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A feedback control method and an adaptive feedback control method are proposed for Chua’s
circuit chaos system, which is a simple 3D autonomous system. The asymptotical stability is
provenwith Lyapunov theory for both of the proposedmethods, and the system can be dragged to
one of its three unstable equilibrium points respectively. Simulation results show that the proposed
methods are valid, and control performance is improved through introducing adaptive technology.

1. Introduction

In the last several decades, much effort has been devoted to the study of nonlinear chaotic
systems. As more and more knowledge is gained about the nature of chaos, recent interests
are now focused on controlling a chaotic system, that is, bringing the chaotic state to an
equilibrium point or a small limit cycle.

After the pioneering work on controlling chaos of Ott et al. [1], there have been many
other attempts to control chaotic systems. These attempts can be classified into two main
streams: the first is parameters’ perturbation that is introduced in [2] and the references
therein. The second is feedback control on an original chaotic system [3–8].

Chua’s circuit has been studied extensively as a prototypical electronic system [7–11].
Chen and Dong [4] applied the linear feedback control for guiding the chaotic trajectory of
the circuit system to a limit cycle. Hwang et al. [5] proposed a feedback control on a modified
Chua’s circuit to drag the chaotic trajectory to its fixed points. He et al. [10] proposed an
adaptive tracking control for a class of Chua’s chaotic systems. At the same time, the adaptive
control technology for chaos systems has undergone rapid developments (see [6, 7, 10] and
the references therein) in the past decade.

The aim of this paper is to introduce a simple, smooth, and adaptive controller
for resolving the control problems of Chua’s circuit system. It is assumed that one state
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Figure 1: Chua’s Circuit Model.
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Figure 2: Nonlinear representation of Rn.

variable is available for implementing the feedback controller. In Section 2, Chua’s circuit
system model is built and its three equilibrium points are analyzed. In Section 3, a feedback
control approach and an adaptive feedback control approach are proposed. In Section 4, the
numerical simulations are presented for two proposed control approaches. Section 5 is the
conclusion.

2. Chua’s Circuit Modeling

Chua’s circuit is a well-known electronic system, which displays very rich and typical
bifurcation and chaos phenomena such as double scroll, dual double scroll, and double hook,
and so forth. The Chua’s circuit is illustrated Figure 1. In the circuit, there are one inductor
(L,r is its inner resistor), two capacitors (C1 and C2), one linear resistor (R), and one piece-
linear resistor (Rn), which has the following volt-ampere characteristic:

G =
i

u
=

⎧
⎨

⎩

m1, |u| < E,

m0, |u| > E,
(2.1)

where, u and i, respectively, are the voltage across Rn and the current through Rn and E is a
positive constant. The characteristic of Rn is illustrated in Figure 2.
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According to the circuit theory, the dynamics of Chua’s circuit systems can be obtained:

C1
d

dt
(vC1) =

(vC2 − vC1)
R

− i(vC1),

C2
d

dt
(vC2) =

(vC1 − vC2)
R

+ iL,

L
diL
dt

= −vC2,

(2.2)

where vC1 and vC2 are the voltages across C1 and C2, respectively, iL is the current through
the inductor L, and

i(vC1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m0vC1 + E(m1 −m0), vC1 > E,

m1vC1, |vC1| ≤ E,

m0vC1 − E(m1 −m0), vC1 < −E.
(2.3)

For Chua’s circuit system described by (2.2) and (2.3), let x1 = vC1, x2 = vC2, x3 = RiL,
τ = t/RC2, a = m1R, b = m0R, p = C2/C1, and q = R2C2/L, where x1, x2, and x3 are system
states. We can obtain the system model of Chua’s circuit:

dx1

dτ
= p

(
x2 − x1 − f(x1)

)
,

dx2

dτ
= x1 − x2 + x3,

dx3

dτ
= −qx2,

(2.4)

where the differential is with respect to variable τ and f(x1) is a piece-linear function as:

f(x1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bx1 + E(a − b), x1 > E,

ax1, |x1| ≤ E,

bx1 − E(a − b), x1 < −E.
(2.5)

Normally due to the piece-linear function, the system described by (2.4) has three
equilibrium points, which are denoted by E(x1r , x2r , x3r) (r = 1, 2, 3). For Chua’s circuit
system described by (2.4), the following conclusion holds.

Theorem 2.1 (see [9]). For Chua’s circuit system described by (2.4) and (2.5), its first Lyapunov
exponent is positive real number, that is, the system trajectory has some chaotic behaviors.
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3. Chaos Control in Chua’s Circuit

When the feedback control is added to the system (2.4), the controlled closed-loop Chua’s
circuit system can be written as

ẋ1 = p
(
x2 − x1 − f(x1)

) − u1,

ẋ2 = x1 − x2 + x3 − u2,

ẋ3 = −qx2 − u3,

(3.1)

where u1, u2, and u3 are external control inputs that calculated according to system states. It
is desired that the control inputs can drag the chaotic trajectory of Chua’s circuit system (2.4)
to one of its three unstable equilibrium points. That is to say, the inputs can change three
unstable equilibrium points of the open-loop system (2.4) to stable equilibrium points of the
closed-loop Chua’s circuit system (3.1).

3.1. Feedback Control

Let the control law take the following form:

u1 = k1(x1 − x1r), u2 = u3 = 0, (3.2)

where k1 is a positive feedback gain and x1r is the goal of the available state x1.
Thus, the closed-loop Chua’s circuit model can be written as

ẋ1 = p
(
x2 − x1 − f(x1)

) − k1(x1 − x1r),

ẋ2 = x1 − x2 + x3,

ẋ3 = −qx2.

(3.3)

For closed-loop system (3.3), the following conclusion can be drawn.

Theorem 3.1. When the feedback gain k1 satisfies

k1 > k1r = −pc, (3.4)

where both p and c are the system parameters and k1r is the minimal stable feedback gain. The
equilibrium points E(x1r , x2r , x3r) of closed-loop Chua’s circuit system (3.3) are asymptotically stable.

Proof. In the neighbourhood of the equilibrium points E(x1r , x2r , x3r), the jacobian matrix of
feedback Chua’s circuit system is

J =

⎡

⎢
⎢
⎣

−p(1 + c) − k1 p 0

1 −1 1

0 −q 0

⎤

⎥
⎥
⎦, (3.5)

where c = b or a.



Mathematical Problems in Engineering 5

Let us define the state errors

e1 = x1 − x1r ,

e2 = x2 − x2r ,

e3 = x3 − x3r .

(3.6)

The error linearized equation of controlled system in the neighborhood of the
equilibrium points is

ė1 = p(e2 − (1 + c)e1) − k1e1,

ė2 = e1 − e2 + e3,

ė3 = −qe2.
(3.7)

The Lyapunov function is defined as

V =
1
2

(
q

p
e21 + qe22 + e23

)

. (3.8)

The time derivative of V in the neighborhood of the equilibrium point is

V̇ =
q

p
e1ė1 + qe2ė2 + e3ė3

=
q

p
e1
(
p(e2 − (1 + c)e1) − k1e1

)
+ qe2(e1 − e2 + e3) − qe3e2

= −q(e1 − e2)2 − q

(

c +
k1
p

)

e21.

(3.9)

It is clear that for the system parameters p, q, and c, if we choose

k1 > k1r = −pc, (3.10)

then V̇ is negative definite and the Lyapunov function V is positive definite. From Lyapunov
stability theorem it follows that the equilibrium point of the system (3.3) is asymptotically
stable.

3.2. Adaptive Control

In the feedback control of Section 3.1,

u1 = k1(x1 − x1r), u2 = u3 = 0 (3.11)
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the feedback gain k1 is a constant. In this section, k1 will be adjusted by an adaptive algorithm
with respect to system state error x1 − x1r , that is to say, the feedback gain k1 automatically
changes according to the system state x1. For closed-loop system (3.3), the following adaptive
algorithm is designed:

k̇1 = γ(x1 − x1r)2, (3.12)

where γ is the adaptive gain. For Chua’s circuit adaptive control system, the following
conclusion holds.

Theorem 3.2. For γ > 0 and k̇1 = γ(x1 − x1r)2, the equilibrium point E(x1r , x2r , x3r) of the closed-
loop Chua’s circuit adaptive control system is asymptotically stable.

Proof. In the neighborhood of the equilibrium points E(x1r , x2r , x3r), the jacobian matrix of
adaptive feedback Chua’s circuit system is

J =

⎡

⎢
⎢
⎣

−p(1 + c) − k1 p 0

1 −1 1

0 −q 0

⎤

⎥
⎥
⎦, (3.13)

where, c = b or a.
Let us define the state errors

η1 = x1 − x1r ,

η2 = x2 − x2r ,

η3 = x3 − x3r .

(3.14)

The error linearized equation of controlled system in the neighbourhood of the
equilibrium points is

η̇1 = p
(
η2 − (1 + c)η1

) − k1η1,

η̇2 = η1 − η2 + η3,

η̇3 = −qη2.

(3.15)

The Lyapunov function is defined for the closed-loop Chua’s circuit adaptive control
system as

V =
1
2

(
q

p
(x1 − x1r)2 + q(x2 − x2r)2 + (x3 − x3r)2 +

q

pγ
(k1 − k1r)2

)

. (3.16)
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The time derivative of V in the neighbourhood of the equilibrium point is

V̇ =
q

p
(x1 − x1r)ẋ1 + q(x2 − x2r)ẋ2 + (x3 − x3r)ẋ3 +

q

pγ
(k1 − k1r)k̇1

=
q

p
η1ẋ1 + qη2ẋ2 + η3ẋ3 +

q

pγ
(k1 − k1r)k̇1

= qη1η2 − q(1 + c)η2
1 −

q

p
k1η

2
1 + qη1η2 − qη2

2 + qη2η3 − qη2η3 +
q

p
k1η

2
1 −

q

p
k1rη

2
1

= −qη1
2 + 2qη1η2 − qη2

2 − qcη1
2 − q

p
k1rη

2
1

= −q(η1 − η2
)2 − q

(

c +
k1r
p

)

η2
1.

(3.17)

As we know, k1r = −pc, c = b or a, and the system parameter q > 0. From Lyapunov
stability theorem, V > 0 and V̇ < 0, it follows that the equilibrium point of Chua’s circuit
adaptive control system is asymptotically stable.

4. Simulation Studies

In the simulations, the following system parameters are used: p = 10, q = 100/7, a = −8/7,
and b = −5/7. The fourth-order Runge-Kutta algorithm is applied to calculate the number
integral. The system initial state is x10 = 0.15264, x20 = −0.02281, and x30 = 0.38127. In order
to illustrate the effectiveness of the proposed control methods, the control is added at the 40th
second. According to the given system parameters, the minimal stable feedback gains for
different equilibrium points can be calculated: k1r = 50/7 for equilibrium point E(1.5, 0−1.5),
k1r = 80/7 for equilibrium point E(0, 0, 0), and k1r = 50/7 for equilibrium point E(−1.5, 0, 1.5).

4.1. Feedback Control

The simulation results for the proposed feedback control of Chua’s circuit system are
illustrated in Figures 2–7, where Figures 3 and 4, respectively, are the simulation results to
drag Chua’s circuit system to one equilibrium point E(1.5, 0 − 1.5) with the feedback gain
k = 15. Figure 3 illustrates the time response of system state x1 and Figure 4 is the phase
plane portrait of system states x1 and x2. Figures 5 and 6, respectively, are the simulation
results to drag the Chua’s circuit system to one equilibrium point E(0, 0, 0)with the feedback
gain k = 15. Figure 5 illustrates the time response of system state x1 and Figure 6 is the phase
plane portrait of system states x1 and x2. Figures 7 and 8, respectively, are the simulation
results to drag the Chua’s circuit system to one equilibrium point E(−1.5, 0, 1.5) with the
feedback gain k = 15. Figure 7 illustrates the time response of system state x1 and, Figure 8 is
the phase plane portrait of system states x1 and x2.

The simulation results show that feedback control with suitable feedback gain can
drag Chua’s circuit system to one of its three equilibrium points. Moreover, the system initial
state, feedback gain, and the position of system equilibrium point have some effects on the
time responses of system states.
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Figure 3: x1 time response of E(1.5, 0,−1.5) with feedback control.
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Figure 4: x1-x2 phase plane of E(1.5, 0,−1.5) with feedback control.

4.2. Adaptive Control

Next is the simulation of adaptive control with adaptive gain γ = 15 to drag the Chua’s
circuit system to one of its three equilibrium points. The simulation results are illustrated in
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Figure 5: x1 time response of E(0, 0, 0) with feedback control.
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Figure 6: x1-x2 phase plane of E(0, 0, 0) with feedback control.

Figures 8–13, where Figures 9, 10, 11, 12, 13, and 14 are the time responses and phase plane
portrait corresponding with Figures 3, 4, 5, 6, 7, and 8.

The simulation results show that adaptive control with suitable adaptive gain also can
drag the Chua’s circuit system to one of its three equilibrium points. Moreover the adaptive
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Figure 7: x1 time response of E(1.5, 0,−1.5) with feedback control.
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Figure 8: x1-x2 phase plane of E(1.5, 0,−1.5) with feedback control.

control has the following advantages over feedback control: shorter time to drag the system
state to its equilibrium point, more satisfactory dynamic response and wider application
scope.
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Figure 9: x1 time response of E(1.5, 0,−1.5) with adaptive control.
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Figure 10: x1-x2 phase plane of E(1.5, 0,−1.5) with adaptive control.

5. Conclusions

The advantage of using feedback control is that one can bring the system state away from
chaotic motion and into any desired equilibrium point. In this paper, we have discussed a
feedback control approach and an adaptive control approach for controlling the chaos in
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Figure 11: x1 time response of E(0, 0, 0) with adaptive control.
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Figure 12: x1-x2 phase plane of E(0, 0, 0) with adaptive control.

Chua’s circuit. The control schemes of the two proposed approaches are given and their
stabilities are proven in detail. Simulation results show that, in the closed-loop system, system
state asymptotically converges to the desired equilibrium point and the adaptive feedback
control approach has some advantages over feedback control approach.
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Figure 13: x1 time response of E(1.5, 0,−1.5) with adaptive control.
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Figure 14: x1-x2 phase plane of E(1.5, 0,−1.5) with adaptive control.
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