

In this paper, | - ||, always denotes the Euclidean or spectral norm and || - ||z the
Frobenius norm.

2. Preliminary Notes
In this section, we present a lemma that is important to our main results.

Lemma 2.1 (see [2, Section 2.4.8]). Let A,B € C"" and a € C. Then for any floating-point
arithmetic with machine precision €, one has that

fl(ad) =aA+E,  |[E|¢ <elal|Allp < ev/nlal| All,,
fl(A+B)=A+B+E,  |E|p<elA+B|p<evn||A+Bl|, (2.1)
fUl(AB) = AB+E,  |[E|p < en||All¢l|Bl|p-

As usual, one neglects the errors of O(€?), O(£2), and O(&g).

3. Sylvester Inversion Formula
In this section, we present our main results.

Theorem 3.1. Let matrix S be a Sylvester matrix; then it satisfies the formula

KS-SK =enf’ —emng’, (3.1)
where K= (0 e1 ez -+ emsn-1) isa (m+ n) x (m + n) shift matrix,

f=(b1 cor by bpe1—ag - —an)T, g:(O e 0 by - bm)T. (3.2)
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Proof. We have that
Apey - 0

/0 a, - apn 0 - 0\ /0 ap - apy 0 - 0\
a; e :

KS-SK=|b; -+ by 0 .- ofl-10- 4 an
by -+ by 0 -0 by -+ by

\0 o/ \0 () b:1 bm/
/o 0\

0 0

=| b1 - by bpan-—a —a -+ -ay

0 0

0 : 0
\0 R ~b,,
/0 0\

0 0
eme_em+ngT: bl bm bm+1_al —az -+ —day

0 0

0 : 0
\o b )

(3.3)
So KS-SK =enfl -emnmg’ . O

Theorem 3.2. Let matrix S be a Sylvester matrix and x = (X1 X2 -+ Xpan)', Y =
(y1 y2 -+ ym+n)T, u=@ m - ymm)T, and V.= (Vi Vs« Viun)! the solutions of the
systems of equations Sx = e, SY = €mn, STy = f,and STy = g, respectively, where ey, and e,y
are both (m + n) x 1 vectors; then

(a) Sisinvertible, and the column vector w; (j =1,2,...,m+n) of S~ satisfies the recurrence
relation

Wm+n = Y,
(3.4)
w1 = Kwj+puix-Vyy, i=m+n,.... 32,
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(b)

Sl = SU, + SoU,

Ymen Ymin-1 " Y2 n 1
Ymen - Y3 W2 Vi 1
Ym+n Ymin-1 Vs Vi 1
Ym+n V2 Vs Vi 1 (3.5)
Xm+n Xmn-1 *°° X2 X1 0
Xmin - X3 X2 pmen 0
+
Xmn Xm+n-1 ps ps o 0
Xman Ho U3 - Hmsn 0

Proof. By Theorem 3.1 Sx = e,, and Sy = ey+n, we have that
KS=SK +enf" = emng" = SK + SxfT - Syg” = S[K +xfT - yg], (3.6)
SO
KiS = KHS[K + xfT - ygT]
= K2KS[K +xfT - yg'|

= K72S[K +xfT - ygT]z (3.7)

= S[K +xfT —ygT]i.
Hence, we have that
Kiepn = K'Sy = S[K +xf" - ygT]iy, i=0,1,..., m+n-1. (3.8)
Let

Wiin—i = [K+xfT—ygT]ly, i=0,1,..., m+n-1. (3.9)
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It is easy to see that Kieyin = emini, and by (3.8)
Swmin-i = K'emin = €min-i, i=0,1,..., m+n—1.
From Sy = e;+n, we have that wyn = y. Let X = (w1 wy -+ Wpan); then
[SX=S(w1 wy -+ Wmen) = (Sw1 Swy -+ SWyin) = Iminl,

so the matrix S is invertible and the inverse of S is the matrix X.
From (3.1), we have that

S (KS-SK)S! =51 <em £T — eman gT> s,
and thus
STK-KS'= x‘uT - yVT.
So
<S‘1K - KS‘1>ei = <xyT - yVT>e,-.
Since Ke; = e;_1, we have that
wi =Ksi+pux-Viy, i=m+mn,...,3,2,

and hence

Wmin =Y,

w1 = Kwj+puix-Viy, i=m+mn,..., 32
For (b), by(3.4)

Wmin =Y,
Wiin-1 = Ky + pminX — Vipiny,

Winn-2 = KZ]/ + KpmsnX — KViiny + hiin-1X = Vipen1y,

wy = Km+n—1y + Km+n—2/4m+nx _ Km+n—2Vm+ny bt HoX — sz'

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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So
St= (wl wy - wm+n)
1
_Vm+n 1
— (Km+n—1y Km+n—2y Ky y)
Vi -V -
V, -V .-
0
Hmsn 0
+ (Kmn-lx Km=2yx ... Kx x)

‘l/ls ‘l/l4 e

K2 H3

Ymn Ymin-1 " Y2 n 1

Ymen - Y3 W2 ~Vinen

Ym+n Ymin-1 -V3

Yman -V

Xmn Xmin-1 " X2 X1 0

Xmin - X3 X2 Hmeen

+
Xm+n Xm+n-1 H3
Xm+n K2

This completes the proof.

4. Stability Analysis

_Vm+n 1

e Hmen O (3.18)

Vi - 1
B VA VA |

py - 0
H3  Hmin 0

In this section, we will show that the Sylvester inversion formula presented in this paper is

evaluation forward stable.

If, for all well conditioned problems, the computed solution X is close to the true
solution x, in the sense that the relative error ||x — X||,/||x||, is small, then we call the
algorithm forward stable (the author called this weakly in [3]). Round-off errors will occur

in the matrix computation.
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Theorem 4.1. Let matrix S be a nonsingular Sylvester matrix and well conditioned; then the formula
in Theorem 3.2 is forward stable.

Proof. Assume that we have computed the solutions X, 7, j, and V of Sx = e, Sy = emn,
STy = f,and STV = g in Theorem 3.2 which are perturbed by the normwise relative errors
bounded by &,

19 < Il +8, (7l < lyla+e, @l <lel.a o, V], <ivia+d.
(4.1)

Thus, we have that

IS1llp < vm+nllyll,, 1Sl < Vm+nlx|,,
Uil € Vm+m\[1+|[VI3,  |[WUallp < Vm+n|pu, -

(4.2)

The inversion formula in Theorem 3.2, using the perturbed solutions %, ¥, i, and V,
can be expressed as

S fl<§1a1 + §2a2>
= fI((S1+ AS1)(U1 + AUL) + (S2 + ASy) (U + AU)) (4.3)

=S 14+ AS Uy + S; AU + AS,U, + So AU, + E + F.

Here, and in the sequel, E is the matrix containing the error which results from computing the
matrix products and F contains the error from subtracting the matrices. For the error matrices
AS;, AU, AS,, and AU,, we have that

IASllp <ElISully < EVmally

v 1ASalp < ESall < EVm Ty,
(4.4)
IAW Iy < 8Ly < EVmrm\[1+ VI3, (AWl < EUalr < &+ |l

By Lemma 2.1, we have the following bounds on E and F:

IEll> < [IEll¢
< e(m+n)([[Sillpltlle + 1520l IU2]1F)

< s(m+n)2<||y||2 L+[[VI3 + IIxIIzII#IIZ) (4.5)

< e+ (|lyll, (1+ 1VIB) + llxl el )

IF|l, < Vm + ng”s-1 ||2
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Consequently, adding all these error bounds, by (4.3), we have that

[ - 57|, < om+ m@z+ o+ me) (il (1 + 1VIE) + Il ) + v | 57 .
(4.6)

From the equations Sx = e,,, Sy = emmST‘u = f,and STy = g in Theorem 3.2, we have
that

lyll, < [|s™

-1 -1
o Vi< |s7| gl il < ||s

o< s @)

Thus, the relative error is

Sros m+ny@E+ (m+me)(|yll, (1 IVIE) + 1l |||
” — ”z < < _12< 2> : 2>2 +evm+n
IS, 1511 (48)

< (m+m) @&+ (m+ne) (1+ |57 gl + 1£1)) +evm+n.

Since S is well conditioned, ||S™!||, is finite. It is easy to see that ||gl|,, |||, are finite.
Therefore, the formula presented in Theorem 3.2 is forward stable.
This completes the proof. O

5. Numerical Example

This section gives an example to illustrate our results. All the following tests are performed
by MATLAB 7.0.

Example 5.1. Given f(x) =x+1, g(x) =x*+x+1,thatis,a1 =1, aa=1, by=1, by =1, by =

Ln=1m=2f=(1,1,0)" ¢=(0,1,1)" and S = Qﬁ?)

So
010\ /110 110\ /010
Ks-sk=|oo01|lo11|-lo11]|loo01
000/ \111 111/\000
(5.1)
011\ (011 00 0
={111|-]loo1]|=]11 o]
000/ \o11 0 -1 -1
0 0 00 0
emfl —emng'=| 1|1 10-]0](011)=|11 0 (5.2)
0 1 0 -1 -1

Therefore, KS - SK = e f! — eming’-
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By the condition of Theorem 3.2, we can get
x=(-1,1,00, y=(@1,-1,1), w=(1,0,00", V=(,1,0)" (5.3)

Obviously, S is invertible and S! = ( ?1 _31 —11 > And it is easy to see that ws =y,

0
w1 = 1
010 -1 -1 1
=|1001 +0] 1 |- -1
000 0 1

Swy + ox - Voy,

-
|

010 -1 1 (5.4)
001 |[-1|+0] 1 |-0] -1
000/ \1 0 1

SZU3 + UzX — V3y,

St = (
-1 0
1-11 1 01 -1\ /0
-( 0 1 +| 01 00
-101 0 000
= S5U; + SU,.
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