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We study the initial-boundary problem of dissipative symmetric regularized long wave equations
with damping term. Crank-Nicolson nonlinear-implicit finite difference scheme is designed.
Existence and uniqueness of numerical solutions are derived. It is proved that the finite difference
scheme is of second-order convergence and unconditionally stable by the discrete energy method.
Numerical simulations verify the theoretical analysis.

1. Introduction

A symmetric version of regularized long wave equation (SRLWE),

uxxt − ut = ρx + uux,

ρt + ux = 0,
(1.1)

has been proposed to model the propagation of weakly nonlinear ion acoustic and space
charge waves [1]. The sech2 solitary wave solutions are

u(x, t) =
3
(
v2 − 1

)

v
sech2 1

2

√
v2 − 1
v2 (x − vt),

ρ(x, t) =
3
(
v2 − 1

)

v2 sech2 1
2

√
v2 − 1
v2 (x − vt).

(1.2)
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The four invariants and some numerical results have been obtained in [1], where v is the
velocity, v2 > 1. Obviously, eliminating ρ from (1.1), we get a class of SRLWE

utt − uxx +
1
2

(
u2
)

xt
− uxxtt = 0. (1.3)

Equation (1.3) is explicitly symmetric in the x and t derivatives and is very similar to the
regularized long wave equation that describes shallow water waves and plasma drift waves
[2, 3]. The SRLW equation also arises in many other areas of mathematical physics [4–6].
Numerical investigation indicates that interactions of solitary waves are inelastic [7] thus,
the solitary wave of the SRLWE is not a solution. Research on the well-posedness for its
solution and numerical methods has aroused more and more interest. In [8], Guo studied the
existence, uniqueness and regularity of the numerical solutions for the periodic initial value
problem of generalized SRLW by the spectral method. In [9], Zheng et al. presented a Fourier
pseudospectral method with a restraint operator for the SRLWEs, and proved its stability
and obtained the optimum error estimates. There are other methods such as pseudospectral
method, finite difference method for the initial-boundary value problem of SRLWEs (see
[10–15]).

Because of gravity and resistance of propagation medium and air, the principle of
dissipation must be considered when studying the move of nonlinear wave. In applications,
the viscous damping effect is inevitable and it plays the same important role as the dispersive
effect. Therefore, it is more significant to study the dissipative symmetric regularized long
wave equations with the damping term

uxxt − ut + υuxx = ρx + uux,

ρt + ux + γρ = 0,
(1.4)

where υ, γ are positive, υ > 0 is the dissipative coefficient, γ > 0 is the damping coefficient.
Equation (1.4) are a reasonable model to render essential phenomena of nonlinear ion
acoustic wave motion when dissipation is considered (see [16–20]). Existence, uniqueness
and well-posedness of global solutions to (1.4) are presented (see [16–20]). But it is difficult
to find the analytical solution to (1.4), which makes numerical solution important.

In this paper, we study (1.4) with

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), x ∈ [xL, xR] (1.5)

and the boundary conditions

u(xL, t) = u(xR, t) = 0, ρ(xL, t) = ρ(xR, t) = 0, t ∈ [0, T]. (1.6)

In [21]we proposed a three-level implicit finite difference scheme to (1.4)–(1.6)with second-
order convergence. But the three-level implicit finite difference scheme can not start by itself,
we need to select other two-level schemes (such as the C-N Scheme) to get u1, ρ1. Then,
reusing initial vale u0, ρ0, we can work out u2, ρ2, u3, ρ3, . . .. Since the form of SRLW equations
is similar ro the Rosenau equation and Rosenau-Burgers equation, the established difference
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schemes in [22, 23] for solving Rosenau equation and Rosenau-Burgers equation are helpful
to investigate the SRLWEs.We propose the Crank-Nicolson finite difference scheme for (1.4)–
(1.6) which can start by itself. We will show that this difference scheme is uniquely solvable,
convergent and stable in both theoretical and numerical senses.

2. Finite Difference Scheme and Its Error Estimation

Let h and τ be the uniform step size in the spatial and temporal direction, respectively. Denote
xj = xL + jh (j = 0, 1, 2, . . . , J), tn = nτ (n = 0, 1, 2, . . . ,N), N = [T/τ], un

j ≈ u(xj , tn), ρnj ≈
ρ(xj , tn) and Z0

h = {u = (uj) | u0 = uJ = 0, j = 0, 1, 2, . . . , J}. Throughout this paper, we will
denote C as a generic constant independent of h and τ that varies in the context. We define
the difference operators, inner product, and norms that will be used in this paper as follows:

(
un
j

)

x
=
un
j+1 − un

j

h
,

(
un
j

)

x
=
un
j − un

j−1
h

,
(
un
j

)

x̂
=
un
j+1 − un

j−1
2h

,
(
un
j

)

t
=
un+1
j − un

j

τ
,

un+1/2
j =

un+1
j + un

j

2
, 〈un, vn〉 = h

J−1∑

j=1

un
j v

n
j , ‖un‖2 = 〈un, un〉, ‖un‖∞ = max

1≤j≤J−1

∣∣
∣un

j

∣∣
∣.

(2.1)

Then, the Crank-Nicolson finite difference scheme for the solution of (1.4)–(1.6) is as
follows:

(
un
j

)

t
−
(
un
j

)

xxt
+
(
ρn+1/2j

)

x̂
− υ

(
un+1/2
j

)

xx
+
1
3

(
un+1/2
j+1 + un+1/2

j + un+1/2
j−1

)(
un+1/2
j

)

x̂
= 0,

(2.2)

(
ρnj

)

t
+
(
un+1/2
j

)

x̂
+ γρn+1/2j = 0, (2.3)

u0
j = u0

(
xj

)
, ρ0j = ρ0

(
xj

)
, 1 ≤ j ≤ J − 1, (2.4)

un
0 = un

J = 0, ρn0 = ρnJ = 0, 1 ≤ n ≤ N. (2.5)

Lemma 2.1. It follows summation by parts [12, 23] that for any two discrete functions u, v ∈ Z0
h,

〈ux, v〉 = −〈u, vx〉, 〈uxx, v〉 = −〈ux, vx〉. (2.6)

Lemma 2.2 (Discrete Sobolev’s inequality [12, 23]). There exist two constants C1 and C2 such
that

‖un‖∞ ≤ C1‖un‖ + C2‖un
x‖. (2.7)
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Lemma 2.3 (Discrete Gronwall’s inequality [12, 23]). Suppose w(k), ρ(k) are nonnegative
function and ρ(k) is nondecreasing. If C > 0 and w(k) ≤ ρ(k) +Cτ

∑k−1
l=0 w(l), then

w(k) ≤ ρ(k)eCτk. (2.8)

Theorem 2.4. If u0 ∈ H1, ρ0 ∈ L2, then the solution of (2.2)–(2.5) satisfies

‖un‖ ≤ C, ‖un
x‖ ≤ C,

∥∥ρn
∥∥ ≤ C, ‖un‖∞ ≤ C, (n = 1, 2, . . . ,N). (2.9)

Proof. Taking an inner product of (2.2) with 2un+1/2 (i.e., un+1 + un) and considering the
boundary condition (2.5) and Lemma 2.1, we obtain

1
τ

(∥∥
∥un+1

∥∥
∥
2
− ‖un‖2

)
+
1
τ

(∥∥
∥un+1

x

∥∥
∥
2
− ‖un

x‖2
)
+
〈
ρn+1/2
x̂

, 2un+1/2
〉

− υ
〈
un+1/2
xx

, 2un+1/2
〉
+
〈
Pn+1/2, 2un+1/2

〉
= 0,

(2.10)

where Pn+1/2
j = (1/3)(un+1/2

j+1 + un+1/2
j + un+1/2

j−1 ) · (un+1/2
j )x̂.

Since

〈
ρn+1/2
x̂

, 2un+1/2
〉
= −2

〈
un+1/2
x̂

, ρn+1/2
〉
,

〈
un+1/2
xx

, 2un+1/2
〉
= −2

∥∥
∥un+1/2

x

∥∥
∥
2
,

(2.11)

〈
Pn+1/2, 2un+1/2〉 = 2h

J−1∑

j=1

Pn+1/2
j un+1/2

j

=
2
3
h
J−1∑

j=1

(
un+1/2
j+1 + un+1/2

j + un+1/2
j−1

)
·
(
un+1/2
j

)

x̂
un+1/2
j

=
1
3

J−1∑

j=1

(
un+1/2
j+1 + un+1/2

j + un+1/2
j−1

)
·
(
un+1/2
j+1 − un+1/2

j−1
)
un+1/2
j

=
1
3

J−1∑

j=1

(
un+1/2
j+1 + un+1/2

j

)
un+1/2
j+1 un+1/2

j

−1
3

J−1∑

j=1

(
un+1/2
j + un+1/2

j−1
)
un+1/2
j−1 un+1/2

j = 0,

(2.12)

we obtain

1
τ

(∥∥∥un+1
∥∥∥
2
− ‖un‖2

)
+
1
τ

(∥∥∥un+1
x

∥∥∥
2
− ‖un

x‖2
)
− 2

〈
un+1/2
x̂

, ρn+1/2
〉
+ 2υ

∥∥∥un+1/2
x

∥∥∥
2
= 0. (2.13)
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Taking an inner product of (2.3) with 2ρn+1/2 (i.e., ρn+1 + ρn) and considering the boundary
condition (2.5) and Lemma 2.1, we obtain

1
τ

(∥
∥∥ρn+1

∥
∥∥
2 − ∥∥ρn

∥∥2
)
+
〈
un+1/2
x̂

, 2ρn+1/2
〉
+ 2γ

∥
∥∥ρn+1/2

∥
∥∥
2
= 0. (2.14)

Adding (2.13) to (2.14), we have

(∥∥
∥un+1

∥∥
∥
2
− ‖un‖2

)
+
(∥∥
∥un+1

x

∥∥
∥
2
− ‖un

x‖2
)
+
(∥∥
∥ρn+1

∥∥
∥
2
− ∥∥ρn

∥∥2
)

= −2τ
(
υ
∥∥∥un+1/2

x

∥∥∥
2
+ γ

∥∥∥ρn+1/2
∥∥∥
2
)

≤ 0,

(2.15)

which implies

‖un‖2 + ‖un
x‖2 +

∥
∥ρn

∥
∥2 ≤

∥∥∥un−1
∥∥∥
2
+
∥∥∥un−1

x

∥∥∥
2
+
∥∥∥ρn−1

∥∥∥
2
≤ · · · ≤

∥∥∥u0
∥∥∥
2
+
∥∥∥u0

x

∥∥∥
2
+
∥∥∥ρ0

∥∥∥
2
= C.

(2.16)

Then, it holds

‖un‖ ≤ C, ‖un
x‖ ≤ C,

∥∥ρn
∥∥ ≤ C. (2.17)

By Lemma 2.2, we obtain ‖un‖∞ ≤ C.

Theorem 2.5. Assume that u0 ∈ H2, ρ0 ∈ H1, the solution of difference scheme (2.2)–(2.5) satisfies:

∥∥ρnx
∥∥ ≤ C, ‖un

xx‖ ≤ C, ‖un
x‖ ≤ C,

∥∥ρn
∥∥
∞ ≤ C, (n = 1, 2, . . . ,N). (2.18)

Proof. Differentiating backward (2.2)–(2.5) with respect to x, we obtain

(
un
j

)

xt
−
(
un
j

)

xxxt
+
(
ρn+1/2j

)

xx̂
− υ

(
un+1/2
j

)

xxx
+
(
Pn+1/2
j

)

x
= 0, (2.19)

(
ρnj

)

xt
+
(
un+1/2
j

)

xx̂
+ γ

(
ρn+1/2j

)

x
= 0, (2.20)

(
u0
j

)

x
= u0,x

(
xj

)
,

(
ρ0j

)

x
= ρ0,x

(
xj

)
, 1 ≤ j ≤ J − 1, (2.21)

(
un
0

)
x
=
(
un
J

)

x
= 0,

(
ρn0

)
x
=
(
ρnJ

)

x
= 0, 1 ≤ n ≤ N, (2.22)

where (Pn+1/2
j )x = (1/3)[(un+1/2

j+1 + un+1/2
j + un+1/2

j−1 )(un+1/2
j )x̂]x.
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Computing the inner product of (2.19) with 2un+1/2
x (i.e., un+1

x + un
x) and considering

(2.22) and Lemma 2.1, we obtain

1
τ

(∥∥∥un+1
x

∥∥∥
2 − ‖un

x‖2
)
+
1
τ

(∥∥∥un+1
xx

∥∥∥
2 − ‖un

xx‖2
)

+
〈
ρn+1/2
xx̂

, 2un+1/2
x

〉
− υ

〈
un+1/2
xxx

, 2un+1/2
x

〉
+
〈
Pn+1/2
x , 2un+1/2

x

〉
= 0.

(2.23)

It follows from Theorem 2.4 that
∣∣
∣un+1/2

j+1 + un+1/2
j + un+1/2

j−1
∣∣
∣ ≤ C,

(
j = 0, 1, 2, . . . , J

)
. (2.24)

By the Schwarz inequality and Lemma 2.1, we get

〈
Pn+1/2
x , 2un+1/2

x

〉
= −2

〈
Pn+1/2, un+1/2

xx

〉

= −2
3
h
J−1∑

j=1

(
un+1/2
j+1 + un+1/2

j + un+1/2
j−1

)
·
(
un+1/2
j

)

x̂

(
un+1/2
j

)

xx

≤ Ch
J−1∑

j=1

∣∣∣
(
un+1/2
j

)

x̂

∣∣∣ ·
∣∣∣
(
un+1/2
j

)

xx

∣∣∣ ≤ C

(∥∥∥un+1/2
x

∥∥∥
2
+
∥∥∥un+1/2

xx

∥∥∥
2
)

≤ C

(∥∥
∥un+1

x

∥∥
∥
2
+ ‖un

x‖2 +
∥∥
∥un+1

xx

∥∥
∥
2
+ ‖un

xx‖2
)
.

(2.25)

By

〈
ρn+1/2
xx̂

, 2un+1/2
x

〉
= −2

〈
un+1/2
xx̂

, ρn+1/2x

〉
,

〈
un+1/2
xxx

, 2un+1/2
x

〉
= −2

∥∥∥un+1/2
xx

∥∥∥
2
,

(2.26)

it follows from (2.23) that

(∥∥∥un+1
x

∥∥∥
2
− ‖un

x‖2
)
+
(∥∥∥un+1

xx

∥∥∥
2
− ‖un

xx‖2
)
− 2τ

〈
un+1/2
xx̂

, ρn+1/2x

〉

≤ −2υτ
∥
∥∥un+1/2

xx

∥
∥∥
2
+ Cτ

(∥
∥∥un+1

x

∥
∥∥
2
+ ‖un

x‖2 +
∥
∥∥un+1

xx

∥
∥∥
2
+ ‖un

xx‖2
)
.

(2.27)

Computing the inner product of (2.20)with 2ρn+1/2x (i.e., ρn+1x +ρnx) and considering (2.22) and
Lemma 2.1, we obtain

(∥∥
∥ρn+1x

∥∥
∥
2
− ∥∥ρnx

∥∥2
)
+ 2τ

〈
un+1/2
xx̂

, ρn+1/2x

〉
+ 2γτ

∥∥
∥ρn+1/2x

∥∥
∥
2
= 0. (2.28)
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Adding (2.28) to (2.27),we have

(∥∥∥un+1
x

∥∥∥
2 − ‖un

x‖2
)
+
(∥∥∥un+1

xx

∥∥∥
2 − ‖un

xx‖2
)
+
(∥∥∥ρn+1x

∥∥∥
2 − ∥

∥ρnx
∥
∥2
)

≤ −2υτ
∥∥
∥un+1/2

xx

∥∥
∥
2
− 2γτ

∥∥
∥ρn+1/2x

∥∥
∥
2
+ Cτ

(∥∥
∥un+1

x

∥∥
∥
2
+ ‖un

x‖2 +
∥∥
∥un+1

xx

∥∥
∥
2
+ ‖un

xx‖2
)

≤ Cτ

(∥
∥∥un+1

x

∥
∥∥
2
+ ‖un

x‖2 +
∥
∥∥un+1

xx

∥
∥∥
2
+ ‖un

xx‖2 +
∥
∥∥ρn+1x

∥
∥∥
2
+
∥∥ρnx

∥∥2
)
.

(2.29)

Let An = ‖un
x‖2 + ‖un

xx‖2 + ‖ρnx‖2, we obtain An+1 −An ≤ Cτ(An+1 +An).
Choosing suitable τ which is small enough to satisfy 1 − Cτ > 0, we get

An+1 −An ≤ CτAn. (2.30)

Summing up (2.30) from 0 to n − 1, we have

An ≤ A0 + Cτ
n−1∑

l=0

Al. (2.31)

By Lemma 2.3, we get An ≤ C, which implies ‖ρnx‖ ≤ C, ‖un
xx‖ ≤ C. It follows from

Theorem 2.4 and Lemma 2.2 that ‖un
x‖∞ ≤ C, ‖ρn‖∞ ≤ C.

3. Solvability, Convergence, and Stability

The following Brouwer fixed point theorem will be needed in order to show the existence of
solution for (2.2)–(2.5). For the proof, see [24].

Lemma 3.1 (Brouwer fixed point theorem). Let H be a finite dimensional inner product space,
suppose that g : H → H is continuous and there exists an α > 0 such that < g(x), x > 0 for all
x ∈ H with ‖x‖ = α. Then there exists x∗ ∈ H such that g(x∗) = 0 and ‖x∗‖ ≤ α.

Let ZΔ = {v = (v1, v2) = (v1,j , v2,j) | v1,0 = v1,J = v2,0 = v2,J = 0, j = 0, 1, 2, . . . , J},
equipped with the inner product 〈v, v′〉 = 〈(v1, v2), (v′

1, v
′
2)〉 = 〈v1, v

′
1〉 + 〈v2, v

′
2〉 and the

norm ‖v‖2 = ‖v1‖2 + ‖v2‖2.

Theorem 3.2. There exists (un, ρn) ∈ ZΔ which satisfies the difference scheme (2.2)–(2.5).

Proof. In order to prove the theorem by the mathematical induction, we assume that (u0, ρ0),
(u1, ρ1), . . . , (un, ρn) ∈ ZΔ satisfying (2.2)–(2.5). Next prove there exists (un+1, ρn+1) which
satisfies (2.2)–(2.5).

Let g = (g1, g2) be a operator on ZΔ defined by

g1(v) = 2v1 − 2un − 2v1xx + 2un
xx + τv2x̂ − υτv1xx + τW,

g2(v) = 2v2 − 2ρn + τv1x̂ + γτv2, ∀v = (v1, v2) ∈ ZΔ,
(3.1)
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where Wj = (1/3)(v1,j+1 + v1,j + v1,j−1)(v1,j)x̂. Computing the inner product of (3.1) with
v = (v1, v2), similarly to (2.11) and (2.12), we obtain

〈v2x̂ , v1〉 = −〈v1x̂ , v2〉, 〈W,v1〉 = 0. (3.2)

By (2.5) and the Schwarz inequality, we obtain

〈
g(v), v

〉
= 〈g1(v), v1〉 +

〈
g2(v), v2

〉

= 2‖v1‖2 − 2〈un, v1〉 + 2‖v1x‖2 − 2〈un
x, v1x〉 + υτ‖v1x‖2 + 2‖v2‖2

− 2
〈
ρn, v2

〉
+ γτ‖v2‖2

≥ 2‖v1‖2 −
(
‖un‖2 + ‖v1‖2

)
+ 2‖v1x‖2 −

(
‖un

x‖2 + ‖v1x‖2
)
+ υτ‖v1x‖2

+ 2‖v2‖2 −
(∥
∥ρn

∥
∥2 + ‖v2‖2

)
+ γτ‖v2‖2

= ‖v1‖2 + ‖v2‖2 + ‖v1x‖2 − ‖un‖2 − ‖un
x‖2 −

∥∥ρn
∥∥2 + υτ‖v1x‖2 + γτ‖v2‖2

≥ ‖v‖2 −
(
‖un‖2 + ‖un

x‖2 +
∥∥ρn

∥∥2
)
.

(3.3)

Hence it is obvious that < g(v), v > 0 for all v ∈ ZΔ with ‖v‖2 = (‖un‖2 + ‖un
x‖2 + ‖ρn‖2) + 1.

It follows from Lemma 3.1 that there exists v∗ ∈ ZΔ such that g(v∗) = 0. If we take un+1 =
2v1 − un, ρn+1 = 2v∗

2 − ρn, then (un+1, ρn+1) satisfies (2.2)–(2.5). This completes the proof.

Next we show that the difference scheme (2.2)–(2.5) is convergent and stable.
Let v(x, t) and ø(x, t) be the solution of problem (1.4)–(1.6), that is, vn

j = u(xj , tn),
ønj = ρ(xj, tn), then the truncation of the difference scheme (2.2)–(2.5) is

rnj =
(
vn
j

)

t
−
(
vn
j

)

xxt
+
(
øn+1/2j

)

x̂
− υ

(
vn+1/2
j

)

xx
+
1
3

(
vn+1/2
j+1 + vn+1/2

j + vn+1/2
j−1

)(
vn+1/2
j

)

x̂
,

(3.4)

snj =
(
ønj

)

t
+
(
vn+1/2
j

)

x̂
+ γøn+1/2j . (3.5)

Making use of Taylor expansion, we know that |rnj | + |snj | = O(τ2 + h2) hold if h, τ → 0.

Lemma 3.3. Suppose that u0 ∈ H1, ρ0 ∈ L2, the solution of (1.4)–(1.6) satisfies ‖u‖L2 ≤ C, ‖ux‖L2 ≤
C, ‖ρ‖L2 ≤ C and ‖u‖L∞ ≤ C.

Proof. See Lemma 1.1 in [21].
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Theorem 3.4. Suppose u0 ∈ H1, ρ0 ∈ L2, then the solution un and ρn to the difference scheme (2.2)–
(2.5) converges to the solution of problem (1.4)–(1.6), and the rate of convergence is O(τ2 + h2).

Proof. Subtracting (2.2) from (3.4) and subtracting (2.3) from (3.5), letting enj = vn
j − un

j , η
n
j =

φn
j − ρnj , we have

rnj =
(
enj

)

t
−
(
enj

)

xxt
+
(
ηn+1/2
j

)

x̂
− υ

(
en+1/2j

)

xx
+Qn+1/2

j , (3.6)

snj =
(
ηn
j

)

t
+
(
en+1/2j

)

x̂
+ γηn+1/2

j , (3.7)

where

Qn+1/2
j =

1
3

(
vn+1/2
j+1 + vn+1/2

j + vn+1/2
j−1

)
·
(
vn+1/2
j

)

x̂
− 1
3

(
un+1/2
j+1 + un+1/2

j + un+1/2
j−1

)
·
(
un+1/2
j

)

x̂
.

(3.8)

Computing the inner product of (3.6) with 2en+1/2 we get

〈
rn, 2en+1/2

〉
=

1
τ

(∥
∥∥en+1

∥
∥∥
2 − ‖en‖2

)
+
1
τ

(∥
∥∥en+1x

∥
∥∥
2 − ‖enx‖2

)
+ 2υ

∥
∥∥en+1/2x

∥
∥∥
2

+
〈
ηn+1/2
x̂

, 2en+1/2
〉

+
〈
Qn+1/2, 2en+1/2

〉
.

(3.9)

Similarly to (2.11), we have

〈
ηn+1/2
x̂

, 2en+1/2
〉
= −2

〈
en+1/2
x̂

, ηn+1/2
〉
. (3.10)

Then (3.9) can be changed to

(∥
∥∥en+1

∥
∥∥
2 − ‖en‖2

)
+
(∥
∥∥en+1x

∥
∥∥
2 − ‖enx‖2

)
− 2τ

〈
en+1/2
x̂

, ηn+1/2
〉

= −2υτ
∥∥∥en+1/2x

∥∥∥
2
+ τ

〈
rn, 2en+1/2

〉
+ τ

〈
−Qn+1/2, 2en+1/2

〉
.

(3.11)

It follow from Lemma 3.3, Theorems 2.4 and 2.5 that

∣
∣∣vn+1/2

j+1 + vn+1/2
j + vn+1/2

j−1
∣
∣∣ ≤ C,

∣
∣∣
(
un+1/2
j

)∣∣∣ ≤ C,
(
j = 0, 1, 2, . . . , J

)
. (3.12)
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Since

〈
−Qn+1/2, 2en+1/2

〉
= −2

3
h
J−1∑

j=1

(
vn+1/2
j+1 + vn+1/2

j + vn+1/2
j−1

)(
vn+1/2
j

)

x̂
en+1/2j

+
2
3
h
J−1∑

j=1

(
un+1/2
j+1 + un+1/2

j + un+1/2
j−1

)(
un+1/2
j

)

x̂
en+1/2j

= −2
3
h
J−1∑

j=1

(
vn+1/2
j+1 + vn+1/2

j + vn+1/2
j−1

)(
en+1/2j

)

x̂
en+1/2j

− 2
3
h
J−1∑

j=1

(
en+1/2j+1 + en+1/2j + en+1/2j−1

)(
un+1/2
j

)

x̂
en+1/2j ,

(3.13)

and the Schwarz inequality, we obtain

〈
−Qn+1/2, 2en+1/2

〉
≤ 2
3
Ch

J−1∑

j=1

∣∣∣
(
en+1/2j

)

x̂

∣∣∣ ·
∣∣∣en+1/2j

∣∣∣

+
2
3
Ch

J−1∑

j=1

(∣∣∣en+1/2j+1

∣∣∣ +
∣∣∣en+1/2j

∣∣∣ +
∣∣∣en+1/2j−1

∣∣∣
)∣∣∣en+1/2j

∣∣∣

≤ C

(∥∥∥en+1/2
∥∥∥
2
+
∥∥∥en+1/2x

∥∥∥
2
)

≤ C

(∥∥∥en+1
∥∥∥
2
+ ‖en‖2 +

∥∥∥en+1x

∥∥∥
2
+ ‖enx‖2

)
.

(3.14)

According to

〈
rn, 2en+1/2

〉
=
〈
rn, en+1 + en

〉
≤ ‖rn‖2 + 1

2

[∥∥
∥en+1

∥∥
∥
2
+ ‖en‖2

]
. (3.15)

It follows from (3.14), (3.15), and (3.11) that

(∥
∥∥en+1

∥
∥∥
2 − ‖en‖2

)
+
(∥
∥∥en+1x

∥
∥∥
2 − ‖enx‖2

)
− 2τ

〈
en+1/2
x̂

, ηn+1/2
〉

≤ Cτ

[∥
∥∥en+1

∥
∥∥
2
+ ‖en‖2 +

∥
∥∥en+1x

∥
∥∥
2
+ ‖enx‖2

]
+ τ‖rn‖2.

(3.16)

Computing the inner product of (3.7) with 2ηn+1/2, we obtain

(
‖ηn+1‖2 − ‖ηn‖2

)
+ 2τ

〈
en+1/2
x̂

, ηn+1/2
〉
= τ〈sn, 2ηn+1/2〉 − 2γτ

∥
∥∥ηn+1/2

∥
∥∥
2

≤ Cτ

[∥∥∥ηn+1
∥∥∥
2
+
∥
∥ηn

∥
∥2
]
+ τ‖sn‖2.

(3.17)
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Adding (3.17) to (3.16) we have

(∥∥
∥en+1

∥∥
∥
2
− ‖en‖2

)
+
(∥∥
∥en+1x

∥∥
∥
2
− ‖enx‖2

)
+
∥∥
∥ηn+1

∥∥
∥
2
− ∥∥ηn

∥∥2

≤ τ‖rn‖2 + τ‖sn‖2 + Cτ

[∥∥
∥en+1

∥∥
∥
2
+ ‖en‖2 +

∥∥
∥en+1x

∥∥
∥
2
+ ‖enx‖2 +

∥∥
∥ηn+1

∥∥
∥
2
+
∥∥ηn

∥∥2
]
.

(3.18)

Let Bn = ‖en‖2 + ‖enx‖2 + ‖ηn‖2, we get

Bn+1 − Bn ≤ τ‖rn‖2 + τ‖sn‖2 +Cτ
(
Bn+1 + Bn

)
. (3.19)

If τ is sufficiently small which satisfies 1 − Cτ > 0, then

Bn+1 − Bn ≤ CτBn + Cτ‖rn‖2 + Cτ‖sn‖2. (3.20)

Summing up (3.20) from 0 to n − 1, we have

Bn ≤ B0 + Cτ
n−1∑

l=0

∥∥
∥rl

∥∥
∥
2
+Cτ

n−1∑

l=0

∥∥
∥sl

∥∥
∥
2
+Cτ

n−1∑

l=0

Bl. (3.21)

Since

τ
n−1∑

l=0

∥∥
∥rl

∥∥
∥
2
≤ nτ max

0≤l≤n−1

∥∥
∥rl

∥∥
∥
2
≤ T ·O

(
τ2 + h2

)2
,

τ
n−1∑

l=0

∥∥∥sl
∥∥∥
2
≤ nτ max

0≤l≤n−1

∥∥∥sl
∥∥∥
2
≤ T ·O

(
τ2 + h2

)2
,

(3.22)

and B0 = O(τ2 + h2)2, we obtain

Bn ≤ O
(
τ2 + h2

)2
+ Cτ

n−1∑

l=0

Bl. (3.23)

From Lemma 2.3, we get

Bn ≤ O
(
τ2 + h2

)2
, (3.24)

which implies

‖en‖ ≤ O
(
τ2 + h2

)
, ‖enx‖ ≤ O

(
τ2 + h2

)
,

∥∥ηn
∥∥ ≤ O

(
τ2 + h2

)
. (3.25)
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Table 1: The error comparison in the sense of l∞ at various time step when υ = γ = 0.2.

τ = h = 0.1 τ = h = 0.05 τ = h = 0.025
Scheme I Scheme II Scheme I Scheme II Scheme I Scheme II

u

t = 1 2.051828e − 3 3.031228e − 3 5.086997e − 4 7.715042e − 4 1.212062e − 4 1.963616e − 4
t = 2 3.658861e − 3 4.444161e − 3 9.062598e − 4 1.130545e − 3 2.159826e − 4 2.891308e − 4
t = 3 4.659523e − 3 5.248700e − 3 1.154171e − 3 1.332236e − 3 2.749807e − 4 3.363167e − 4
t = 4 5.230463e − 3 5.817171e − 3 1.295681e − 3 1.476326e − 3 3.087002e − 4 3.736609e − 4
t = 5 5.509947e − 3 6.570922e − 3 1.365011e − 3 1.660745e − 3 3.252241e − 4 4.213116e − 4

ρ

t = 1 1.672623e − 3 1.981718e − 3 4.146233e − 4 5.009105e − 4 9.882705e − 5 1.274281e − 4
t = 2 2.775247e − 3 3.231087e − 3 6.880969e − 4 8.110353e − 4 1.640128e − 4 2.074091e − 4
t = 3 3.619022e − 3 4.495888e − 3 8.971716e − 4 1.144555e − 3 2.138326e − 4 2.912403e − 4
t = 4 4.150387e − 3 5.169257e − 3 1.028962e − 3 1.314334e − 3 2.452495e − 4 3.329702e − 4
t = 5 4.434692e − 3 5.792717e − 3 1.100089e − 3 1.466326e − 3 2.621296e − 4 3.716609e − 4

Using Lemma 2.2, we get

‖en‖∞ ≤ O
(
τ2 + h2

)
. (3.26)

Similarly to Theorem 3.4, we can prove the results as follows.

Theorem 3.5. Under the conditions of Theorem 3.4, the solution un and ρn of (2.2)–(2.5) is stable in
the senses of norm ‖ · ‖∞ and ‖ · ‖L2 , respectively.

Theorem 3.6. The solution un of (2.2)–(2.5) is unique.

4. Numerical Simulations

The difference scheme (2.2)–(2.5) is a nonlinear system about un+1
j that can be easily solved

by Newton iterative algorithm. When t = 0, the damping does not effect and the dissipative
term will not appear. So the initial conditions (1.4)–(1.6) are same as those of (1.1):

u0(x) =
5
2
sech2

√
5
6

x, ρ0(x) =
5
3
sech2

√
5
6

x, (v = 1.5). (4.1)

Let xL = −20, xR = 20, T = 5.0. Since we do not know the exact solution of (1.4), an error
estimates method in [23] is used: A comparison between the numerical solutions on a coarse
mesh and those on a refine mesh is made. We consider the solution on mesh τ = h = 1/160 as
the reference solution. We denote the C-N scheme in this paper as Scheme I and the difference
scheme in [21] as Scheme II. In Tables 1 and 2 we give the ratios in the sense of l∞ at various
time step when υ = γ = 0.2 and υ = γ = 0.5, respectively.

In Tables 3 and 4 we verify the second convergence of the scheme I using the method
in [25] when υ = γ = 0.2 and υ = γ = 0.5, respectively.

When υ = γ = 0.2 and υ = γ = 0.5, a wave figure comparison of u and ρ at various time
step with τ = h = 0.05 is as follow: (see Figures 1, 2, 3, and 4).
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Table 2: The error comparison in the sense of l∞ at various time step when υ = γ = 0.5.

τ = h = 0.1 τ = h = 0.05 τ = h = 0.025
Scheme I Scheme II Scheme I Scheme II Scheme I Scheme II

u

t = 1 1.795244e − 3 2.268843e − 3 4.445000e − 4 5.685554e − 4 1.059029e − 4 1.454071e − 4
t = 2 2.544783e − 3 3.102494e − 3 6.298484e − 4 7.925500e − 4 1.500033e − 4 2.032788e − 4
t = 3 3.422326e − 3 3.705244e − 3 8.474794e − 4 9.482211e − 4 2.018808e − 4 2.430733e − 4
t = 4 3.779389e − 3 4.207447e − 3 9.355479e − 4 1.079082e − 3 2.223954e − 4 2.799107e − 4
t = 5 4.151289e − 3 4.729322e − 3 1.027876e − 3 1.216704e − 3 2.453155e − 4 3.162708e − 4

ρ

t = 1 1.303459e − 3 1.963695e − 3 3.234571e − 4 5.083883e − 4 7.706741e − 5 1.294953e − 4
t = 2 1.868933e − 3 2.928023e − 3 4.633380e − 4 7.506240e − 4 1.104061e − 4 1.907795e − 4
t = 3 2.462890e − 3 3.453731e − 3 6.110918e − 4 8.823517e − 4 1.453867e − 4 2.266268e − 4
t = 4 3.016856e − 3 4.169390e − 3 7.518839e − 4 1.066308e − 3 1.813333e − 4 2.721379e − 4
t = 5 3.446674e − 3 4.513283e − 3 8.743460e − 4 1.141807e − 3 2.126268e − 4 2.918805e − 4

Table 3: The verification of the second convergence when υ = γ = 0.2.

‖en(h, τ)‖∞/‖e2n(h/2, τ/2)‖∞ ‖ηn(h, τ)‖∞/‖η2n(h/2, τ/2)‖∞
τ = h = 0.1 τ = h = 0.05 τ = h = 0.025 τ = h = 0.1 τ = h = 0.05 τ = h = 0.025

t = 1 — 4.03347 4.19698 — 4.03408 4.19544
t = 2 — 4.03732 4.19596 — 4.03322 4.19539
t = 3 — 4.03711 4.19728 — 4.03381 4.19567
t = 4 — 4.03684 4.19721 — 4.03357 4.19557
t = 5 — 4.03656 4.19714 — 4.03121 4.19674

Table 4: The verification of the second convergence when υ = γ = 0.5.

‖en(h, τ)‖∞/‖e2n(h/2, τ/2)‖∞ ‖ηn(h, τ)‖∞/‖η2n(h/2, τ/2)‖∞
τ = h = 0.1 τ = h = 0.05 τ = h = 0.025 τ = h = 0.1 τ = h = 0.05 τ = h = 0.025

t = 1 — 4.03879 4.19724 — 4.02977 4.19707
t = 2 — 4.04031 4.19807 — 4.03326 4.19667
t = 3 — 4.03824 4.19792 — 4.03031 4.20322
t = 4 — 4.03976 4.20669 — 4.01240 4.14642
t = 5 — 4.03871 4.19002 — 3.94200 4.11211

5. Conclusion

In this paper, we propose Crank-Nicolson nonlinear-implicit finite difference scheme of the
initial-boundary problem of dissipative symmetric regularized long wave equations with
damping term. The two-levels finite difference scheme is of second-order convergence and
unconditionally stable, which can start by itself. From the Tables 1 and 2 we conclude that the
C-N scheme is more efficient than the Scheme 2 in [21]. From the Tables 3 and 4 we conclude
that the C-N scheme is of second-order convergence obviously. Figures 1–4 show that the
height of wave crest is more and more low with time elapsing due to the effect of damping
term and dissipative term and when υ, γ become bigger the droop of the height of wave crest
is faster.
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Figure 1:When υ = γ = 0.2, the wave graph of u at various time.
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Figure 2: When υ = γ = 0.2, the wave graph of ρ at various time.
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Figure 3:When υ = γ = 0.5, the wave graph of u at various time.
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Figure 4: When υ = γ = 0.5, the wave graph of ρ at various time.
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