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This paper is concerned with the existence of monotone positive solution of boundary value
problem for an elastic beam equation. By applying iterative techniques, we not only obtain the
existence of monotone positive solution but also establish iterative scheme for approximating the
solution. It is worth mentioning that the iterative scheme starts off with zero function, which is
very useful and feasible for computational purpose. An example is also included to illustrate the
main results.

1. Introduction

It is well-known that beam is one of the basic structures in architecture. The deformations of
an elastic beam in equilibrium state can be described by the following equation of deflection
curve:

d2

dx2

(
EIz

d2u

dx2

)
= q(x), (1.1)

where E is Yang’s modulus constant, Iz is moment of inertia with respect to z axes, and q(x)
is loading at x. If the loading of beam considered is in relation to deflection and rate of change
of deflection, we need to study more general equation

u(4)(x) = f
(
x, u(x), u′(x)

)
. (1.2)

According to different forms of supporting, various boundary value problems (BVPs) should
be considered.
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Owing to its importance in engineering, physics, and material mechanics, BVPs for
elastic beam equations have attracted much attention from many authors see, for example,
[1–15] and the references therein. However, almost all of the papers we mentioned focused
their attention on the existence of solutions or positive solutions. In the existing literature,
there are few papers concerned with the computational methods of solutions or positive
solutions. It is worth mentioning that Zhang [16] obtained the existence of positive solutions
and established iterative schemes for approximating the solutions for an elastic beam
equation with a corner. The main tools used were monotone iterative techniques. For
monotone iterative methods, one can refer [17–19] and the references therein.

Motivated greatly by the above-mentioned excellent works, in this paper we
investigate the existence and iteration of monotone positive solution for the following elastic
beam equation BVP

u(4)(t) = f(t, u(t), u′(t)), t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = u′′′(1) = 0.
(1.3)

In material mechanics, the equation in (1.3) describes the deflection or deformation of an
elastic beam under a certain force. The boundary conditions in (1.3) mean that the elastic
beam is simply fixed at the end t = 0 and fastened with a sliding clamp at the end t = 1. By
applying iterative techniques, we not only obtain the existence of monotone positive solution
but also establish iterative scheme for approximating the solution. It is worth mentioning
that the iterative scheme starts off with zero function, which is very useful and feasible for
computational purpose. An example is also included to illustrate the main results.

Throughout this paper, we always assume that the following condition is satisfied:
(A) f ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞)).

2. Preliminary

In order to obtain the main results of this paper, we first present several fundamental lemmas
in this section.

Lemma 2.1. Let y ∈ C[0, 1]. Then, the BVP

u(4)(t) = y(t), t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = u′′′(1) = 0,
(2.1)

has a unique solution

u(t) =
∫1

0
G(t, s)y(s)ds, t ∈ [0, 1], (2.2)

where

G(t, s) =
1
6

⎧⎨
⎩
s
(
6t − 3t2 − s2

)
, 0 ≤ s ≤ t ≤ 1,

t
(
6s − 3s2 − t2

)
, 0 ≤ t ≤ s ≤ 1.

(2.3)
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Lemma 2.2. For any (t, s) ∈ [0, 1] × [0, 1], we have

0 ≤ ∂G(t, s)
∂t

≤ s(1 − t),
1
3
t2s ≤ G(t, s) ≤ 1

2

(
2t − t2

)
s. (2.4)

Proof. For any fixed s ∈ [0, 1], it is easy to know that

∂G(t, s)
∂t

=

⎧⎪⎨
⎪⎩
s(1 − t), 0 ≤ s ≤ t ≤ 1,

s(1 − t) − 1
2
(s − t)2, 0 ≤ t ≤ s ≤ 1,

(2.5)

which shows that

0 ≤ ∂G(t, s)
∂t

≤ s(1 − t), for (t, s) ∈ [0, 1] × [0, 1], (2.6)

and so,

G(t, s) =
∫ t

0

∂G(τ, s)
∂τ

dτ ≤
∫ t

0
s(1 − τ)dτ =

1
2

(
2t − t2

)
s, for (t, s) ∈ [0, 1] × [0, 1]. (2.7)

On the other hand, it follows from the expression of G(t, s) that

G(t, s) =
1
6
s
(
6t − 3t2 − s2

) ≥ 1
6
s
(
6t − 4t2

) ≥ 1
3
t2s, 0 ≤ s ≤ t ≤ 1,

G(t, s) =
1
6
t
(
6s − 3s2 − t2

) ≥ 1
6
t
(
6s − 4s2

) ≥ 1
3
t2s, 0 ≤ t ≤ s ≤ 1.

(2.8)

Let E = C1[0, 1] be equipped with the norm ‖u‖ = max{‖u‖∞, ‖u′‖∞}. Then, E is a
Banach space. Denote

K =
{
u ∈ E : u(t) ≥ 2

3
t2‖u‖∞, u′(t) ≥ 0, for t ∈ [0, 1]

}
. (2.9)

Then, it is easy to verify that K is a cone in E. Note that this induces an order relation � in E

by defining u � v if and only if v − u ∈ K. Now, we define an operator T on K by

(Tu)(t) =
∫1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds, t ∈ [0, 1]. (2.10)

Obviously, fixed points of T are monotone and nonnegative solutions of the BVP (1.3).
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Lemma 2.3. T : K → K is completely continuous.

Proof. First, we prove T(K) ⊂ K. Suppose that u ∈ K. In view of Lemma 2.2, on the one hand,

0 ≤ (Tu)(t)

=
∫1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds

≤ 1
2

(
2t − t2

)∫1

0
sf
(
s, u(s), u′(s)

)
ds

≤ 1
2

∫1

0
sf
(
s, u(s), u′(s)

)
ds, t ∈ [0, 1],

(2.11)

which shows that

‖Tu‖∞ ≤ 1
2

∫1

0
sf
(
s, u(s), u′(s)

)
ds. (2.12)

On the other hand,

(Tu)(t) =
∫1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds

≥ 1
3
t2
∫1

0
sf
(
s, u(s), u′(s)

)
ds, t ∈ [0, 1],

(2.13)

which together with (2.12) implies that

(Tu)(t) ≥ 2
3
t2‖Tu‖∞, t ∈ [0, 1]. (2.14)

Again, by Lemma 2.2, we have

(Tu)′(t) =
∫1

0

∂G(t, s)
∂t

f
(
s, u(s), u′(s)

)
ds ≥ 0, t ∈ [0, 1]. (2.15)

So, it follows from (2.14), (2.15) and the definition of K that T(K) ⊂ K.
Next, we show that T is a compact operator. Let D ⊂ K be a bounded set. Then, there

exists M1 > 0 such that ‖u‖ ≤ M1 for any u ∈ D. For any {yk}∞k=1 ⊂ T(D), there exist
{xk}∞k=1 ⊂ D such that yk = Txk . Denote

M2 = sup
{
f
(
t, x, y

)
:
(
t, x, y

) ∈ [0, 1] × [0,M1] × [0,M1]
}
. (2.16)
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Then, for any positive integer k, it follows from Lemma 2.2 that

∣∣yk(t)
∣∣ = |(Txk)(t)|

=

∣∣∣∣∣
∫1

0
G(t, s)f

(
s, xk(s), x′

k(s)
)
ds

∣∣∣∣∣
≤ 1
2

(
2t − t2

)∫1

0
sf
(
s, xk(s), x′

k(s)
)
ds

≤ M2

4
, t ∈ [0, 1],

(2.17)

which indicates that {yk}∞k=1 is uniformly bounded. Similarly, we have

∣∣y′
k(t)
∣∣ = ∣∣(Txk)′(t)

∣∣
=

∣∣∣∣∣
∫1

0

∂G(t, s)
∂t

f
(
s, xk(s), x′

k(s)
)
ds

∣∣∣∣∣
≤ (1 − t)

∫1

0
sf
(
s, xk(s), x′

k(s)
)
ds

≤ M2

2
, t ∈ [0, 1].

(2.18)

This shows that {y′
k
}∞
k=1 is uniformly bounded, which implies that {yk}∞k=1 is equicontinuous.

By Arzela-Ascoli theorem, we know that {yk}∞k=1 has a convergent subsequence in C[0, 1].
Without loss of generality, we may assume that {yk}∞k=1 converges in C[0, 1].

On the other hand, for any ε > 0, by the uniform continuity of ∂G(t, s)/∂t, we know
that there exists a δ > 0 such that for any t1, t2 ∈ [0, 1]with |t1 − t2| < δ,

∣∣∣∣∂G(t1, s)
∂t

− ∂G(t2, s)
∂t

∣∣∣∣ < ε

M2 + 1
, s ∈ [0, 1]. (2.19)

So, for any positive integer k, t1, t2 ∈ [0, 1]with |t1 − t2| < δ, we get

∣∣y′
k(t1) − y′

k(t2)
∣∣ = ∣∣(Txk)′(t1) − (Txk)′(t2)

∣∣
=
∫1

0

∣∣∣∣∂G(t1, s)
∂t

− ∂G(t2, s)
∂t

∣∣∣∣f(s, xk(s), x′
k(s)
)
ds

<
M2ε

M2 + 1

< ε,

(2.20)
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which shows that {y′
k
}∞
k=1 is equicontinuous. Again, it follows from Arzela-Ascoli theorem

that {y′
k}

∞
k=1 has a convergent subsequence in C[0, 1]. Therefore, {yk}∞k=1 has a convergent

subsequence in K.
Finally, we prove that T is continuous. Suppose that um, u ∈ K and ‖um − u‖ →

0 (m → ∞). Then, there exists M3 > 0 such that for any positive integer m, ‖um‖ ≤ M3.
Denote

M4 = sup
{
f
(
t, x, y

)
:
(
t, x, y

) ∈ [0, 1] × [0,M3] × [0,M3]
}
. (2.21)

Then, for any positive integerm and t ∈ [0, 1], by Lemma 2.2, we have

G(t, s)f(s, um(s), u′
m(s)) ≤

M4

2
(
2t − t2

)
s ≤ M4

2
s, s ∈ [0, 1],

∂G(t, s)
∂t

f(s, um(s), u′
m(s)) ≤ M4(1 − t)s ≤ M4s, s ∈ [0, 1].

(2.22)

So, it follows from Lebesgue dominated convergence theorem that

lim
m→∞

(Tum)(t) = lim
m→∞

∫1

0
G(t, s)f

(
s, um(s), u′

m(s)
)
ds

=
∫1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds

= (Tu)(t), t ∈ [0, 1],

lim
m→∞

(Tum)′(t) = lim
m→∞

∫1

0

∂G(t, s)
∂t

f
(
s, um(s), u′

m(s)
)
ds

=
∫1

0

∂G(t, s)
∂t

f
(
s, u(s), u′(s)

)
ds

= (Tu)′(t), t ∈ [0, 1],

(2.23)

which implies that T is continuous. Therefore, T : K → K is completely continuous.

3. Main Results

Theorem 3.1. Assume that f(t, 0, 0)/≡ 0 for t ∈ (0, 1), and there exists a constant a > 0 such that

f(t, u1, v1) ≤ f(t, u2, v2) ≤ 2a, 0 ≤ t ≤ 1, 0 ≤ u1 ≤ u2 ≤ a, 0 ≤ v1 ≤ v2 ≤ a. (3.1)
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If we construct a iterative sequence vn+1 = Tvn, n = 0, 1, 2, . . ., where v0(t) ≡ 0 for t ∈ [0, 1], then
{vn}∞n=1 converges to v∗ in C1[0, 1], which is a monotone positive solution of the BVP (1.3) and satisfy

0 < v∗(t) ≤ a for t ∈ (0, 1], 0 ≤ (v∗)′(t) ≤ a for t ∈ [0, 1]. (3.2)

Proof. LetKa = {u ∈ K : ‖u‖ ≤ a}. We assert that T : Ka → Ka. In fact, if u ∈ Ka, then

0 ≤ u(s) ≤ max
0≤s≤1

u(s) ≤ ‖u‖ ≤ a, 0 ≤ u′(s) ≤ max
0≤s≤1

u′(s) ≤ ‖u‖ ≤ a, for s ∈ [0, 1], (3.3)

which together with the condition (3.1) and Lemma 2.2 implies that

0 ≤ (Tu)(t) =
∫1

0
G(t, s)f

(
s, u(s), u′(s)

)
ds < a, t ∈ [0, 1],

0 ≤ (Tu)′(t) =
∫1

0

∂G(t, s)
∂t

f
(
s, u(s), u′(s)

)
ds ≤ a, t ∈ [0, 1].

(3.4)

Hence, we have shown that T : Ka → Ka.
Now, we assert that {vn}∞n=1 converges to v∗ in C1[0, 1], which is a monotone positive

solution of the BVP (1.3) and satisfies

0 < v∗(t) ≤ a for t ∈ (0, 1], 0 ≤ (v∗)′(t) ≤ a for t ∈ [0, 1]. (3.5)

Indeed, in view of v0 ∈ Ka and T : Ka → Ka, we have vn ∈ Ka, n = 1, 2, . . .. Since
the set {vn}∞n=0 is bounded and T is completely continuous, we know that the set {vn}∞n=1 is
relatively compact.

In what follows, we prove that {vn}∞n=0 is monotone by induction. First, by Lemma 2.2,
we have

1
3
t2
∫1

0
sf(s, 0, 0)ds

≤ v1(t) − v0(t) = (Tv0)(t) =
∫1

0
G(t, s)f(s, 0, 0)ds ≤ 1

2

∫1

0
sf(s, 0, 0)ds, t ∈ [0, 1],

(3.6)

which implies that

v1(t) − v0(t) ≥ 2
3
t2‖v1 − v0‖∞, t ∈ [0, 1]. (3.7)

At the same time, it is obvious that

v′
1(t) − v′

0(t) = v′
1(t) = (Tv0)′(t) =

∫1

0

∂G(t, s)
∂t

f(s, 0, 0)ds ≥ 0, t ∈ [0, 1]. (3.8)
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It follows from (3.7) and (3.8) that v1 − v0 ∈ K, which shows that v0 � v1. Next, we assume
that vk−1 � vk. Then, in view of Lemma 2.2 and (3.1), we have

vk+1(t) − vk(t) =
∫1

0
G(t, s)

[
f
(
s, vk(s), v′

k(s)
) − f

(
s, vk−1(s), v′

k−1(s)
)]
ds

≤ 1
2

∫1

0
s
[
f
(
s, vk(s), v′

k(s)
) − f

(
s, vk−1(s), v′

k−1(s)
)]
ds, t ∈ [0, 1],

vk+1(t) − vk(t) =
∫1

0
G(t, s)

[
f
(
s, vk(s), v′

k(s)
) − f

(
s, vk−1(s), v′

k−1(s)
)]
ds

≥ 1
3
t2
∫1

0
s
[
f
(
s, vk(s), v′

k(s)
) − f

(
s, vk−1(s), v′

k−1(s)
)]
ds, t ∈ [0, 1],

(3.9)

which implies that

vk+1(t) − vk(t) ≥ 2
3
t2‖vk+1 − vk‖∞, t ∈ [0, 1]. (3.10)

At the same time, by Lemma 2.2 and (3.1), we also have

v′
k+1(t) − v′

k(t) =
∫1

0

∂G(t, s)
∂t

[
f
(
s, vk(s), v′

k(s)
) − f

(
s, vk−1(s), v′

k−1(s)
)]
ds ≥ 0, t ∈ [0, 1].

(3.11)

It follows from (3.10) and (3.11) that vk+1 − vk ∈ K, which indicates that vk � vk+1. Thus, we
have shown that vn � vn+1, n = 0, 1, 2 . . ..

Since {vn}∞n=1 is relatively compact and monotone, there exists a v∗ ∈ Ka such that
‖vn −v∗‖ → 0 (n → ∞), which together with the continuity of T and the fact that vn+1 = Tvn

implies that v∗ = Tv∗. Moreover, in view of f(t, 0, 0)/≡0 for t ∈ (0, 1), we know that the zero
function is not a solution of the BVP (1.3). Thus, ‖v∗‖∞ > 0. So, it follows from v∗ ∈ Ka that

0 < v∗(t) ≤ a for t ∈ (0, 1], 0 ≤ (v∗)′(t) ≤ a for t ∈ [0, 1]. (3.12)

4. An Example

Example 4.1. Consider the BVP

u(4)(t) =
1
2
tu(t) +

1
8
(
u′(t)

)2 + 1, t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = u′′′(1) = 0.

(4.1)
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If we let f(t, u, v) = (1/2)tu + (1/8)v2 + 1 for (t, u, v) ∈ [0, 1] × [0,+∞) × [0,+∞), then
all the hypotheses of Theorem 3.1 are fulfilled with a = 1. It follows from Theorem 3.1 that
the BVP (4.1) has a monotone positive solution v∗ satisfying

0 < v∗(t) ≤ 1 for t ∈ (0, 1], 0 ≤ (v∗)′(t) ≤ 1 for t ∈ [0, 1]. (4.2)

Moreover, the iterative scheme is

v0(t) ≡ 0, t ∈ [0, 1],

vn+1(t) =
1
6

∫ t

0
s
(
6t − 3t2 − s2

)(1
2
svn(s) +

1
8
(
v′
n(s)
)2 + 1

)
ds

+
1
6

∫1

t

t
(
6s − 3s2 − t2

)(1
2
svn(s) +

1
8
(
v′
n(s)
)2 + 1

)
ds, t ∈ [0, 1], n = 0, 1, 2, . . . .

(4.3)

The first, second, third, and fourth terms of the scheme are as follows:

v0(t) ≡ 0,

v1(t) =
1
3
t − 1

6
t3 +

1
24

t4,

v2(t) =
73
216

t +
5
144

t2 − 79
432

t3 +
1
64

t4 +
25
1152

t5 − 23
8640

t6 − 1
192

t7 +
47

11520
t8 − 11

8640
t9 +

1
6912

t10,

v3(t) =
378577
1119744

t +
6935
186624

t2 − 404629
2239488

t3 +
60361
8957952

t4 +
71689
2985984

t5 +
110633
14929920

t6 − 22181
1492992

t7

+
373759

119439360
t8 +

2467627
477757440

t9 − 2449943
716636160

t10 − 800341
1592524800

t11 +
16256149

11466178560
t12

− 3556357
7166361600

t13 − 655267
4777574400

t14 +
70313

477757440
t15 − 25471

2388787200
t16 − 363911

9555148800
t17

+
7781

298598400
t18 − 25973

2866544640
t19 +

8917
4777574400

t20 − 31
143327232

t21 +
25

2293235712
t22.

(4.4)
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