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We introduce a new general hybrid iterative algorithm for finding a common element of the set
of solution of fixed point for a nonexpansive mapping, the set of solution of generalized mixed
equilibrium problem, and the set of solution of the variational inclusion for a -inverse-strongly
monotone mapping in a real Hilbert space. We prove that the sequence converges strongly to a
common element of the above three sets under some mild conditions. Our results improve and
extend the corresponding results of Marino and Xu (2006), Yao and Liou (2010), Tan and Chang
(2011), and other authors.

1. Introduction

In the theory of variational inequalities, variational inclusions, and equilibrium problems,
the development of an efficient and implementable iterative algorithm is interesting
and important. The important generalization of variational inequalities called variational
inclusions, have been extensively studied and generalized in different directions to study
a wide class of problems arising in mechanics, optimization, nonlinear programming,
economics, finance, and applied sciences.

Equilibrium theory represents an important area of mathematical sciences such as
optimization, operations research, game theory, complementarity problems, financial math-
ematics, and mechanics. Equilibrium problems include variational inequalities, optimization
problems, Nash equilibria problems, saddle point problems, fixed point problems, and
complementarity problems as special cases; for example, see the references herein. Let C be a
closed convex subset of a real Hilbert space H with the inner product (-, -) and the norm || - ||.
Let F be a bifunction of C x C into R, where R is the set of real numbers, ® : C — H be a
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mapping and ¢ : C — R be a real-valued function. The generalized mixed equilibrium problem
for finding x € C such that

F(x,y) +{(®x,y—x) +¢(y) —¢(x) 20, VyeC. (1.1)
The set of solutions of (1.1) is denoted by GMEP(F, ¢, @), that is
GMEP(F, ¢, ®) = {x e C: F(x,y) + (Ox,y - x) + ¢(y) —p(x) >0, Yy € C}. (1.2)

If ® = 0 and ¢ = 0, the problem (1.1) is reduced into the equilibrium problem [1] for finding
x € C such that

F(x,y) >0, VyeC (1.3)

The set of solutions of (1.3) is denoted by EP(F). This problem contains fixed point problems,
includes as special cases numerous problems in physics, optimization, and economics. Some
methods have been proposed to solve the equilibrium problem, please consult [2-4].

If F = 0and ¢ = 0, the problem (1.1) is reduced into the Hartmann-Stampacchia
variational inequality [5] for finding x € C such that

(Dx,y-x)>0, VYyeC. (1.4)

The set of solutions of (1.4) is denoted by VI(C,®). The variational inequality has been
extensively studied in the literature [6].

If F = 0 and ® = 0, the problem (1.1) is reduced into the minimize problem for finding
x € C such that

p(y) - p(x) >0, VYyeC (1.5)

The set of solutions of (1.5) is denoted by Argmin(p).
A typical problem is to minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping on a real Hilbert space H:

0(x) = %(Ax,x) -(x,y), Vxe€F(S), (1.6)

where A is a linear bounded operator, F(S) is the fixed point set of a nonexpansive mapping
S, and y is a given point in H [7].
Recall, a mapping S : C — C is said to be nonexpansive if

l[Sx =Syl <llx-v

, (1.7)
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for all x,y € C. If C is bounded closed convex and S is a nonexpansive mapping of C into
itself, then F(S) is nonempty [8]. We denote weak convergence and strongly convergence by
notations — and —, respectively. A mapping A of C into H is called monotone if

(Ax - Ay, x-y) >0, (1.8)

for all x,y € C. A mapping A of C into H is called a- inverse-strongly monotone if there exists
a positive real number a such that

(Ax = Ay,x—y) 2 al| Ax - Ay, (1.9)

for all x, y € C. It is obvious that any a-inverse-strongly monotone mappings A is monotone
and Lipschitz continuous mapping. A linear bounded operator A is strongly positive if there
exists a constant y > 0 with the property

(Ax,x) >yl|x|?, (1.10)

for all x € H. A self-mapping f : C — C is a contraction on C if there exists a constant
a € (0,1) such that

£ )= fFW)|l < allx -yl (1.11)

for all x,y € C. We use Ilc to denote the collection of all contraction on C. Note that each
f €1lc has a unique fixed point in C.

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems. Convex minimization problems have a great impact and
influence in the development of almost all branches of pure and applied sciences. Let
B : H — H be a single-valued nonlinear mapping and M : H — 2H be a set-valued
mapping. The variational inclusion problem is to find x € H such that

0 € B(x) + M(x), (1.12)

where 0 is the zero vector in H. The set of solutions of problem (1.12) is denoted by I(B, M).
The variational inclusion has been extensively studied in the literature. See, for example, [9-
12] and the reference therein.

A set-valued mapping M : H — 2! is called monotone if for all x,y € H, f € M(x)
and g € M(y) imply (x -y, f - g) > 0. A monotone mapping M is maximal if its graph
GM) = {(f,x) e HxH : f € M(x)} of M is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping M is maximal if and only if
for (x,f)e HxH,(x-y,f —g) >0forall (y,g) € G(M) imply f € M(x).

Let B be an inverse-strongly monotone mapping of C into H and let Ncv be normal
cone to Catwv € C, thatis, Ncv = {we H: {(v-u,w)>0,Yu € C}, and define

Mo =

Bv + Nco, if veC,
(1.13)

0, if véC.
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Then M is a maximal monotone and 6 € Mwv if and only if v € VI(C, B) [13].
Let M : H — 2H be a set-valued maximal monotone mapping, then the single-valued
mapping Jary : H — H defined by

Jaa(x) =T +AM) ' (x), x€H (1.14)

is called the resolvent operator associated with M, where \ is any positive number and I is
the identity mapping. It is worth mentioning that the resolvent operator is nonexpansive,
l-inverse-strongly monotone, and that a solution of problem (1.12) is a fixed point of the
operator Jpry (I — AB) for all A > 0, see [14], thatis, I(B, M) = F(Jma(I — AB)), YA > 0.

In 2000, Moudafi [15] introduced the viscosity approximation method for nonexpan-
sive mapping and proved that if H is a real Hilbert space, the sequence {x,} defined by the
iterative method below, with the initial guess xy € C chosen arbitrarily,

Xpt+1 = fxnf(xn) +(1-a,)Sx,, n>0, (1.15)

where {a,} C (0,1) satisfies certain conditions, converges strongly to a fixed point of S (say
x € C) which is the unique solution of the following variational inequality:

(I-f)x,x-x)>0, VxeF(S). (1.16)

In 2006, Marino and Xu [7] introduced a general iterative method for nonexpansive
mapping. They defined the sequence {x,} generated by the algorithm x, € C,

Xn+1 = &Y f(xn) + (I — 2, A)Sx,, n2>0, (1.17)

where {a,} C (0,1) and A is a strongly positive linear bounded operator. They prove that
if C = H and the sequence {a,} satisfies appropriate conditions, then the sequence {x,}
generated by (1.17) converges strongly to a fixed point of S (say x € H) which is the unique
solution of the following variational inequality:

((A-yf)x,x-x)>0, VYxeF(S), (1.18)
which is the optimality condition for the minimization problem

. 1
xng};\rElP(F)E(Ax,x) - h(x), (1.19)

where h is a potential function for yf (i.e., h'(x) = yf(x) for x € H).
In 2010, Yao and Liou [16] introduced the following composite iterative scheme in a
real Hilbert space: xg € C

Xn+1 = UnPc [“nf(xn) +(1- an)sxn] + (1 - ,un)Tr(xn -rAxy), (1.20)
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for all n € N, where {a,}, {p,} C [0,1). Furthermore, they proved {x,} and {u,} converge
strongly to the same point z € F(S) N EP(F), where P is the projection of H onto C.

In 2011, Tan and Chang [11] introduced the following iterative process for {T, :C —
C} be a sequence of nonexpansive mappings. Let {x, } be the sequence defined by

X1 = AnXn + (1= an) (SPc((1 = ty) Jma(I = AA)T, (I - uB))x,), Vn>0, (1.21)

where {a,} € (0,1), A € (0,2a] and pu € (0,2p]. Then, the sequence {x,} defined by (1.21)
converges strongly to a common element of the set of fixed points of nonexpansive mapping,
the set of solution of the variational inequality and the generalized equilibrium problem.

In this paper, we modify the iterative methods (1.17), (1.20), and (1.21) by purposing
the following new general viscosity iterative method: xy € C,

Xni1 = &nPe[any f (xn) + (I = anA)STma (30 — ABxy)| + (1= &) T (x5 — D), (1.22)

for all n € N, where {a,}, {¢,} € (0,1), r € (0,20), and A € (0,2p) satisfy some appropriate
conditions. Consequently, we show that under some control conditions the sequence {x;}
strongly converge to a common element of the set of fixed points of nonexpansive mapping,
the solution of the generalized mixed equilibrium problem, and the set of solution of the
variational inclusion in a real Hilbert space.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Recall that
the (nearest point) projection Pc from H onto C assigns to each x € H, the unique point in
Pcx € C satistying the property

e = Peax|) = min||x - y]]. 2.1)

The following characterizes the projection Pc. We recall some lemmas which will be needed
in the rest of this paper.

Lemma 2.1. The function u € C is a solution of the variational inequality (1.4) if and only if u € C
satisfies the relation u = Pc(u — A®u) for all A > 0.

Lemma 2.2. Foragivenze€ Hue C,u=Pcz o (u-z,v-u) >0, Yo e C.
It is well known that Pc is a firmly nonexpansive mapping of H onto C and satisfies

| Pex - Peyl|” < (Pex - Pey,x —y), Vx,y € H. (2.2)
Moreover, Pcx is characterized by the following properties: Pcx € C and forall x € H, y € C,

(x = Pcx,y — Pcx) <0. (2.3)
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Lemma 2.3 (see [17]). Let M : H — 2H be a maximal monotone mapping and let B: H — H
be a monotone and Lipschitz continuous mapping. Then the mapping L = M +B: H — 2" isa
maximal monotone mapping.

Lemma 2.4 (see [18]). Each Hilbert space H satisfies Opial’s condition, that is, for any sequence
{xn} C H with x, — x, the inequality iminf,, _, . ||x, — x|| < liminf,_, ||x, — yl|, hold for each
y € Hwithy #x.

Lemma 2.5 (see [19]). Assume {a,} is a sequence of nonnegative real numbers such that

Apt1 < (1 - Yn)an + 6nYn/ Vn > O/ (24)

where {y,} € (0,1) and {6,} is a sequence in R such that
(i) 321 Yn = oo
(ii) imsup, , 6, <007 372 [6nyn| < 0.

Then lim,, _, na,, = 0.

Lemma 2.6 (see [20]). Let C be a closed convex subset of a real Hilbert space H and let T : C — C
be a nonexpansive mapping. Then I — T is demiclosed at zero, that is,

Xp—x, Xp—Tx,—0 (2.5)

implies x = Tx.

For solving the generalized mixed equilibrium problem, let us assume that the
bifunction F : C x C — R, the nonlinear mapping ® : C — H is continuous monotone
and ¢ : C — R satisfies the following conditions:

(Al) F(x,x)=0forallx € C;
(A2) F is monotone, that is, F(x, y) + F(y,x) <0 for any x,y € C;

)
(A3) for each fixed y € C, x — F(x,y) is weakly upper semicontinuous;
(A4) for each fixed x € C, y — F(x,y) is convex and lower semicontinuous;
)

(B1) for each x € C and r > 0, there exist a bounded subset D, C C and y, € C such that
forany z € C\ Dy,

F(z,yx) + ¢(yx) — () + %(yx ~z,z-x) <0, (2.6)

(B2) C is a bounded set.

Lemma 2.7 (see [21]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F :Cx C — R be a bifunction mapping satisfies (A1)—(A4) and let ¢ : C — R is convex and lower
semicontinuous such that CNdom @ # 0. Assume that either (B1) or (B2) holds. For r > 0 and x € H,
then there exists u € C such that

F(uy) +o(y) —pu) + %(y—u,u—xy (2.7)
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Define a mapping T, : H — C as follows:
T, (x) = {u eC:F(uy)+o(y) - o)+ %(y -—uu-x)>0,Vy e C}, (2.8)

forall x € H. Then, the following hold:

(i) T, is single-valued;

)
(ii) T, is firmly nonexpansive, that is, for any x,y € H, | T,x - T,y||* < (T,x - T,y, x — y);
(iii) F(T,) = MEP(F, ¢);
(iv) MEP(F, ) is closed and convex.

Lemma 2.8 (see[7]). Assume A is a strongly positive linear bounded operator on a Hilbert space H
with coefficient y > 0and 0 < p < A", then ||I - pA| <1-py.

3. Strong Convergence Theorems

In this section, we show a strong convergence theorem which solves the problem of finding
a common element of F(S), GMEP(F, ¢, ®), and I(B, M) of inverse-strongly monotone
mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space, C be a closed convex subset of H. Let F be a bifunction of
C x C into R satisfying (A1)—(A4) and B,® : C — H be 3, o-inverse-strongly monotone mappings,
@ : C — R is convex and lower semicontinuous function, f : C — C be a contraction with
coefficient @ (0 < a < 1), M : H — 2H be a maximal monotone mapping and A be a strongly
positive linear bounded operator of H into itself with coefficient y > 0, assume that 0 < y <y/a. Let
S be a nonexpansive mapping of H into itself and assume that either (B1) or (B2) holds such that

© := F(S) NGMEP(F, ¢, ®) n I(B, M) # 0. (3.1)

Suppose {x,} is a sequences generated by the following algorithm xq € C arbitrarily:
X1 = EnPe[any f (%n) + (I — anA)STma (X0 — ABxy)]| + (1= &) T (x — 7®x,), (3.2)
where {a,},{&} C (0,1), A € (0,2B) such that 0 < a < A < b < 2B and r € (0,20) with

0 < ¢ £d <1- o satisfy the following conditions:

(C1) limy, oy = 0, 2%y = 00 and limy, ., oo (Ans1/atn) =1,

(C2) 0 < liminf, ., ¢, < limsup,,_, &, <1and limy, o ((&n+1 — &n)/ni1) = 1.

Then {x,} converges strongly to q € ©, where q = Po(yf + 1 — A)(q) which solves the
following variational inequality:

((rf-A)g,p-q)<0, VpeoO (3.3)
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which is the optimality condition for the minimization problem

1
r;éigE(Aq,q) - h(q), (3.4)

where h is a potential function for y f (i.e., W (q) =yf(q) for q € H).

Proof. Because of condition (C1), we may assume without loss of generality, then a, €
(0,lA™") for all n. By Lemma 2.8, we have ||I — a,A| < 1 - a,y. Next, we will assume
that || - All <1 -¥Il.

Step 1. We will show {x,}, {u,} are bounded.
Since B, @ are §, o-inverse-strongly monotone mappings, we have
1T =AB)x ~ (I =AB)y|I* = || (x - v) = A(Bx - By) |I

= [|x = yII* - 2A(x ~ v, Bx - By) + *|| Bx - By’

) ) (3.5)
<|lx =yl + A(X - 2p) || Bx - By||
2
<lx-y™
In similar way, we can obtain
11 = r@)x = (1 = r@)y|* < [l - y||* (36)
Itis clear thatif 0 < A <2f, 0 <r <20, then I — AB, I — r® are all nonexpansive.
Put y, = Jma (xn — ABxy), n > 0. It follows that
llyn = all = |7 (en = ABx) = T (q = ABq) | 57
< |xn - all-
By Lemma 2.7, we have u, = T,(x, — r®x,) for all n > 0. Then, we have
l[n = qlI* = | T (xn = r®x,) = T, (q — rg) ||
< || n = r®x,) = (g - rDg) ||
(3.8)

< |lxa = qll” + 7 (r - 20) || @x, - g

< [l - 4ll”
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Put z,, = Pclany f(xn) + (I — 2, A)Sy,] for all n > 0. From (3.2), we deduce that

221 = qll = [16n (20 = ) + (1 = &) (un = q) ||
< || Pefany f(xn) + (I = 2y A)Syn] — Peg|| + (1 = &) ||un — 4|
< &ullany f (xn) + (I = an A)Sy, = q|| + (1 = &) ||un - 4|
= &ullan (v f (xn) = Aq) + (I = anA) (Syn = @) | + (1 = &u) || — 4|
< &nttn ||y f (xn) = Aql| + &u (1= ata¥) lyn = all + (1 = &) | uen — 4|
< &nttul|y f (xn) = v £ (@) || + dnrall v f (q) - Ad|
+&n (1= any)[[xn = ql| + (1= &) [|xn = 4| (3.9)
< &nanyal|xn - gl + &nan ||y £ (q) - Aql|
+&n (1= ) [|xn = ql| + (1 = &) [|2n — 4|
= (1= (¥ —ya)dnan) [|xn = q|| + dntal[ v f (q) - Ad|

_ _ - A
= (1 Ty [ gl + (F - ya) b, L O = A
Y-y
- A
Smax{”xn ~al, Ilyf (a) - Aq] }
T-ra
It follows from induction that
_A
= < mas{ - g, DL =2, 610)

Therefore {x,} is bounded, so are {y,}, {Sy.}, {Bx,}, {f(x,)}, and {ASy,}.

Step 2. We claim that lim,, _, oo ||Xp+2 — Xp41]| = 0. From (3.2), we have

||xn+2 - xn+1|| = ||§n+1zn+1 + (1= &ne1)tne1 — énzn -(1- én)un”

= 1&ns1(Zne1 = 2n) + (ns1 = &n)Zn + (1 = &) (i1 — Un) + (Ens1 — &n) Unl|
(3.11)

< Gns1llznst = Znll + (1= Suer) unsr = tnll + Gns1 = Sl ([1Znll + [[12nll)-



10 Mathematical Problems in Engineering

We estimate ||t,,41 — U], so we have

||un+1 - un” = ||Tr(xn+1 - TcDan) - Tr(xn - r(Dxn)H
< (xne1 = 1®xp11) = (x5 — 7DPxy) || (3.12)

< ||xn+1 - xn”-

Substituting (3.12) into (3.11) that

1xns2 = Xpell < énvillZner = zall + (1 = &nat) || X1 — x4l
(3.13)

+ |§n+1 - §n|(||zn” + ”un“)

We note that

Zzn1 = 2l = | Pc [nsry f (xns1) + (I = @ns1A)Synsa] = Pe [any f(xn) + (I — @, A)Sya] ||
< |anery f (i) + (I = @n1 A) Syner — (any f (x) + (I — 2y, A)Sya) ||
= ||0£n+1}’(f(xn+1) — f(xn)) + (@1 — )y f (x0)
+(I = an1 A) (SYns1 — Syn) + (@ — an+1)ASyn||

< aparyal|xns — Xl + |ans - an|||Yf(xn)|| + (1= anay) ||]/n+1 - yn||

+ |1 — ||| ASya||
= aayalxua = Xl + lan = anl ([[7f o) | + | ASyall)

+ (1= awa)) [yner = yal|-

(3.14)
Next, we estimate ||y,,41 — Y|, then we get
”yml - yn|| = |Jma(xus1 = ABxps1) = Ima (30 — ABxy)||
< ||(xn+1 - )lenJrl) - (xn - )Lan)” (315)
< X1 = Xl
Substituting (3.15) into (3.14), we obtain that
1zns1 = znll < ansryallxnes — xnll + [ana - an|(”Yf(xn)” + ||A5]/n||) (3.16)

+ (1= ¥ [ Xns1 = xnll-
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And substituting (3.12), (3.16) into (3.11), we get

||xn+2 - xn+1” < §n+1{an+1ya”xn+l - xn” + |“n+1 - anl(”}’f(xn)” + ||A5]/n||)

+ (1 - an+17)”xn+l - xn”} +(1- §n+1)||xn+1 - xn”

(3.17)
+ |‘§n+1 - énl(”ZTl” + ”unH)
< [1 - (? - Ya)§n+1an+1] ||-xn+1 - xn” + (lan+1 - anl + |§n+1 - §n|)M/
where M > 0 is a constant satisfying
sup{[lyfCen) || + [|ASYull, llzall + lluall} < M. (3.18)
This together with (C1), (C2), and Lemma 2.5, implies that
nh_{r;o”xmz = X1l = 0. (3.19)
From (3.15), we also have ||y/,41 — yul| = Oasn — oo.
Step 3. We show the following;:
(i) lim,, . o[|Bx, - Bql| = 0;
(if) lim, .., [[Dx,, — Dg]| = 0.
For g € Qand g = Jum (9 — ABg), then we get
lya = all* = 17w Gen = ABxn) = Jaga(q ~ ABg) ||
< ||(xn = ABx,,) = (9 - ABg)||? (3.20)

< |lxn - ql|* + A(A - 28) || Bx, - Bq*.
It follows that

1z = all” = | Pe ey f (xa) + (I = @n A) Syn) = Pe(q)||”

< |l (v f (n) = Aq) + (I - 2, A) (Syu — ) ||
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< anllyf(xn) = Aq| + (1= &) |y - 4’
+ 20, (1 = a7) [y £ (xn) = Aq|| |y — 4l

< au|lyf(xn) = Aq||* + 205 (1 = @) [y f (xa) = Adl|[|yn - 4
+ (1= ) ([lxn = ql* + 1(A - 26) || Bx. - Bq]|*)

< au|lyf(xn) = Aq||* +2a5 (1 = @) [y £ (xa) = Aql[[|yn - 4

+ 10 = qll” + (1 - ) A(A - 28) || Bx, - Bq]”
(3.21)

By the convexity of the norm || - ||, we have

||xn+1 - q”z = ”énzn +(1=&)uy, - q||2
= ||§n(Zn—q) + (1 _én)(un_q)llz (3.22)

<ullza—aql* + Q= &) ||un - gl

Substituting (3.8), (3.21) into (3.22), we obtain

01 = qll* < &u{ anlly f (ea) = Al + 20 (1= @) [y () = Aqll [y - 4l + |0 =l
+(1- & )AL~ 26) B, - Bal | + (1 &)l - gl
= &nttn|y f (xn) — AqHZ +2&n0, (1 = anY) ||y f (6n) = Aq|[|yn = ql| + &nl|2n - qllz

+ &0 (1 - ) A(A - 2B)||Bx, — Bq||” + (1 = &) || xa - q|*-
(3.23)

So, we obtain

& (1= au7)M(2B = 1) [|Bxa — Bq||” < &uata| v (xn) = Aq|” + e

+ ”xn _xn+1”(||xn - q” + ||xn+1 -q

(3.24)

),

where €, = 2¢,a, (1 — a,,)7)|ly f (x) Aql||lyn — gl|- Since condition (C1), (C2) and limy, _, oo || X1 —
Xn|| = 0then we obtain that ||Bx,—Bq|| — 0asn — oo. We consider this inequality in (3.21)
that

20 = qlI” < anlly f(en) = Aq|) + (1= aaT) ||y - g
+2a, (1= a¥) ||y f (xn) = Aq||||lyn — 4]|-

(3.25)
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Substituting (3.20) into (3.25), we have

120 - 4ll” < anllyf Gen) - Aql + (1 - @) { [l = ql|* + L(A - 28) || Bx, - Ba|*}
+ 20, (1= aa¥) ||y f (xn) = Aq|| Iy — 4|
= au|lyf(xn) = Aq|* + (1= @) [lxn = qll” + (1 - @) A(A - 26) || Bx, - Bq]®
+ 20, (1 = a7) [y £ (xn) = Aq|l |y = 4l
< |y f Gen) = Aqll” + | %0 = q]I* + (1 - ) A(A - 2) || Bx,, — Bq]|*
+ 20, (1 = a7) Iy £ (xn) = Aq|| |y — q|-

(3.26)
Substituting (3.8) and (3.26) into (3.22), we obtain
lw = all” < &a{ anllyf (ea) = Al + [l = g]I* + (1 - @a¥) (A - 26) || B, - Bq|”
+2a, (1= o) [y f () - Aql| |y - all}
+ (1= &) { I = q* + 7(r - 20) || Dx,, - Dq]*} 62

= &ntta ||y £ (n) = Aq|)* + &ul|xn = q]|* + &0 (1 - @) A(A - 2B) || Bx,, - B’
+ 220t (1= a¥) |y £ (xn) = Aq| Ly = qll + @ = &) || x0 - g

+ (1= ¢u)r(r - 20)||®Px, - CDq||2.
So, we also have

(1-¢&)r(20 —1)||Dxp, - (I)q”2 < &ntt||y f (xn) — Aq||2
+ €n + [1Xn = Xpal| (|| = q]| + || 201 - q]]) (3.28)

+ & (1 - a7) A (A = 28) ||Bx, - Bq||,

wheree, = 2&,a,(1—a,y)llyf(x.) — Aqlllly» — gl Since condition (C1), (C2), limy, -, o |[Xn+1 —
Xu|l = 0and lim, ., ||Bx, — Bg|| = 0 then we obtain that [|®x, - Dg|| — 0asn — co.

Step 4. We show the following:
(1) limy— ol — unl = 0;
(ii) limy, — o ll2xn — vl = 0;

(iii) limy, — o5 |[yn — Syall = 0.
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Since T, is firmly nonexpansive, we observe that
ln = ll* = 1T (o = r @) = T, (g - r0g) ||
< ((xn = 1®xy) = (q—1©q), un — q)

1
= {1 = r0x) = (g - r®Q) I + || — ]|

|| e = r®@x2) = (g - r®@q) = (12 - q) ||} (3.29)
< 3 {1l = all*+ llta = a1l = |G = ) = (@~ @) |}
= 2 (e = al + fl gl - e~ wal?
+ 2r(®Dx, — Og, x, — uy) - r*||dx, - <Dq||2}-
Hence, we have
[l = qlI” < %0 = ql|* = ot — wall® + 2 || 2x, — Dg| 20 — ]l (330)

Since [, is 1-inverse-strongly monotone, we have

3y = all* = 1Taa (n = ABx,) = Jaga (g = ABq) ||*
< ((xn = ABxy) = (9 = ABq), yn - q)

1
= 5{ll¢ea = ABx) = (4 - ABa) |* + [l - q*

2
_”(x" = ABxy) - (q - )‘Bq) - (yn - q) ” } (3.31)
1 2 2 2
< S{llxn = all* + llya = all” = 1| Gea = y) = A(Bxo ~ B9)||*}
1 2 2 2
= 5{llxn = all* + llya = all” = [0 - v
+2M(xy = Y, Bx, — Bq) - A2||an - Bq”z},
which implies that
= all” < llxa = all” = 2w = yall* + 2[lx = yul| || B ~ B, (3.32)

Substituting (3.32) into (3.25), we have
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Iz = all” < aully £ Gen) = Aqll”
+ (L= ) {10 = all” = [l = vall” + 2010 = [ | B Ba|}
+ 20, (1= ) [y f (en) = Aq| 1y - ql|

= ||y f (xn) = Aq|]” + (1= ¥ |20 = q||” = (1 = a¥) |20 = yu®
+ 20 (1 = anY) || = yu ||| Bxxn = Bql| + 222 (1 = a¥) ||y f (x2) = Aq|| ||y — 4]|-

(3.33)
Substituting (3.30) and (3.33) into (3.22), we obtain
s = all” < &allza = qll” + (1= &) ln ~ g
< &{allyf () = Agll” + (1= @) |0 = qlI” = (1= @) |0 = v
+24(1 = @nY) |0 = yu ||| Bx» - Bql|
42, (1= ) |y £ () = Agl| |y - 4l }
(= {1 = qll* = 1w = el + 27| @26, - ][0, — 101}
< &ufanllyf ) - Aqll® + [l =all* = %0 = vl
(3.34)

+ 21 = an¥) || = yul| | Bxn - Bq|
+ 20, (1= ) £ (en) = Ag| |y - 4ll}
+(1- §n){ || xn — q||2 [ | 2r||®dx, — Dg|[1xn — un||}
< &anllyf (o) = Aql* + &alln = all” = llxn - yall®
+ 2080 (1 = anY) [|2n = yu ||| Bxn — Bq|
+28n0n (1 = anY) ||y f (xn) = Aq||[|yn — 4|

+ (1 =&n)||xn - q||2 — 1% = tn|* + 27 (1 - &) || D, — Dgl|[1xs — 1.
Then, we derive

%0 = wnl® + || %0 =y

= &attn ||y £ () = Aq|)* + [|260 = q]| = [| 201 - q]|?
+28,A(1 = aY) || X = Y| || Bxx — Bq|
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+ 28, (1= anY) ||y f (xn) = Aql|lly» - 4ll
+2r (1 = &) || Doy — Dg| [l — 1l
< &l i) = Agll + et = 2l (50~ gll + 01 - gl
+28,0(1 - ) |0 - vl 1B, - B
+2&ntn (1= anY) ||y f (xn) = Aql|llyn = 4ll

+2r (1= &u) || @xn — @q|[l26n — sull-
(3.35)

By condition (C1), (C2), im, o ||Xn — Xps1|| = 0, limy, o ||Dx, — Dg|| = 0, and lim,, _, || Bx,, —
Bgl|| = 0.So, wehave ||x, —u,|| = 0, ||x,—yall = 0asn — oo.It follows that

lttn = yul| < llxn = ull + ||xXn = yu|]| — 0, as n— co. (3.36)

We note that x,,1 — x, = &(zn — xu) + (1 = &) (1, — x). From lim, o |jx, — u,|| =
0, lim,,_, o ||xns1 — x4]| = 0, and hence

Jim |z, = 2] = 0. (3.37)
Since
120 = Y| < llzn = xall + [|2 = Y- (3.38)

So, by (3.37) and lim,, _, o ||x,, — ¥x|| = 0, we obtain
Tim ||z, = yu| = 0. (339)

Therefore, we observe that

|Syn = za|| < ||Syn = Pc (anyf(xn) + (I - 20 A)Syy) ||
< |1Syn — any f(xxa) = (I = n A) Sy, (3.40)

< |y f (xn) = ASyal-
By condition (C1), we have ||Sy, — z,|| — 0asn — oo. Next, we observe that
1Syn = Yull < 1Syn = zall + |20 = yu|l- (3.41)

By (3.39) and (3.40), we have ||Sy, — yu|| — Oasn — co.
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Step 5. We show that g € © := F (S) n GMEP(F,¢,®) N I(B, M) and limsup, ,_((yf -
A)q,Syn,—q) <0.1tis easy to see that Po(y f + (I — A)) is a contraction of H into itself. Indeed,
since 0 < y <y/a we have

[Po (yf + (I = A)x=Po(yf+ I - Ayl <[[(yf +T-A)x =~ (yf+T-A)yl|l
<yllf @) = fF@)Il +11-Alllx -yl
<yallx-yll+ A-D)llx -yl
= (1-7+ya)|lx -yl

(3.42)

Since H is complete, there exists a unique fixed point g € H such that g = Pg (yf +(I-A))(q).
By Lemma 2.2, we obtain that ((yf - A)gq,w—q) <0forallw € ©.

Next, we show thatlimsup, | _((yf—-A)q,Sy,—q) <0,whereq = Po(yf+I1-A)(q)
is the unique solution of the variational inequality ((yf — A)g,p —q) >0, forall p € ©. We
can choose a subsequence {y,,} of {y,} such that

limsup((yf — A)q,Syn —q) = ilijg(()’f = A)q,SYn —q)- (3.43)

n— oo

Since {y,,} is bounded, there exists a subsequence {y""f } of {yn} which converges weakly
to w. We may assume without loss of generality that y,, — w. We claim that w € O, since
limy, ., »||yn — Sy»ll = 0and by Lemma 2.6, we have w € F(S).

Next, we show that w € GMEP(F, ¢, ®). Since u,, = T, (x, — r®x,), we know that

F(un y) +¢(y) = @(un) + (DPxn, y = ) + %(y — Uy, Uy —X,) 20, VYyeC. (3.44)
It follows by (A2) that
¢(y) = @un) + (Pxn, y — ) + %(y — Uy, Uy — Xn) > F(y,uy), VyeC. (3.45)
Hence,
P(y) = @un,) + (Pxn, Y — Un;) + %(y = U, Un, — Xn,) > F(y,uy), VyeC. (3.46)
Forte (0,1]and y € H, let y; = ty + (1 — t)w. From (3.46) we have

(Yt = tny, PYt) 2 (Yt = thny, DY) — @(yi) + @(1n,) — (DX, Yt — Un,)

1

= (Yt =t s, = X ) + F (Yt 1)
(3.47)

= <yt - uni/q)yf - (I)uni> + <]/t - uni/q)um - (I)x"i> - (P(yt) + ‘P(uni)

1

- ;<yt — Up;, Up; — xni) + F(yt’uni)'
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From |luy, — x,,|| — 0, we have ||®u,, — ®x,,|| — 0. Further, from (A4) and the weakly lower
semicontinuity of ¢, (u,, —x,,)/r — 0and u,, — w, we have

(v —w, @yi) > = 9(yr) + @(w) + F(y1, w). (3.48)
From (A1), (A4), and (3.48), we have

0=F(yuys) —¢(y:) +o(yi)
<tE(yny) + (1= HF (yi,w) +tp(y) + (1= De(w) - 9(vi)
=t[F(yuy) +9(y) — o) + A= D[F (i, w) + p(w) = ¢ (y1)] (3.49)
<t[F(yey) +o(y) — o)) + A=) (v — w, Dyr)
=t[F(yr,y) +9(y) —9(y)] + (1 -y —w, Dy1),
and hence
0<F(yy) +o(y) —¢(y) + (1= )(y - w, Dys). (3.50)
Letting t — 0, we have, for each y € C,
F(w,y) +9(y) —p(w) + (y - w,dw) > 0. (3.51)
This implies that w € GMEP(F, ¢, ®).
Lastly, we show that w € I(B, M). In fact, since B is a p-inverse-strongly monotone,
B is monotone and Lipschitz continuous mapping. It follows from Lemma 2.3, that M + B
is a maximal monotone. Let (v,g) € G(M + B), since g — Bv € M(v). Again since y,, =

Jma(xy,—ABxy,), we have x,, —ABx,, € (I+AM)(yn,), thatis, (1/1)(xy, —Yn,—ABx,,) € M(yn,).
By virtue of the maximal monotonicity of M + B, we have

1
<v - Yn, g — Bv- 1 (%n, = Y, — J\an,.)> >0, (3.52)
and hence
1
<U - yni’g> 2 <U - yﬂi'BU + X(xni ~Yn — )Lani)>
= <v_yni/Bv_Byni>+ <U_yni’Byni_ani> (3'53)
+ <v - 1(x - )>
yni’)L ni ]/ni .
It follows from limy, —, ,||X» — Yu|| = 0, we have lim,, _, || Bx,, — By,|| = 0 and y,, — w that

limsup (v —yn, g) = (v-w,g) > 0. (3.54)

n— oo
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It follows from the maximal monotonicity of B+ M that 6 € (M + B) (w), thatis, w € I(B, M).
Therefore, w € ©. It follows that

limsup((yf = A)q,Syn —q) = lim ((vf = A)q, Sy —q) = ((rf - A)qw-4q) <0. (355

n—oo

Step 6. We prove x,, — g. By using (3.2) and together with Schwarz inequality, we have

it = qll* = [1nPe [ (any £ (n) + (T = @0 A)Syn) = ] + (1 = &) (un — ) ||
< &l Pe [(@ay f (ea) + (I = 0aA)Syn) = Pe(@)] [I* + (1 = &) [|n - g’
< bullan (v f (xa) = Ag) + (I = s A) (S = @) | + (1 = &) [} = g
< &l = an A [|Syn - ql* + &nas |y f () = Aq”
+ 2 (I = @ A) (Syn = 4), Yf (n) = Aq) + (1= &) | xn - g
< (1= an?)’[lyn = 4l + Gnctillyf (ea) - Aq’
+ 26n0n(Syn = 4, f (xn) - Aq)
~ 28,02 (A(Syn — q), Y (xa) = Aq) + (1= &) || — g’
= (1= an)’[|xn =4I| + Gncth |y Gea) - Aq’
+ 26n0n(Syn = 4,Yf (xn) = vf(9)) + 28na(Syn — 0, 7f (9) - Aq)
~ 28,0 (A(Syn - 9),7f () = Aq) + (1= &) [l - g
< & (1= ) [lxn = ql|” + nars |y (ea) — Aq”
+ 28n0tul|Syn — aqlllly f Cen) =¥ F (@) || + 28ntu(Syn — 4, 7f (9) — Aq)
~ 28,03 (A(Syn - 9), 7 f () = Aq) + (1= &) [l2u - g
< &1 =) oen = ql1” + nati Iy f (xa) -~ A’
+ 28nyaan||yn = qllllxn — gl + 28nxn(Syn - q,7f (9) - Aq)
— 28,02 (A(Syn - 4), ¥ f () = Aq) + (1= &) |0 - 4
< (&0 — 26007 + 80227 ) [0 = 4l + &a Iy £ () = Aq?
+ 28y aaty||xn - q||* + 28n0n(Syn — q,7f (q) - Aq)

28002 A(Syn — ), vf () = Aq) + (1 = &) |0 — q*
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= (1= 28uan¥ + 2nyaan) [|xn = || + &y ||y f (ra) - Aql)®
+28nn(Syn — 4,Yf (q) - Aq)
— 28,2 || A(Syn — ) [l f () = Aql| + &2 |0 — g
= (1-2(F = ya)&natn) || = ql|”* + &u2 ||y f () = Aq||”
+28,0,(Syn —4,Yf (q) - Aq)
~ 28,02 || A(Syn — ) [l f () = Aql| + &a227? || — g

= (1-2(7 ~ ya)dutts) || ~ 4|

_ a, 2
+2(y - ya)énetn { 26— ya) llyf (xn) = Aq|

1

+ = Syn—q, - A
Ty (SYn - avf(a) - Ag)
an

~ || A(Sya - (xn) - A
7 yall Ay = Dllllyf ql
a?2 2

t——— ||~ g
Sl

= (1= 1) [lxn = qlI* + yu6n,
(3.56)

where y, = 27 — ya) and 6, = (a/2 (7 = ym) Iy f (x) = Aql’ + (1/ (F = y@) (S — 4,7 (q) -
Aq) = (an/ (T = y)IA (Syu = DIy f () = Agll + (a,7*/2(F = ya))Ixs = gII*. It is clear that
S0 Yn = o and limsup, 6, < 0. Hence, all conditions of Lemma 2.5, we can conclude
that x, — g. This completes the proof.

O
Corollary 3.2. Let H be a real Hilbert space and C be a closed convex subset of H. Let F be a
bifunction of C x C into R satisfying (A1)—(A4) and B,® : C — H be f, o-inverse-strongly
monotone mappings, let ¢ : C — R be convex and lower semicontinuous function, f : C — C

be a contraction with coefficient a (0 < a < 1), and M : H — 2H be a maximal monotone mapping.
Let S be a nonexpansive mapping of H into itself and assume that either (B1) or (B2) holds such that

© := F(S) NGMEP(F, ¢, ®) N I(B, M) # §. (3.57)

Suppose {x,} is a sequence generated by the following algorithm x € C arbitrarily:

Xni1 = &nPc [‘an(xn) + (I = an) S ma(xn — )Lan)] + (1= &) T (xn — 7@xy), (3.58)
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where {a,},{é:} C (0,1), A € (0,2f) such that 0 < a < A < b < 2B and r € (0,20) with
0 < ¢ £d <1~ o satisfy the following conditions:
(C1) limy, , oy = 0, 2%y = 00 and limy, ., oo (ans1/n) =1,

(C2) 0 < liminf, ., ¢, < limsup,,_, &, <1and limy, _, o ((&n+1 — &n)/@ns1) = 1.

Then {x,} converges strongly to q € ©, where q = Po (f + I)(q) which solves the following
variational inequality:

((f-Dap-q)<0, VYpeo. (3.59)

Proof. Putting A = I and y = 1in Theorem 3.1, we can obtain desired conclusion immediately.
O

Corollary 3.3. Let H be a real Hilbert space and C be a closed convex subset of H. Let F be a
bifunction of C x C into R satisfying (A1)—(A4) and B,® : C — H be p, o-inverse-strongly
monotone mappings, let ¢ : C — R be convex and lower semicontinuous function, and M : H —
2H be a maximal monotone mapping. Let S be a nonexpansive mapping of H into itself and assume
that either (B1) or (B2) holds such that

© := F(S) N GMEP(F, ¢, ®) N I(B, M) #0. (3.60)

Suppose {x,} is a sequence generated by the following algorithm xo € C arbitrarily:
Xni1 = EnPelanu + (I — an)STmpa (n — ABxy)] + (1 = )Ty (30 — 7Dxy), (3.61)

where {a,},{&} C (0,1), A € (0,2P) such that 0 < a < A < b < 2B and r € (0,20) with
0 < ¢ £d <1 - o satisfy the following conditions:

(C1) limy, , oy, = 0, 2 jay, = 00 and limy, oo (Aps1/an) = 1,

(C2) 0 < liminf, ., &, < limsup, &, <1and lim, _, o ((&n+1 — &)/ n1) = 1.

Then {x,} converges strongly to q € ©, where q = Po(q) which solves the following variational
inequality:

(u—q,p—q) <0, VYpeO. (3.62)

Proof. Putting f = u € C in Corollary 3.2, we can obtain desired conclusion immediately. [

Corollary 3.4. Let H be a real Hilbert space, C be a closed convex subset of H. Let F be a bifunction of
CxC into R satisfying (A1)-(A4) and B,® : C — H be , o-inverse-strongly monotone mappings,
¢ : C — R is convex and lower semicontinuous function, f : C — C be a contraction with coefficient
a (0 < a < 1) and A be a strongly positive linear bounded operator of H into itself with coefficient
¥ > 0. Assume that 0 < y < ¥/a. Let S be a nonexpansive mapping of C into itself and assume that
either (B1) or (B2) holds such that

©: = F(S) NGMEP(F, ¢, ®) N VI(C, B) # . (3.63)
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Suppose {x,} is a sequence generated by the following algorithm xo € C arbitrarily:

Xn+1 = énPc [aan(xn) + (I —anA)SPc(xy, - )thn)] + (1 =&)Tr(xp — 1Dxy), (3.64)
where {a,},{é:} C (0,1), A € (0,2f) such that 0 < a < A < b < 2B and r € (0,20) with
0 < ¢ £d <1 - o satisfing the following conditions:

(C1) limy, ., oy, = 0, =2y, = 0o and limy, o (ps1/an) = 1,

(C2) 0 < liminf, ., ¢, < limsup, | &, <1and lim, o ((&ni1 = én)/ans1) = 1.

Then {x,} converges strongly to q € ©, where q = Po(yf + I — A)(q) which solves the following
variational inequality:

((rf-)ap-q)<0, VYpeo. (3.65)

Proof. Taking Jap, = Pc in Theorem 3.1, we can obtain desired conclusion immediately. [

Corollary 3.5. Let H be a real Hilbert space, C be a closed convex subset of H. Let F be a bifunction
of C x C into R satisfying (A1)—(A4) and B, ® : C — H be f, o-inverse-strongly monotone
mappings, ¢ : C — R is convex and lower semicontinuous function, f : C — C be a contraction
with coefficient a (0 < a < 1). Let S be a nonexpansive mapping of C into itself and assume that either
(B1) or (B2) holds such that

©: = F(S) nGMEP(F, ¢, ®) # 0. (3.66)

Suppose {x,} is a sequence generated by the following algorithm xq € C arbitrarily:

Xn+1 = &nPe [anf(xn) +(I - an)sxn] + (1= &) T (xn — 7@xy), (3.67)

where {a,}, {&} C(0,1)and r € (0,20) with 0 < ¢ < d < 1 - o satisfing the following conditions:

(C1) limy, . oy = 0, 2%y, = 00 and limy, . o (ans1/an) =1,

(C2) 0 < liminf,_ oo¢y < limsup, &, < 1and limy— o ((&ns1 — &n) /dtns1) = 1.
Then {x,} converges strongly to q € ©, where q = Po(f+1)(q) which solves the following variational
inequality:
((f-Dap-q9)<0, Vpeo. (3.68)
Proof. Takingy =1, A=1, M =0, and B = 0 in Theorem 3.1, we can obtain desired conclusion
immediately. 0

Remark 3.6. Corollary 3.5 generalizes and improves the result of Yao and Liou [16].
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4. Some Applications

In this section, we apply the iterative scheme (1.22) for finding a common fixed point of
nonexpansive mapping and strictly pseudocontractive mapping and also apply Theorem 3.1
for finding a common fixed point of nonexpansive mappings and inverse-strongly monotone
mappings.

Definition 4.1. A mapping T : C — C is called strictly pseudocontraction if there exists a
constant 0 < x < 1 such that

ITx-Ty| < |x-y|* +|d-T)x - T -T)y|]>, Vx,yeC. (4.1)

If « = 0, then S is nonexpansive. In this case, we say that T : C — C is a «-strictly
pseudocontraction. Putting B = I —T. Then, we have

(T-B)x-(I-B)y|’<||x-yl|+x|Bx-By|>, VxyeC (4.2)

Observe that
|- Byx = (- Byy|l* = [x-yl*+ |Bx~By|* -2 (x-y,Bx-By), VxyeC. (43)

Hence, we obtain

(x-y,Bx—-By) > 1_TK |Bx - By|’, Vx,yeC. (4.4)

Then, B is ((1 - k) /2)-inverse-strongly monotone mapping.

Using Theorem 3.1, we first prove a strongly convergence theorem for finding a
common fixed point of a nonexpansive mapping and a strictly pseudocontraction.

Theorem 4.2. Let H be a real Hilbert space and C be a closed convex subset of H. Let F be a bifunction
of CxC into R satisfying (A1)-(A4)and B,® : C — H be f, o-inverse-strongly monotone mapping,
@ : C — R be convex and lower semicontinuous function, f : C — C be a contraction with
coefficient & (0 < a < 1), and A be a strongly positive linear bounded operator of H into itself with
coefficient y > 0. Assume that 0 < y <y /a. Let S be a nonexpansive mapping of C into itself and let
T be a x-strictly pseudocontraction of C into itself. Assume that either (B1) or (B2) holds such that

©: = F(S)NF(T) NnGMEP(F, ¢, ®) #0. (4.5)

Suppose {x,} is a sequence generated by the following algorithm xo € C arbitrarily:
Xni1 = EnPe[any f (xn) + (I — anA)S((1 = Nty + ATu,)] + (1 = &) Ty (200 — rDxy), (4.6)
foralln =0,1,2,..., where {a,},{&} € (0,1), A € [0,1-x«) and r € (0,20). If A € [a, b] for some

a, bwith0 <a <b<1-xand {0,} is chosen so that r € [c,d] for somec, dwith0 <c<d<1l-0
and satisfy the condition (C1)-(C2) in Theorem 3.1.
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Then {x,} converges strongly to q € ©, where q = Po(yf + 1 — A)(q) which solves the
following variational inequality:

((rf-A)gp-q)<0, V¥peo, (4.7)

which is the optimality condition for the minimization problem
minl(A ) —h(q) 4.8
e 2 9.9 q), (4.8)

where h is a potential function for yf (i.e., h'(q) = yf(q) forq € H).

Proof. Put B=1-T, then Bis ((1-x)/2)-inverse-strongly monotone and F(T) = I(B, M) and
Jma(xy —ABxy) = (1 —A)x, + ATx,. So by Theorem 3.1, we obtain the desired result. O

Corollary 4.3. Let H be a real Hilbert space and C be a closed convex subset of H. Let F be a
bifunction of C x C into R satisfying (A1)-(A4) and B, ® : C — H be B, o-inverse-strongly
monotone mapping, ¢ : C — R is convex and lower semicontinuous function. Letf : C — C be a
contraction with coefficient a (0 < a < 1) and S be a nonexpansive mapping of C into itself and let T
be a k-strictly pseudocontraction of C into itself. Assume that either (B1) or (B2) holds such that

© := F(S) N F(T) N GMEP(F, ¢, D) #0. (4.9)
Suppose {x,} is a sequence generated by the following algorithm xo € C arbitrarily:
Xn+l = ‘gnPC [“nf(xn) + (I - an)s((l - )L)un + /\Tun)] + (1 - én)Tr(xn - T(I)xn)r (4-10)

foralln =0,1,2,..., where {a,},{é,} € (0,1), A € [0,1-x)and r € (0,20). If A € [a,b] is
chosen for some a,b with 0 < a <b <1 -« and {o,} is chosen so that r € [c,d] for some c,d with
0 < ¢ <d <1- o and satisfy the condition (C1)-(C2) in Theorem 3.1.

Then {x,} converges strongly to g € Q, where q = Po(f + I)(q) which solves the
following variational inequality:

(f-Dap-q), Ype Q. (4.11)

Proof. Put A =1 and y = 1 in by Theorem 4.2, we obtain the desired result. O
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