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A new fuzzy clustering algorithm based on clonal selection theory from artificial immune systems
(AIS), namely, FCSA, is proposed to obtain the optimal clustering result of land cover classification
without a priori assumptions on the number of clusters. FCSA can adaptively find the optimal
number of clusters and is designed as a two-layer system: the classification layer and the
optimization layer. The classification layer of FCSA, inspired by clonal selection theory, generates
the optimal classification result with a fixed cluster number by utilizing the clone, mutation, and
selection of immune operators. The optimization layer of FCSA evaluates the optimal solutions
according to performance measures for cluster validity and then adjusts the cluster number to
output the final optimal cluster number. Two experiments with different types of image evince
that FCSA not only finds the optimal number of clusters, but also consistently outperforms the
traditional clustering algorithms, such as K-means and Fuzzy C-means. Hence, FCSA provides an
effective option for performing the task of land cover classification.

1. Introduction

Land cover classification from remotely sensed images is considered to be a cost-effective and
reliable method for generating up-to-date land cover information [1]. Clustering algorithms,
or unsupervised classification algorithms, are built to solve the site labeling problem without
the need for training samples for land cover classification [2]. For example, the familiar K-
means [3] and Iterative Self-Organizing Data (ISODATA) [4] algorithms iteratively assign
the pixels of an image to one of the classes. K-means finds an optimal partition of the data
distribution into the requested number of subdivisions, while ISODATA is amodified version
of the K-means algorithm. Both of them first assign an arbitrary initial cluster vector. The
mean vectors and covariance matrix of clusters are then calculated based on the pixels in the
initial cluster; pixels in the image are assigned to the closest cluster to form a new cluster
and the label of each pixel is updated. The mean vectors and covariance matrix of clusters
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are recalculated subsequently based on the new clusters. In every iteration of the classical
K-means and ISODATA algorithms, each image pixel is assumed to be in exactly one cluster;
an alternative to the crisp membership association uses fuzzy sets to describe the relationship
between the data points and the cluster centers.

For instance, Fuzzy C-means (FCM) [3] is an approach to clustering those partitions
of an image data set into C fuzzy subsets using fuzzy membership. In addition to the afore-
mentioned algorithms, Bayesian classifiers [5] and Markov Random Field [6] have also been
employed for the unsupervised classification for remote sensing images. Recently, there has
been considerable interest in applying unsupervised neural networks [7], such as Kohonen’s
Self-organizing Maps (SOM), to multi/hyper-spectral remote sensing image classification.
SOM was investigated as a possible tool for automated knowledge acquisition. In addition,
with the emergence of genetic algorithm (GA), some GA-based clustering algorithms have
been proposed, which can converge to the global optima with high probability [8].

Since geographical information (including remotely sensed data) for land cover
classification is imprecise, meaning that the boundaries between different phenomena are
fuzzy, fuzzy clustering algorithms, for example, FCM, are better suited for dealing with real-
world problems of land cover classification than classical crisp classification models, such
as K-means. However, FCM has two major limitations. On the one hand, it requires the
a priori specification of the number of clusters. When the number of clusters is specified
incorrectly, serious problems may arise. On the other hand, FCM is much more sensitive to
the initialization and easily falls into a local optimum [9]. To overcome these obstacles, this
paper proposes a fuzzy clustering algorithm based on clonal selection theory from artificial
immune systems (AIS), namely, FCSA, to automatically evolve the fuzzy partitions of land
cover data such that somemeasure of goodness of the partitions is optimized. Clonal selection
theory [10, 11] is a basic theory in immune systems to explain the basic features of an
adaptive immune response to an antigenic stimulus. The clonal selection algorithm (CSA)
[12], derived from clonal selection theory, is proposed as an important model in artificial
immune systems (AISs), which are inspired by the vertebrate immune systems, and use the
immunological properties to support a wide range of applications [13–15]. CSA has been
successfully applied to pattern recognition, multimodal optimization, feature selection, and
classification by utilizing its biological properties such as immune evolution and immune
memory [12, 14, 16].

To automatically evolve the optimal number of clusters as well as the fuzzy
partitioning of the data, the proposed fuzzy clustering algorithm (FCSA) is designed as a
two-layer system: the classification and optimization layers. The classification layer of FCSA
can quickly obtain the global optimum and has the better classification results with fixed
cluster numbers, since FCSA utilizes different immune operators, such as the clonal operator,
mutation operator, selection operator, and those operators can combine the evolutionary
search and random search and incorporate the global search with a local search by the clonal
operation on candidate solutions. The optimization layer of FCSA controls the process of the
classification layer, evaluates the optimal solutions according to performance measures for
cluster validity and then adjusts cluster numbers to output the final solution. In this paper,
the Xie-Beni (XB) [17] cluster validity index is selected as the underlying optimizing criterion
since it has shown to be better able to indicate the correct number of clusters in several
experiments [18, 19]. The FCSA is evolution-like and has several interesting features: (1) the
cluster number is dynamically adjustable and automatically obtained; (2) has the capability of
maintaining local optima solutions; (3) explores the global optimal. The Flightline C1 (FLC1)
and TM remote sensing images have been used for demonstrating the effectiveness of the
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developed unsupervised fuzzy artificial immune classifier by automatically segmenting the
images into unknown regions. Experimental results demonstrate that the proposed algorithm
outperforms the traditional methods, that is, FCM, and thus provide an effective option for
unsupervised land cover classification.

The remainder of the paper is structured as follows. Section 2 gives an overview of the
clonal selection theory and the clonal selection algorithm. Section 3 describes the proposed
method and algorithm in detail, while Section 4 illustrates the performance of the proposed
algorithm as compared to the traditional algorithms. Finally, Section 5 concludes the
paper.

2. Clonal Selection Algorithm (CSA)

2.1. Clonal Selection Theory

The human immune system, a complex system of cells, molecules, and organs, symbolizes
an identification mechanism capable of perceiving and combating dysfunction from our own
cells and the action of exogenous infectious microorganisms. This immune system protects
the body from infectious agents such as viruses, bacteria, fungi, and other parasites. Any
molecule that can be recognized by the adaptive immune system is known as an antigen. The
basic component of the immune system is the lymphocytes or white blood cells. Lymphocytes
exist in two forms, B cells and T cells. These two types of cell are rather similar, but differ in
how they recognize antigens and in their functional roles. B cells are capable of recognizing
antigens free in solution, while T cells require antigens to be presented by other accessory
cells. They have distinct chemical structures and produce many Y-shaped antibodies from
their surfaces to kill the antigens. Antibodies are molecules attached primarily to the surface
of B cells with the aim of recognizing and coping with antigens [20].

In order to clarify how an immune response is mounted when a nonself antigenic
pattern is recognized by a B cell, clonal selection theory has been developed [21, 22]. Themain
features of clonal selection theory are concerned with (1) proliferation and differentiation on
simulation of cells with antigens; (2) generation of new random genetic changes, expressed
subsequently as diverse antibody patterns, by a form of accelerated somatic mutation; (3)
estimation of newly differentiated lymphocytes carrying low-affinity antigenic receptors.
These will be utilized in this paper.

The principle can be detailed as follows. When a B-cell receptor recognizes a nonself
antigen with a certain affinity, it is selected to proliferate and produce antibodies in high
volumes. The antibodies are soluble forms of the B-cell receptors that are released from the
B-cell surface to cope with the invading nonself antigens. Antibodies bind antigens leading to
their eventual elimination by other immune cells. Proliferation in the case of immune cells is
asexual and it is a mitotic process, in which the cells divide themselves. During reproduction,
the B-cell clones undergo a hypermutation process in that the antigen stimulates the B cell to
proliferate andmature into terminal antibody secreting cells, named plasma cells. The process
of cell division generates a clone. In addition to proliferating and differentiating into plasma
cells, the activated B cells with high antigenic affinities are selected to become memory cells
with long life spans. These memory cells circulate through the blood, lymph, and tissues.
When exposed to a second antigenic stimulus, memory cells commence to differentiate
into plasma cells capable of producing high-affinity antibodies, preselected for the specific
antigen that had stimulated the primary response [12]. Figure 1 illustrates the clonal selection,
expansion, and affinity maturation processes.
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Figure 1: Clonal selection principle.

2.2. Clonal Selection Algorithm (CSA)

Based on the clonal selection theory and the shape space model of the immune system, De
Castro and Von Zuben (2002) developed the Clonal Selection Algorithm (CSA) [12]. It has
been applied to support pattern recognition and solve multimodal optimization problems.
The algorithm can be described as follows.

Step 1. Randomly initialize a population of individuals, M.

Step 2. For each input pattern P , present it to the population M and determine its affinity
with each element of M.

Step 3. Select n of the best highest affinity elements of M and clone these individuals
proportionally to their affinitywith the antigen. The higher the affinity, the higher the number
of copies, and vice versa.

Step 4. Mutate all these copies with a rate proportional to their affinity with the input pattern–
the higher the affinity, the smaller the mutation rate.

Step 5. Add these mutated individuals to the populationM and reselect m of these maturated
individuals to be kept as memory cells of the systems.

Step 6. Repeat Steps 2–5 until a certain criterion is met.

Similar to CSA, the genetic algorithm (GA) is also a heuristic algorithm. However,
their underlyingmechanisms andmethods of evolutionary search significantly differ in terms
of inspiration, vocabulary, and fundamentals. While GA uses a vocabulary borrowed from
natural genetics and is inspired by the Darwinian evolution theory, CSA makes use of the
shape space formalism, along with immunological terminology to describe antigen-antibody
interactions and cellular evolution in immune systems. GA performs a search through
genetic operators including reproduction, crossover, and mutation, while CSA performs
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its search through the mechanisms of somatic mutation and receptor editing, balancing
the exploitation of the best solutions with the exploration of the searchspace. The CSA
maintains a diverse set of local optimal solutions, while the GA tends to polarize the whole
population of individuals towards the best one. This mainly occurs because of the selection
and reproduction schemes adopted by the CSA (described in Step 3). Essentially, their coding
schemes and evaluation functions are not different, but their evolutionary search differs from
the viewpoint of inspiration, vocabulary, and fundamentals [23]. In addition, CSA inherits
the memory property of human immune systems to build a memory cell population and can
recognize the same or similar antigens quickly at different times [14, 24].

3. Fuzzy Clustering Algorithm Based on Clonal Selection (FCSA)

A fuzzy clustering algorithm based on clonal selection, namely, FCSA, is proposed to perform
the task of land cover classification by automatically evolving the optimal fuzzy partition
matrix. A main objective of the proposed algorithm is to get closer to a more natural
classification of land cover.

A remote sensing image dataset X = {x1, x2, . . . , xN} is observed, where each object
xi will be an earth surface unit or picture element (pixel), j = 1, . . . ,N. N represents the
total number in an unlabeled image, N = Nrow × Ncol where Nrow and Ncol represent the
image’s row number and column number, respectively. In addition, each pixel xj contains the
attributes vector with p bands, xj = {x1

j , x
2
j , . . . , x

p
j } ∈ �p. The image dataset is partitioned into

a set of nc clusters CS = {CS1, CS2, . . . , CSnc}, where nc represents the number of clusters. In
the fuzzy cluster analysis, each pixel in the dataset can be assigned to more than one cluster,
according to a membership value uij = μCSi(xj), which defines the membership of the pixel
xj to the cluster CSi.

To find adaptively the optimal number of clusters, FCSA is designed as a two-layer
system: the classification and optimization of FCSA. The optimization layer of FCSA controls
the process of the classification layer and evaluates the optimal number of clusters according
to performance measures using the Xie-Beni index. Each Xie-Beni index with the different
number of clusters may be calculated after the process of classification. The best partition
is considered to be the one that corresponds to the minimum value of the Xie-Beni index.
The classification layer of FCSAwith the fixed number of clusters classifies the image dataset
by exploring the optimal membership degrees matrix and centers of clusters with minimum
objective function shown in (3.1), under the constraint shown in (3.2), where μij ∈ [0, 1]
indicates the membership of data vector xj assigned to cluster CSi. vi is the ith center of
CS and dij is the Euclidean distance between data vector xj and center vi. m ∈ [1,∞) is a
parameter to control the fuzziness clustering result

J(U, v1, v2, . . . , vnc) =
nc∑

i=1

Ji =
nc∑

i=1

N∑

j=1

um
ij d

2
ij , (3.1)

nc∑

i=1

uij = 1, ∀j = 1, . . . ,N. (3.2)

To obtain the optimal minimum objective function, it is feasible to encode either the
center matrix CS or membership function matrixU. The relationship between CS andU can
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be denoted as in (3.3). In this paper, we encode CS into antibodies of the proposed algorithm
to calculate their values

vi =

∑N
j=1 u

m
ij xj

∑N
j=1 u

m
ij

, uij =
1

∑nc
k=1

(
dij/dkj

)2/(m−1) . (3.3)

To better describe the FCSA, the following notations are used.

(i) AB denotes the set of antibodies and ab represents a single antibody, where AB =
{ab1, ab2, . . . , abM}, M is the number of the antibody population. Each antibody
abi = (ab1i , ab

2
i , . . . ab

p′

i ) (i = 1, 2, . . .M) represents a possible solution of the cluster
result, p′ is the number of ab’s features, p′ = p × nc, AB ⊂ �p′ .

(ii) AG denotes the set of antigens, which represent unlabeled data or image pixels.
AG = {ag1, ag2, . . . , agN}, N is the number of the antigen population, agi =
(ag1

i , ag
2
i , . . . , ag

p

i ), and p is the dimension of features. For land cover classification,
N represents the total number of unlabeled remote sensing image pixels and p the
bands for each pixel and the image. AG ⊂ �p.

(iii) mc denotes the memory cell. mc indicates the best antibody with the highest
membership value in each iteration and mc is a candidate solution.

The FCSA algorithm consists of the following steps.

3.1. The Classification Layer of FCSA

The classification layer of FCSA is used to find the best fuzzy partition of the image dataset
with the fixed number of clusters.

Step 1 (initialization and encoding). In FCSA, the antibodies are made up of real numbers; each
antibody abi represents a group of clustering centers with nc prototypes as in

abi =

⎧
⎪⎨

⎪⎩
ab1i , ab

2
i , . . . , ab

p

i︸ ︷︷ ︸
v1

. . . , ab
j

i , . . . , ab
(nc−1)p+1
i , ab

(nc−1)p+2
i , . . . , ab

p∗nc
i︸ ︷︷ ︸

vnc

⎫
⎪⎬

⎪⎭
. (3.4)

A first antibody population AB including M antibodies is randomly generated by
selecting distinct points from the AG dataset.AB = {ab1, ab2, . . . , abM} andM is the number
of the antibody population.

Step 2 (cycle the generations). After initialization, the simulation of the clonal selection process
begins. One generation after another is created and eachmust prove its affinity to the criterion
function. In each iteration, a number of possible solutions are generated by applying the
immune operators such as clone, mutation, selection in a stochastic process guided by an
affinity measure. The algorithm seeks to evolve an optimal solution to the clustering problem.
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(1) Calculation of Affinity

According to the initial antibody population, the affinity of all M abs in the antibody
population AB is calculated using the criterion function F = F(abi). The higher the criterion
function, the better the antibody. However, an optimal fuzzy partition should minimize
the objective function J in (3.1), which is the generalized least squares error function. To
maximize the criterion function F, the function may be defined as follows:

F(abi) =
1

J(U, v1, v2, . . . , vnc) + 1
. (3.5)

(2) Selection

FromAB, the “n” highest affinity antibodies are selected to compose a new setAB{n} of high-
affinity antibodies and the highest affinity memory cell (mc) is found.

(3) Clone

After receiving antibody individuals closer to the solution, the next generation should mainly
be derived from the better-fitting individuals. Thus, the n selected abs are cloned based on
their antigenic affinities, generating the clone set C. In the FCSA, the number of clones for
each subpopulation is no longer a free parameter but instead a fixed number n + 1. This is an
interesting feature, since the performance of the CSA algorithm is very sensitive to variations
in the number of clones [16, 25].

The total number of clones generatedNc is defined as follows:

Nc =
n∑

i=1

(n + 1) = n2 + n. (3.6)

This step draws the evolutionary process closer to the goal. It raises the average affinity
value and gives the following steps a good chance to further move towards the solution.

(4) Mutation

Provide each ab in the clone set Cwith the opportunity to produce mutated offspring C∗. The
higher the affinity, the smaller the mutation rate. To adaptively determine the mutation rate
according to the affinity of each ab, the process is as follows.

Firstly, for each abi ∈ AB, normalize its affinity F(abi) into the range [0, 1]:

F ′(abi) =
F(abi) −min(F(abi))

max(F(abi)) −min(F(abi))
i = 1, 2, . . . ,M. (3.7)

Then, let each abi have the chance to mutate; the mutation rate is adaptively calculated
as

pm = exp
(−2 ∗ F ′(abi)

)
, (3.8)

where pm is the mutation rate of each ab, 2 is the empirical value to control the decay, and
F ′(abi) is the affinity according to (3.7). In (3.8), the range of the mutation rate is [0, 1].
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Finally, the cloned antibodies are mutated with probability pm.
The mutation process to each ab in the clone set C is as shown in Algorithm 1. The

function mutation (B) with mutation rate pm, is defined in Algorithm 1. The function random
(minimum, maximum) generates a random real value using a uniform distribution in the
range from the minimum to the maximum. Function Δ(Ite, u) is defined as

Δ(Ite, u) = u
(
1 − r(1−m/Ite)λ

)
, (3.9)

where m is the iteration number, Ite is the maximal iteration number, r is a random value
within the range [0, 1], and λ is a parameter to decide the nonconforming degree.

This step is crucial in the proposed algorithm. It generates random changes of single
features of the individual solutions. The value of these changes can be found at the criterion
function calculation within the next generation cycle. This helps avoid local maxima and
produces new properties of mutated antibodies that can remain if they are successful, while
traditional fuzzy clustering algorithms, such as FCM, often get stuck at suboptimal solutions
based on the initial configuration of the system.

To avoid chaotic development and maintain the best abs for each clone during
evolution, one original ab for each clone without mutation during the maturation process
is kept, else it would destroy the positive development of the previous step and disable any
major development towards the solution.

(5) Recalculation of Affinity

Calculate the affinity F∗(abi) of the matured clones C∗.

(6) Reselection

From the mature clone set C∗, reselect the nabs with the highest affinity to replace the nabs
with the lowest affinity in AB. Select the highest affinity ab in C∗ to be a candidate memory
cell,mccandidate. If the affinity ofmccandidate is higher than the memory cell,mc, thenmccandidate
will replacemc and become a new memory cell.

(7) Displace

In order to replace the d lowest affinity abs from AB, d new antibodies are produced by a
random process. This step may increase the diversity of the antibody population.

Step 3 (stopping criteria). The stopping criteria for the algorithm are as follows. One option
is to set a fixed number of iterations as the stopping condition. The other criterion is that if
after a few iterations, there is no improvement of the criterion function (F) value as shown
in (3.10), then the optimal clustering result has been found. Otherwise, return to Step 2 until
the stop criteria are satisfied.

∥∥∥F(t+1) − Ft
∥∥∥ < ε, (3.10)

where the change threshold ε is a user-defined parameter and selected according to different
applications.
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mutate (B)
{

for each (B · νi)
do

ai = min νi
bi = max νi
rd mr = random (0, 1)
rd to = random (−1, 1)
if (rd mr < pm)
if (rd to >= 0)
B · νi = B · νi + Δ(Ite,bi − B · νi)
else
B · νi = B · νi −Δ(Ite,bi − B · νi)

done
return B

}

Algorithm 1: Real-value mutation (pm represents mutation rate).

Finally, the proposed algorithm outputs the value of the memory cell and obtains the
optimal fuzzy partition with the current number of classes, nc, nc = 1, 2, . . . , Cmax.

3.2. The Optimization Layer of FCSA

Determining the optimal number of clusters is an important issue in FCSA. To evaluate the
optimal solutions, FCSA evaluates the validity measure of the c-partition for a range of nc
values using the Xie-Beni (XB) index [8, 17] and then selects the optimal number of clusters
with the minimum value of the XB index. Here, nc is an estimate of the upper bound of the
number of clusters.

The XB index is defined as a function of the ratio of the compactnessπ to the separation
s. Here π and s can be written as follows:

π =
σ

N
=

∑nc
i=1

∑N
j=1 u

m
ij d

2
ij

N
,

s = min
i,k

‖vi − vk‖2 ,

XB =
π

s
=

∑nc
i=1

∑N
j=1 u

m
ij d

2
ij

Nmini,k‖vi − vk‖2
,

dij =
∥∥vi − xj

∥∥,

(3.11)

where dij represents the distance between the ith center vi and the jth antigen xj,N
represents the total number of the antigens, nc represents the number of classes.

A smaller XB indicates a partition in which all the clusters are compact and separate
from each other. Thus, FCSA has to find adaptively the optimal number of clusters with the
smallest XB calculated by the corresponding classification result.

The flowchart for FCSA is shown in Figure 2 .
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Figure 2: The process for the fuzzy clustering algorithm based clonal selection (FCSA).

4. Experiments and Analysis

The proposed FCSA and traditional clustering algorithms for land cover classification were
all implemented using Visual C++ 6.0 and tested on different types of remote sensing
image. Two experiments were conducted to test the performance of classification. Only
FCSA can classify the image without a priori assumptions on the number of clusters and
finally output the optimal number of clusters. To better assess the performance of FCSA,
consistent comparisons of classification results with the optimal number of clusters were
also performed among FCSA, K-means, ISODATA, and Fuzzy C-means (FCM) using the
classification accuracy of the Flightline C1 and Landsat TM images.

4.1. Experiment 1: Flightline C1

This experiment was conducted using a data set designated Flightline C1 (FLC1) [26], which
was 12-bandmultispectral data taken over Tippecanoe County, IN, by theM7 scanner in June,
1966. Figure 3 shows the experimental FLC1 image (92 × 107 pixels)with spectral ranges from
0.40 to 1.00μm.

The primary parameters to be provided by users for the classification were the
maximum number of classes Cmax, the maximum iteration MaxIte, antibody population size
M, the number of selected antibodies n (see also Step 3 in Section 3), and the number of
displaced antibodies, d (see also step (7) in Section 3). Generally, to conveniently apply
FCSA, n is often set to N. The affinity function was determined by (3.5). The values of these
parameters were set as follows: M = 20, MaxIte = 100, n = M = 20, d = 5, and Cmax = 6.
The weighting exponent m, used by the FCSA and FCM, was set to 2, which was the optimal
value ofmwithin [1.5, 2.5] in practical applications [18].

FCSA automatically provides four clusters for this image dataset. Figure 4 shows the
variation of the XB index with the number of clusters when FCSA is used as the underlying
clustering technique. As can be seen from the figure, the minimum value of the XB index
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Figure 3: Flightline C1 Image RGB (9,7,4).
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Figure 4: Variation of the XB index with the number of classes for the FLC1 image using FCSA.

is obtained for four clusters with the FCSA algorithm. In fact, from our ground knowledge,
the survey area is an agricultural area that is expected to fall into four classes: corn, oats,
red clover, and wheat. Hence, it is evident that FCSA correctly finds the optimal number of
clusters in this case. The list of classes and the number of labeled samples for each class are
given in Table 1. The field map is shown in Figure 5 based on ground truth data and Figure 6
displays the spectral curves of the above four land cover classes.

To better evaluate the classification performance of FCSA, three traditional clustering
algorithms for land cover classification are used in this experiment: K-means, ISODATA,
FCM, when the optimal number of clusters is set to 4. Figures 7(a), 7(b), 7(c), and 7(d)
illustrate the classification results using K-means, ISODATA, FCM, and FCSA, respectively.

The visual comparisons of the four clustering results in Figure 7 show varying degrees
of accuracy in pixel assignment. It can be seen from the classification images that the four
classifiers have similar classification results in the corn class. For the other classes, K-means
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Figure 6: The spectral curves of four land cover classes.

and ISODATA create similar classification results and cannot correctly obtain four clustering
partitions. In the classification images of K-means and ISODATA, the oats class disappears
and is misclassified as wheat. The reason for the incorrect results is that the spectral curves
of the oats class (green) and the wheat class (yellow) shown in Figure 6 are too similar
to allow differentiation by the K-means and ISODATA algorithms, which have only little
differences in the 11th and 12th bands. FCM and FCSA may correctly find the oats class by
the corresponding fuzzy partition (Figures 7(c) and 7(d)) . Comparing FCSAwith FCM, they
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Table 1: List of classes and number of labeled samples in each class for experiment 1.

Class name Number of labeled samples
Corn 1743
Oats 715
Red clover 1700
Wheat 1472
Total number of samples 5630

have similar results in the corn, oats, and wheat classes. However, FCM fares the worst in
the red clover class because many red clover pixels are misclassified to the corn class at the
bottom of the classification image. In contrast, FCSA achieves the best visual accuracy in the
red clover class and also performs satisfactorily in the oats and wheat classes. As a result, the
use of FCSA gives better results for all four classes.

For a more detailed verification of the results, we compared ground truth data
(Table 1) with the classified images and assessed the accuracy of each clustering algorithm
for land cover classification quantitatively using two statistics, Overall Accuracy (OA), and
Kappa Coefficient based on the confusion matrix [2]. Columns in a confusion matrix typically
represent the reference data and rows represent the classification data. Overall Accuracy is
simply the sum of the pixels classified correctly (e.g., the diagonal elements) divided by the
total number of samples in the comparison. The Kappa coefficient can be defined in terms of
the confusion matrix as follows:

Kappa =
N

∑r
k=1 xkk −

∑r
k=1(xk+ × x+k)

N2 −∑r
k=1(xk+ × x+k)

, (4.1)

where r is the number of rows in the matrix, xkk is the number of observations in row i and
columnj, xk+ and x+k are the marginal totals for row i and column j, respectively, and N is
the total number of observations.

Tables 2 and 3 list the results of the comparisons between the ground truth data
and the classified images obtained by four clustering algorithms: K-means, ISODATA, FCM,
and FCSA. It was noted that FCSA is evolutionary and the results obtained are unlikely
to be similar twice, that is, FCSA is nondeterministic; the experiment described above was
performed 10 times and the final result obtained were again averaged in tables. From Tables
2 and 3, it is apparent that the FCSA classifier provides better classification results than the
other classifiers. The details are as follows: the four classifiers have similar results for the
corn class, for which the difference is in the range of 10 pixels. Consistent with the visual
classification results, the K-means and ISODATA algorithms have the lowest classification
accuracy since they cannot correctly partition the image. FCSA achieves a better classification
result for wheat and red clover classes than does FCM, while FCM slightly exceeds FCSA in
the oats class by 4 pixels. As a whole, FCSA exhibits the best overall classification accuracy
of 92.08% with a gain of 17.3%, 17.3%, and 4.99% over the K-means, ISODATA, and FCM
algorithms, respectively. FCSA improves the Kappa Coefficient from 0.6463 to 0.8912, an
improvement of 0.2449. One reason for this is that the conventional clustering algorithms
often becomes stuck at suboptimal solutions based on the initial configuration of their
systems and have a low precision, such as K-means, FCM. Being different from traditional
clustering algorithms, FCSA, inspired by immune systems and based on clonal selection
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Figure 7: The classification results with four clusters for the Flight C1 image. (a) K-means. (b) ISODATA.
(c) FCM. (d) FCSA.

algorithm, is a data-driven, self-adaptive method that can adjust itself to the data without
any explicit specification of functional or distributional form for the underlying model. FCSA
extends the search space by the process of cloning and quickly finds the optimal solution by
the mutation steps. Therefore, FCSA can generate the optimal clustering results to make it
flexible in modeling real, complex relationships, which is an important advantage that can
adapt to the complex distributions in land cover classification.

In addition, the conventional clustering algorithms require ideal conditions and are
sensitive to the initial clustering centers, for example, a priori assumptions on the number
of clusters. However, because of the complexity of ground substances and the diversity
of disturbance, ideal conditions are not often met in real classification calculations. When
the number of clusters is incorrectly defined by users, traditional clustering algorithms
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Table 2: Comparison of four clustering algorithms in experiment 1.

Methods Corn Oats Red clover Wheat Total

K-means

Corn 1714 120 583 0 2417
Oats 16 0 93 0 109

Red Clover 5 0 1024 0 1029
Wheat 8 595 0 1472 2075

ISODATA

Corn 1714 120 583 0 2417
Oats 16 0 93 0 109

Red Clover 5 0 1024 0 1029
Wheat 8 595 0 1472 2075

FCM

Corn 1706 8 674 0 2388
Oats 31 707 0 8 746

Red Clover 6 0 1026 0 1032
Wheat 0 0 0 1464 1464

FCSA

Corn 1704 9 388 0 2101
Oats 20 703 0 7 730

Red Clover 19 0 1312 0 1331
Wheat 0 3 0 1465 1468

Total 1743 715 1700 1472 5630

Table 3: Comparison of four clustering algorithm performances with four classes in experiment 1.

Accuracy K-means ISODATA FCM FCSA
Overall accuracy 74.78% 74.78% 87.09% 92.08%
Kappa coefficient 0.6463 0.6463 0.8228 0.8912

find it difficult to obtain satisfactory classification results. By the two-layer system, FCSA
can adaptively find the optimal number of clusters to make it appropriate in different
real complex conditions, which is another important advantage that adapts to the complex
distribution in land cover classification. Therefore, FCSA has the capacity of self-learning and
is robust. Based on the above, we can conclude that FCSA is a better clustering algorithm for
land cover classification.

4.2. Experiment 2: Wuhan TM

The image data used in this experiment refers to the city area of Wuhan in the central part
of China. The image (400 × 400 pixels) with a spatial resolution of 30 meters was acquired
by Landsat-5 on October 26, 1998. The dataset is composed of six spectral bands and their
spectral ranges are from 0.45 to 2.35μm. Figure 8 shows the standard false color composite
image of Wuhan TM using bands 4, 3, 2. The values of parameters are set asM = 20,MaxIte =
100, n = M = 20, d = 5. Unlike experiment 1, Cmax is set to 7 according to the distribution
of land cover classes in the image. The parameters in the other traditional algorithms are the
same as in experiment 1.

Figure 9 shows the variation of the XB index with the number of clusters when FCSA
is used. As can be seen, the minimum value of the XB index is obtained for five clusters with
the FCSA algorithm. FCSA automatically yields five clusters and five is the optimal number
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Figure 8: Wuhan TM Image RGB (4,3,2).
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Figure 9: Variation of the XB index with the number of classes for the FLC1 image using FCSA.

of clusters. The result is consistent with the real class distribution of land cover based on the
ground information available to us. As shown in Figure 8 , some characteristic regions in
the image are the well-known Yangtze River cutting across the middle of the image, a city,
Wuhan, to both sides of the river. Two parallel lines observed in the middle of the image
are the First and Second Bridge over the Yangtze River in Wuhan. The red pixels depict the
vegetation classes according to the principles of the standard false color composite. The lakes
are found in the right side of the image. The white pixels are known to be roads or open
spaces according to visual interpretation experience. Apart from these, there are severalwater
bodies, rare soils, and so forth in the image. Based on the above information, the image is
expected to fall into five classes: river, vegetation, lake, building, and road. It can be noted
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Figure 10: The spectral curves of five land cover classes.
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Figure 11: The ground truth data of TM.

that the water class has been differentiated into river (Yangtze River) and lake classes because
of a difference in their spectral properties shown in Figure 10 , which displays the spectral
curves of the above five land cover classes. Figure 11 displays the field map of the image
based on ground truth data. The list of classes and the number of labeled samples for each
class are given in Table 4.

Figures 12(a), 12(b), 12(c), and 12(d) show the TM image partitioned using K-means,
ISODATA, FCM, and FCSA, respectively, when the number of clusters is set to 5. As can be
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Figure 12: The classification results with for clusters for the TM image. (a) K-means. (b) ISODATA. (c)
FCM. (d) FCSA.

seen, the river and lake classes have been incorrectly classified as belonging to the same class
in the classification images using K-means and ISODATA. That is, K-means and ISODATA
cannot successfully find the lake class. Furthermore, they partition the vegetation class into
two subclasses denoted by vegetation 1 and vegetation 2 in Figures 12(a) and 12(b). In
addition, K-means, ISODATA, and FCM fare the worst in building classification because
many building pixels aremisclassified as vegetation. In the classification images, we have put
the corresponding label as vegetation+building. Therefore, we can conclude that although
some regions, rivers, parts of buildings, and vegetation, and so forth, have been correctly
identified, a significant amount of confusion is evident in the clustering results using the
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Table 4: List of classes and number of labeled samples in each class for experiment 2.

Class name Number of labeled samples
River 1774
Vegetation 5007
Lake 2664
Building 2161
Road 2099
Total number of samples 13705

Table 5: Comparison of four clustering algorithm performances with five classes in experiment 2.

Accuracy K-means ISODATA FCM FCSA
Overall accuracy 41.13% 41.13% 74.27% 80.43%
Kappa coefficient 0.2811 0.2811 0.6703 0.7346

three traditional clustering algorithms. However, FCSA achieves the best visual accuracy in
the vegetation and building class and also performs satisfactorily for other classes.

Table 5 lists the results of the comparisons between the ground truth data and classified
images obtained by four clustering algorithms: K-means, ISODATA, FCM, and FCSA. From
Table 5, it is apparent that FCSA produces better classification results than the other clustering
algorithms. The details are as follows: K-mean and ISODATA have the lowest accuracy
because the lake class disappears in their classification images. This is evidence again that
they are sensitive to the initiation steps. FCSA exhibits the best overall classification accuracy
of 80.43%, that is, the best percentage of correctly classified pixels among all the tested pixels,
with a gain of 39.3%, 39.3%, and 6.16% over K-means, ISODATA, and FCM, respectively.
FCSA improves the Kappa coefficient from 0.2811 to 0.7346, an improvement of 0.4535. These
evince that FCSA is a very competent clustering algorithm, which makes it promising for
land cover classification.

5. Conclusions

A fuzzy clustering algorithm based on clonal selection for land cover classification, namely,
FCSA, was proposed in this paper. Traditional clustering algorithms, such as fuzzy c-
means, require the a priori specification of the number of clusters and easily fall into a local
optimum. The proposed algorithm has attempted to tackle the problems of FCM by use of
the clonal selection algorithm to provide near-optimal solutions without a priori assumptions
of the number of clusters. For this purpose, FCSA is designed as a two-layer system: the
classification layer and the optimization layer. In the classification layer, FCSA is used to
find the optimal fuzzy partition to a fixed number of classes by the immune operators of
the clonal selection algorithm, clone, selection, mutation operators, and so forth, while in
the optimization layer FCSA uses the Xie-Beni index as a measure of the validity of the
corresponding partition to find the optimal number of classes.

Two experiments were carried out to test the performance of FCSA using Flightline C1
and TM remote sensing images. Compared with three traditional clustering algorithms, K-
means, ISODATA, and FCM, only FCSA can adaptively find the optimal number of clusters
and FCSA has consistently demonstrated its better performance with the optimal number of
clusters. Since K-means and ISODATA cannot correctly partition the image because one class
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often disappears and a significant amount of confusion is provided in their classification
results, their average Overall Accuracy (OA) and Kappa Coefficient are worst, 57.96% and
0.4637, respectively. FCM improves the average OA and Kappa Coefficient to 80.68% and
0.7466, respectively. The best classification result is provided by FCSA, its average OA and
Kappa Coefficient being 86.26%and 0.8129, respectively. These evince that FCSA is applicable
for performing the task of land cover classification and has high classification precision.
In future work, we will analyze the sensitivity of the proposed algorithm in relation to
the parameters, for example, population size, for improving the classification performance
and may test FCSA using high-dimensional datasets, such as hyperspectral remote sensing
imagery.
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