
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 710623, 22 pages
doi:10.1155/2011/710623

Research Article
A Hybrid Analytical-Numerical Model Based on the
Method of Fundamental Solutions for the Analysis
of Sound Scattering by Buried Shell Structures

L. Godinho, P. Amado-Mendes, and A. Pereira

CICC, Department of Civil Engineering, University of Coimbra, Pinhal de Marrocos,
3030-788 Coimbra, Portugal

Correspondence should be addressed to L. Godinho, lgodinho@dec.uc.pt

Received 30 May 2011; Accepted 31 July 2011

Academic Editor: Delfim Soares Jr.

Copyright q 2011 L. Godinho et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Several numerical and analytical models have been used to study underwater acoustics problems.
The most accurate and realistic models are usually based on the solution of the wave equation
using a variety of methods. Here, a hybrid numerical-analytical model is proposed to address
the problem of underwater sound scattering by an elastic shell structure, which is assumed
to be circular and that is buried in a fluid seabed bellow a water waveguide. The interior of
the shell is filled with a fluid that may have different properties from the host medium. The
analysis is performed by coupling analytical solutions developed both for sound propagation in
thewaveguide and in the vicinity of the circular hollow pipeline. The coupling between solutions is
performed using the method of fundamental solutions. This strategy allows a compact description
of the propagation medium while being very accurate and highly efficient from the computational
point of view.

1. Introduction

The detection of buried objects in solid and fluid media has been an active research topic,
making use of different approaches. Techniques based on wave propagation have received
particular interest from researchers, leading to the development of a broad variety of
analytical and numerical models to simulate this propagation and to an intense research on
the interpretation of field results. In fact, the measurement of spatial and temporal variations,
recorded at hydrophones or geophones, resulting from the generation of waves produced by
dynamic sources, placed inside elastic or acoustic media, is frequently used to infer the pres-
ence of buried structures or the geological configuration of a specific site. Some early reference
works on this topic are due to Claerbout [1] or Griffiths and King [2], addressing the specific



2 Mathematical Problems in Engineering

application of such methods to geophysics; in the case of underwater acoustics, reference
works include the now classic book by Jensen et al. [3], which describes a number of for-
mulations that can be used in both shallow water and deep water scattering problems.

In this paper, the authors focus on the scattering of waves in underwater configura-
tions, for which different methods have been used in the past, ranging from the analytical
methods presented by Pao and Mow [4] for studying wave diffraction near cylindrical cir-
cular inclusions to purely numerical methods, such as finite difference (e.g., Stephens [5] or
Wang [6]) and finite elements techniques (e.g., Marfurt [7] or Zampolli et al. [8]), combined
with transmitting boundaries.

Methods relying on the description of the relevant boundaries of the problem have also
been developed and form a very interesting class for this type of applications. An important
early work on acoustic scattering in the open ocean using the boundary element method is
due to Dawson and Fawcett [9], which analyses a waveguide with flat surfaces, except for
a compact area of deformation, where the acoustic scattering takes place. A hybrid model
which combines the standard boundary element method (BEM) in an inner region with
varying bathimetry and an eigenfunction expansion in the outer region of constant depth
was later proposed by Grilli et al. [10]. Works by Santiago and Wrobel [11] described the
implementation of the subregion technique in boundary element formulation for the analysis
of two-dimensional acoustic wave propagation in a shallow water region with irregular
seabed topography, allowing for the analysis of more general underwater systems. In their
approach, the bottom and surface boundaries of the regions are modeled using Neumann
and Dirichlet conditions, allowing for the use of Green’s functions that satisfy either the free
surface boundary condition or both the boundary conditions on the free surface and rigid
bottom.

The use of specific Green’s functions that account for part of the boundaries of the
analysis domain has been an important strategy when dealing with boundary element meth-
ods, since they may allow for smaller discretization schemes, leading to lower computational
effort, and therefore many researchers have focused their attention in their development. A
relevant example are the works of Tadeu and Kausel [12] and of Tadeu and António [13],
who proposed 2.5D Greens’s functions for acoustic and elastic wave propagation in layered
media, built as a superposition of the effects of plane waves with different inclinations;
these functions have, in fact, been extensively used in subsequent works. António et al. [14]
developed a boundary element formulation incorporating Green’s functions to describe 2.5 D
wave propagation for the case of a waveguide with an elastic bottom and used them to study
the scattering of waves by a buried or submerged object. A recent work by Pereira et al. [15]
described a formulation based on the BEM which allows simulating the scattering of sound
in an underwater configuration including a fluid seabed with multiple layers and a bottom
discontinuity.

Recently, meshless methods have also been used for the study of underwater sound
scattering in different types of environments. Different meshless methods are described in
the literature, including Meshless-Local-Petrov-Galerkin (MLPG) methods (see, e.g., Atluri
[16]), RBF collocation methods (see, e.g., Kansa [17, 18]), or the method of fundamental
solutions (MFS) (e.g., Golberg and Chen [19]). Examples of the application of these strategies
to underwater acoustics can be found in recent works by Godinho et al. [20], using RBF base
local interpolation methods formulated in the time domain, or by Costa et al. [21], making
use of the MFS together with the fundamental solutions for a flat waveguide and for a perfect
wedge.
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The scattering by a submerged object located within a fluid medium has also been
investigated by researchers, and works describing the scattering features of submerged
circular cylindrical elastic shell structures have also been published. The wave scattering
by submerged elastic circular cylindrical shells, filled with air, struck by plane harmonic
acoustic waves was analyzed by Veksler et al. [22]. In that work, the standard resonance
scattering theory was used to study the modal resonances, focusing on the generation of
bending waves. More recently, Godinho et al. [23] described an analytical solution for the
scattering of such structures buried in a homogeneous fluid medium. Later, the same authors
[24] used a BEM formulation to analyze the effect of a construction defect in the vibration
of such structures. However, it is important to note that this BEM formulation degenerates
whenever the thickness of the structure is very small, and therefore, alternative methods
should be used.

In the present work, the authors address the case in which a regular circular shell
structure is buried within a fluid seabed under a water-filled flat waveguide. The approach
proposed here is based on a hybrid approach which incorporates the analytical solutions
described in [23] for the submerged circular shell structures, together with the analytical
solution known for a waveguide with a fluid bottom (using the methodology proposed in
[13]). The coupling of these solutions is performed in the fluid medium that describes the
bottom by using the MFS and defining a virtual coupling boundary around the shell struc-
ture, along which the continuity of pressures and normal displacements is imposed. This
formulation can easily incorporate multiple scattering objects, with different properties,
although they are restricted to have a circular shape. More importantly, the method allows
accounting for the full solid-fluid and fluid-fluid interaction that occurs at the physical in-
terfaces of the system in an accurate manner, leading to precise results, since it is based
on analytical solutions of each individual problem. Additionally, since it uses the analytical
solution for a submerged circular shell, it allows modeling thin structures, overcoming the
difficulties identified above for the BEM.

The paper is structured as follows: first, the governing equations of the problem are
described in the frequency domain; then, the frequency domain multiregion MFS strategy
for the coupling of the waveguide with the solid shells is formulated; there follows a
description of the analytical solutions to be used for the submerged shell structures and for
the waveguide with a fluid bottom; then, the proposedmodel is verified against BEMmodels;
a procedure for obtaining time responses from the computed frequency-domain results is
then described; finally, a numerical simulation is presented, illustrating the applicability of
the model to a realistic configuration.

2. Governing PDEs

Within the scope of this work, the 2D scattering of waves by cylindrical shell structures
embedded within a fluid medium is analyzed. Thus, the governing equations of the problem
correspond to the vectorial and scalar wave equations, respectively, for the solid and for the
fluid regions of the analysis domain.

Considering a homogeneous, linear isotropic elastic domain with mass density ρs,
shear wave velocity βs, and compressional wave velocity αs, the propagation of elastic waves
can be described by vectorial wave equation

α2s
(∇∇ · u) − β2s∇ × ∇ × u = −ω2 u, (2.1)



4 Mathematical Problems in Engineering

where the vector u represents the displacement, ω is the circular frequency, and, for a two-
dimensional problem, ∇ = (∂/∂x)̂i + (∂/∂y)̂j; î and ĵ are the unit vectors along the x and y
directions.

If the propagation medium is a fluid, with mass density ρf , the propagation is gov-
erned by the Helmholtz equation, which can be written as

∇2p + kf
2p = 0, (2.2)

where p is the pressure and kf = ω/αf is the wave number, with αf being the speed of sound
in the fluid medium; for this scalar equation, ∇2 = (∂2/∂x2) + (∂2/∂y2). Within this fluid
medium, the displacements can be defined as a function of the first spatial derivative of p,
and are given by

ux = − 1
ρfω2

∂p

∂x
,

uy = − 1
ρfω2

∂p

∂y
.

(2.3)

3. Formulation of the Hybrid Numerical-Analytical Model

Consider a fluid waveguide, with a fluid bottom simulating a sedimentary seabed. Within
this seabed, consider the presence of an arbitrary number of circular, shell structures, made of
elastic materials, and filled with a fluidmaterial. This configuration is depicted in Figure 1(a).

A hybrid analytical-numerical model based on the method of fundamental solutions
(MFS) is proposed in this paper to calculate the pressure field within the waveguide gener-
ated by an acoustic source in the presence of such configurations. For this purpose, consider
that in the presence of NR shell structures, the problem is divided in NR+1 subregions, one
of them being the outer region, incorporating both the waveguide and the fluid bottom, and
each of the NR subregions is defined around the shell structure, as represented in Figure 1(b).

If the fundamental solutions are known for each of the defined subregions, it becomes
possible to establish a coupled model, which accounts for the full interaction between the
involved fluids and the solids that compose the shell structures, by just establishing the
continuity of pressures and displacements along the boundaries connecting the subregions.
Using the MFS, the acoustic field in the outer subregion, containing the waveguide, can be
defined by considering a number of virtual sources,

∑NR
j=1NVSj placed within the remaining

subregions, and combining their effects in a linear manner as

p(x) =
NR∑

j=1

NVSj∑

l=1

aj,lG
waveguide

(
x, xvsj,l

)
+Gwaveguide(x, x0), (3.1a)
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Figure 1: (a) Schematic representation of the problem to be solved; (b) Detail of the interface around one
of the shell structures, indicating the distribution of virtual sources and the coupling boundary interface.

while for a receiver placed within fluid of the jth inner subregion, we have

p(x) =
NVSj∑

l=1

aj,lG
shell
(
x, xvsj,l

)
, (3.1b)

where x represents a point of coordinates (x, y), x0 is the position of the real source
illuminating the system, xvs

j,l
is the position of each of the NVSj virtual sources placed

within subregion j, Gwaveguide(x, x0) is the fundamental solution for the waveguide with
fluid bottom at a point x originated by a source positioned at x0; Gshell(x, x0) is the
fundamental solution for each interior subregion, incorporating the full interaction between
the shell structures and the outer and inner fluids; the coefficients aj,l are, “a-priori”,
unknown and must be determined by establishing a system of equations, enforcing the
continuity of pressures and displacements along each of the NR boundaries separating the
outer subregion from each internal subregion. Assuming that the boundary conditions are
enforced at NVSj collocation points along the kth boundary (as illustrated in Figure 1(b)),
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the continuity equations along the mth collocation point xc,km of that boundary can be writ-
ten as

NR∑

j=1

NVSj∑

l=1

aj,lG
waveguide

(
xc,km , xvsj,l

)
+Gwaveguide

(
xc,km , x0

)
=

NVSk∑

l=1

bk,lG
shell
(
xc,km , xvs shell

k,l

)
,

NR∑

j=1

NVSj∑

l=1

aj,l
∂

∂�n
Gwaveguide

(
xc,km , xvsj,l

)
+

∂

∂�n
Gwaveguide

(
xc,km , x0

)

=
NVSk∑

l=1

bk,l
∂

∂�n
Gshell

(
xc,km , xvsshell

k,l

)
,

(3.2)

where the coefficients bk,l are, “a-priori”, unknown amplitudes of the fundamental solution
for the region containing the shell structure.

AN×N linear system of equations, withN = 2×∑NR
j=1NVSj , can then be built. Once this

system of equations is solved, one may obtain the pressure at any internal point by applying
equations (3.1a) and (3.1b).

An important point that should be highlighted concerning this formulation is that
the coupling between subregions is enforced in fluid-fluid interfaces at some distance from
the interfaces with the solid media that constitutes the shell structures. This strategy allows
the coupling to be performed in a region with smooth variations of the pressure, which
greatly improves the performance of the MFS. Additionally, since the interface between
subregions is virtual, it can assume a smooth shape, such as that of a circle, which has
been demonstrated in previous works that leads to very accurate results [25]. Finally, if the
fundamental solutions are computed analytically within each subregion, a further step can
be given towards obtaining high accuracy. In what follows, these fundamental solutions are
described.

3.1. Analytical Solution for a Fluid Waveguide with a Fluid Bottom

Green’s function for a flat fluid waveguide bounded bellow by a fluid halfspace (simulating
a seabed) and above by a free surface can be obtained using the definition of displacement
potentials, using the decomposition of the wavefield in terms of plane waves. These solutions
are known for layered systems and can be derived following the methodology presented by
Tadeu et al. [12, 13]. In this technique, the solutions can be expressed as the sum of the source
terms equal to those in full space and of surface terms generated at the free surface and at
the interface between the waveguide and the fluid halfspace. The calculation of the surface
terms requires knowledge of the potentials’ amplitudes. For the definition of these functions,
consider the geometry depicted in Figure 2.

For an infinite fluid space the wavefield produced by a linear pressure load is here
defined by a pressure potential as a superposition of plane waves by means of a discrete
wavenumber representation, obtained by applying a Fourier transform along the x direction.
The integrals of the expressions are transformed into a summation, by assuming an infinite
number of virtual plane sources distributed along the x direction, at equal intervals, Lx. To
avoid the influence of neighboring fictitious sources in the response, complex frequencies of
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Figure 2: System with a fluid waveguide over a fluid seabed.

the form ωc = ω − i × ξ are used here following the methodology described, for example, in
[13]. This procedure allows to obtain the following pressure potential:

φfull = − i
2Lx

(

− 1
ρf1ω2

)
n=+N∑

n=−N

[
Ef1

ν
f1
n

]

Ed, (3.3)

where Ef1 = e−iν
f1
n
|y−y0|

, Ed = e−ikn(x−x0), and ν
f1
n =

√
k2α1 − k2n with Im(νf1n ) ≤ 0, kα1 = ω/αf1.

By adequate derivation of this potential, one obtains Green’s function at point x for a infinite
homogeneous fluid medium, when a pressure load is applied at x0, with coordinates (x0, y0),
as follows:

Gfull(x, x0) = − i
2Lx

n=+N∑

n=−N

(
Ef1

ν
f1
n

)

Ed = − i
4
H0(kα1r), (3.4)

where r =
√
(x − x0)2 + (y − y0)2 andHn(· · · ) represent Hankel functions of the second kind

and order n.
The scattered wavefield in the waveguide can be defined in a similar way, by means

of two displacement potentials, one representing the contribution of the top free surface (φ1)
and the other related to the interface with the bottom halfspace (φ2). These potentials are
written as

φ1 = − i
2Lx

(

− 1
ρf1ω2

)
n=+N∑

n=−N

⎡

⎣
E1
f1

ν
f1
n

B1
n

⎤

⎦Ed,

φ2 = − i
2Lx

(

− 1
ρf1ω2

)
n=+N∑

n=−N

⎡

⎣
E2
f1

ν
f1
n

B2
n

⎤

⎦Ed,

(3.5)

with E1
f
= e−iν

f1
n
|y−H|

and E2
f
= e−iν

f1
n
|y|
.
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To define the wavefield in the bottom halfspace, an additional potential must be de-
fined in a similar manner, and is given by

φ3 = − i
2Lx

(

− 1
ρf2ω2

)
n=+N∑

n=−N

⎡

⎣
E2
f2

ν
f2
n

B3
n

⎤

⎦Ed, (3.6)

with E3
f
= e−iν

f2
n
|y|
, νf2n =

√
k2α2 − k2n with Im(νf2n ) ≤ 0, kα2 = ω/αf2.

In these expressions B1
n, B

2
n, and B3

n are unknown coefficients to be determined after
solving a system of equations, built so that the field, produced simultaneously by the source
and the surface terms, should give the appropriate boundary conditions at the interfaces.
The imposition of null pressure at the free surface, and of continuity of pressure and normal
displacements at the fluid-fluid interface for each value of n, yields a system of three
equations in the three unknowns (see the appendix). Once the unknown coefficients have
been calculated, the scattered pressure associated with the surface terms can be obtained.
Green’s functions for the fluid layer are then given by the sum of the source terms and the
surface terms originated in both interfaces.

If a source acts in the top fluid (waveguide), this leads to the following expressions for
the pressure field in the system:

Gwaveguide(x, x0) = Gfull(x, x0) − i
2Lx

n=+N∑

n=−N

⎛

⎝
E1
f

ν
f1
n

B1
n +

E2
f

ν
f1
n

B2
n

⎞

⎠Ed, if y > 0,

Gwaveguide(x, x0) = − i
2Lx

n=+N∑

n=−N

⎛

⎝
E3
f

ν
f2
n

B3
n

⎞

⎠Ed, if y ≤ 0.

(3.7)

If the source is positioned in the seabed, a similar procedure can be used, including the
source term in the pressure field of the bottom halfspace. From these equations, it becomes
straightforward to apply (2.3) in order to obtain the displacements at any field point.

3.2. Analytical Solution for a Circular Cylindrical Shell Embedded in
a Fluid Medium

Consider a circular shell solid structure, defined by the internal and external radii rA and
rB, respectively, and submerged in a homogenous fluid medium, as illustrated in Figure 3. A
harmonic dilatational source, placed in the exterior fluid medium, is assumed to illuminate
the system, generating waves that hit the surface of the submerged structure. Part of the
incident energy is then reflected back to the exterior fluid medium, with the rest being
transmitted into the solid material, where they propagate as body and guided waves. These
waves continue to propagate and may eventually hit the inner surface of the structure, where
similar phenomena occur.

The wavefield generated in the exterior fluid medium (Fluid 2) depends both on the
incident pressure waves and on those coming from the external surface of the shell. The
latter propagate away from the cylindrical shell and can be defined using the following
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Figure 3: Circular cylindrical shell structure submerged in a fluid medium.

displacement potential when a cylindrical coordinate system is centered on the axis of the
circular cylindrical shell,

ϕ̂1 = − 1
ρf2ω2

∞∑

n=0

A1
nHn(kα2r) cos(nθ), (3.8)

Inside the solid material of the shell, two distinct groups of waves exist, corresponding
to inward travelling waves, generated at the external surface, and to outward travelling
waves, generated at the internal surface of the shell. Each of these groups of waves can be
represented using one dilatational and one shear potential

ϕ̂2 =
∞∑

n=0

A2
nJn(kαsr) cos(nθ); ψ̂2 =

∞∑

n=0

A3
nJn
(
kβsr
)
sin(nθ),

ϕ̂3 =
∞∑

n=0

A4
nHn(kαsr) cos(nθ); ψ̂3 =

∞∑

n=0

A5
nHn

(
kβsr
)
sin(nθ),

(3.9)

where kαs = ω/αs, kβs = ω/βs, and αs and βs are, respectively, the dilatational and shear
wave velocities permitted in the solid material Jn(· · · ) correspond to Bessel functions of the
first kind and order n.

In the fluid that fills the shell structure (Fluid 3), only inward propagating waves are
generated. For this case, the relevant dilatational potential is given by

ϕ̂4 = − 1
ρf3ω2

∞∑

n=0

A6
nJn(kα3r) cos(nθ), (3.10)

where kα3 = ω/αf3 and αf3 is the pressure wave velocity in the inner fluid. The termsAj
n (j =

1, 6) for each potential of (3.8), (3.9), and (3.10) are unknown coefficients to be determined by
imposing the required boundary conditions. For this case, the necessary boundary conditions
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are the continuity of normal displacements and stresses, and null tangential stresses on the
two solid-fluid interfaces.

Consider, now, that the incident field, in terms of displacement potential, generated by
the acoustic source located at (x0, y0) can be defined at a point (x, y) as

ϕ̂inc = − i
4

(

− 1
ρf2ω2

)

H0

(
kα2

√
(x − x0)2 +

(
y − y0

)2
)
. (3.11)

In order to establish the appropriate equation system, this incident field must also be
expressed in terms of waves centered on the axis of the circular cylindrical shell structure.
This can be achieved with the aid of Graf’s addition theorem, leading to the expression (in
cylindrical coordinates)

ϕ̂inc = − i
4

(

− 1
ρf2ω2

) ∞∑

n=0
(−1)nεnHn(kα2r0)Jn(kα2r) cos(nθ), (3.12)

where r0 is the distance from the source to the axis of the circular cylindrical shell and εn is 1
if n = 0 and 2 in the remaining cases.

The solution of the equation system can then be used to compute the stresses in the
solid medium as a summation of solutions obtained for pairs of values of n and kz. The final
equation system can be found in published works, namely, [23, 24].

After the solution of the corresponding equation system is computed, the unknown
values Aj

n (j = 1, 6) can be used to determine the final wavefields. For the outer fluid, the
pressure field at a point (x, y) can be written as

Gshell(x, x0) = − i
4
H0

(
kα2

√
(x − x0)2 +

(
y − y0

)2
)
+

N∑

n=0

A1
n
Hn(kα2r) cos(nθ). (3.13)

The corresponding displacement field can then be easily determined by applying (2.3).

4. Calculation of Responses in the Time Domain

The pressure field in the spatial-temporal domain is obtained by modeling a Ricker wavelet,
whose Fourier transform is

U(ω) = A
[
2π1/2toe−iωts

]
Ω2e−Ω

2
, (4.1)

in which Ω = ωto/2, A is the amplitude, ts is the time when the maximum occurs, and πto is
the characteristic (dominant) period of the wavelet.

This wavelet form has been chosen, because it decays rapidly, both in time and
frequency, reducing computational effort and allowing easier interpretation of the computed
time series and synthetic waveforms.

The analysis uses complex frequencies, where ωc = ω − iζ, with ζ = 0.7Δω, which
further reduces the influence of the neighboring fictitious sources and avoids the aliasing
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phenomena. In the time domain, this shift is later taken into account by applying an expo-
nential window eξt to the response [26].

5. Model Verification

To verify the proposed coupling strategy, its results were comparedwith those obtained using
alternative methodologies for a number of situations. Since no analytical solution is known
for the complete problem to be solved here, this verification was performed against other
numerical methods, namely, the boundary element method (BEM). In what follows, two
verification examples are described for specific cases, and a brief note on the stability of the
procedure is presented.

5.1. Verification Example 1: A Circular Shell in an Halfspace Fluid Medium

In a first verification example, consider the case of an acoustic water halfspace, allowing a
propagation velocity of 1500m/s, and exhibiting a density of 1000 kg/m3, hosting a circular
shell structure, made of an elastic material with a density of 1400 kg/m3, and allowing prop-
agation velocities for the P and S waves of 2182.2m/s and of 1336.6m/s, respectively. This
structure has an external radius of 1.5m and an internal radius of 0.75m, is filled with water,
and is positionedwith its centre at coordinates x = 3.0m and y = −4.0m. An acoustic source,
located at x = 0.0m and y = 5.0m, illuminates this system, as illustrated in Figure 4(a).

The described configuration has been modeled using two different approaches. In the
first, the proposed coupling strategy, making use of the fundamental solutions described
above, is used. To allow the use of the fundamental solution for a waveguide over a fluid
seabed, a virtual interface is considered at y = 0.0m, and the same properties are ascribed to
the waveguide and to the fluid bottom. A virtual circular interface is also considered around
the shell structure, with a radius of 1.6m, in order to allow coupling the two fundamental
solutions. 80 collocation points are placed along this boundary, and two sets of 80 virtual
sources are positioned as described in Section 3, at a distance of 0.5m from the interface. The
second model makes use of the boundary element method, as described in [24], and a total
of 240 elements is used to discretize the structure (160 for the outer boundary and 80 for the
inner boundary). To account for the free surface of the halfspace, proper Green’s functions
are used for the outer medium. These functions are defined making use of the image source
technique, where a single source is placed symmetrically to the real source with respect to the
free surface, and with inverted polarity.

In both cases, the response is computed at a receiver positioned at x = 6.0m and y =
−3.0m, for frequencies ranging from 20Hz to 2500Hz, with an increment of 20Hz. Complex
frequencies defined as, ωc = ω − i × 0.7 ×Δω are used in the calculation.

The results computed making use of both methods are depicted in Figure 4(b). As can
be seen in this figure, the two sets of results match perfectly along the full set of frequencies
analyzed.

5.2. Verification Example 2: Two Rigid Circular Inclusions Buried in a Fluid
Seabed under a Fluid Waveguide

A second verification example has been analysed in order to assess the correctness of the
results in the presence of more than two buried inclusions, positioned within a seabed with
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Figure 4: (a) Schematic representation of the first verification example. (b) Responses provided by the BEM
and by the proposed coupled numerical-analytical model.

different properties from the waveguide. For this test, consider the case of an acoustic water
waveguide (medium properties are given in the previous section), with a depth of 20.0m;
bellow this waveguide, a fluid seabed is considered, allowing sound to travel at 2100m/s,
and exhibiting a density of 1800 kg/m3. Within the seabed, two circular rigid inclusions, with
a radius of 0.5m, are modeled. These inclusions are positioned at x = 3.0m and y = −4.0m
and at x = 6.0m and y = −4.0m. An acoustic source, located at x = 0.0m and y = 5.0m,
illuminates this system, as illustrated in Figure 5(a).

The described configuration has been modeled using two different approaches. Once
again, the first corresponds to the proposed coupling strategy. Two virtual circular interfaces
are considered around the circular inclusions, with a radius of 0.75m, in order to allow
coupling the fundamental solutions for the inner and outer domains. One should note that in
this case, the fundamental solution for the case of a rigid inclusion can easily be obtained from
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Figure 5: (a) Schematic representation of the second verification example. (b) Results provided by the BEM
and by the proposed coupled numerical-analytical model.

Section 3.2, just considering the potential corresponding to the outer fluid and imposing the
necessary null normal displacements at the outer interface. 30 collocation points are placed
along this virtual interface, and two sets of 30 virtual sources are positioned as described in
Section 3, at a distance of 0.5m from the interface. In a second model, the boundary element
method is used, discretizing each of the two inclusions using 30 elements and the interface
between the waveguide and the seabed using 950 elements. In order to limit the number of
boundary elements used to discretize this interface, complex frequencies with an imaginary
part are used (ζ = 0.7(2π/T)). This considerably attenuates the contribution of the responses
from the boundary elements placed at L = 2αfT , reducing the length of the interface to be
discretized (see, e.g., [15]). In our calculations a value of T = 0.05 s and L = 210m were
used to define this discretization. The free surface of the halfspace is accounted using Green’s
functions defined by the image source technique.

In both cases, the response is computed at a receiver positioned at x = 6.0m and
y = −3.0m, for frequencies ranging from 20Hz to 1000Hz, with an increment of 20Hz. As



14 Mathematical Problems in Engineering

H= 20m

4m

Source (0; 5)

y

x

3m3m

ρf2 = kg/m31800
m/s2100αf2 =

ρf1 = 1000 kg/m3

αf1 = 1500m/s

Receiver (5;− )2

Shell structures with:
rA= 0.5m
rB = 1m

Figure 6: Schematic representation of the system with two buried shell structures.

Table 1: Response at the field point (x = 5m; y = −2m) when 30 collocation points are used and for
different positions of the virtual sources.

D/R Real part Imaginary part
0.05 −0.0264173 0.0279363
0.10 −0.0391006 0.0249389
0.20 −0.0393479 0.0235543
0.30 −0.0392936 0.0235595
0.40 −0.0392874 0.0235757
0.50 −0.0392888 0.0235806
0.60 −0.0392900 0.0235815

in the previous case, the results calculated making use of the two strategies are displayed in
Figure 5(b). Again, the results match perfectly along the full set of frequencies analyzed here.

5.3. Behavior of the Coupled Model in the Presence of Two Circular Shell
Structures Buried in a Fluid Seabed

An additional study was performed to better understand the behavior of the proposed model
concerning the variability of its results with the number of collocation points and with the
position of the virtual sources. For this purpose, consider the example illustrated in Figure 6,
in which two buried elastic shell structures are embedded within a seabed with different
properties from the waveguide. The properties of the acoustic water waveguide, 20.0m deep,
and of the fluid seabed are similar to those used in verification example described in the
Section 5.2. The two circular structures have an external radius of 1.0m and an internal radius
of 0.5m and are positioned at x = 3.0m and y = −4.0m and at x = 6.0m and y = −4.0m. The
elastic properties of the shell structure are defined in Section 5.1. To couple the waveguide
with the two structures, two virtual interfaces with a radius of 1.2m are defined.

The response has been calculated for a frequency of 2000Hz, at a receiver placed at
x = 5.0m and y = −2.0m, using different numbers of collocation points and positioning the
virtual sources at different distances from the virtual interfaces between the shell regions and
the waveguide region.

Table 1 presents the results at that receiver calculated for 30 collocation points when
the distance between the virtual sources and the interface (D) assumes different values. In
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Table 2: Response at the field point (x = 5m; y = −2m) when different numbers of collocation points
are used and the distance from the virtual sources to the interface is 0.4 times the radius of the fictitious
interface.

N Real part Imaginary part
10 −0.0124778 0.0189048
20 −0.0389532 0.0231320
30 −0.0392874 0.0235757
40 −0.0392905 0.0235811
50 −0.0392906 0.0235813
60 −0.0392906 0.0235813
70 −0.0392906 0.0235813
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x
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with rB = 1m
and rA = 0.95m

4m

ρf2

αf2
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Figure 7: Geometry defined for the numerical applications.

that table, the relation D/R is used to define the distance as a function of the radius of the
coupling interface (R). As can be observed in that table, the response is stable as long as the
virtual sources are not very close to the interface. In fact, for that case, a singularity of the
fundamental solution occurs very close to the boundary, degrading the quality of the result.
When D/R is 0.3 or larger, the variation of the response is very small and indicates a good
behavior of the coupling strategy.

Table 2 presents the results computed when D/R = 0.4, and for varying numbers of
collocation points. Here, the response can be seen to stabilize above 30 collocation points,
corresponding to a relation between the wavelength and the distance between collocation
points of just 5. This relation is relatively small when compared with those required for BEM
discretizations (around 7 to 8).

6. Numerical Application

In order to illustrate the applicability of the proposed numerical approach, consider now a
fluid waveguide, 20.0m deep, with a sedimentary seabed, as displayed in Figure 7. Assume
that the fluid inside the waveguide is water, with a density ρf1 = 1000.0 kg/m3 and allowing
a dilatational wave velocity αf1 = 1500.0m/s. The sedimentary seabed is first modeled with a
density ρf2 = 1800.0 kg/m3 and permits the propagation of dilatational waves with a velocity
αf2 = 2100.0m/s. A second scenario is also considered, inwhich the seabed assumes a density
ρf2 = 1500.0 kg/m3 and allows a sound velocity of αf2 = 1600.0m/s, which corresponds to
approaching the properties of the seabed to those of the fluid medium.
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Within the seabed, consider the presence of two similar circular shell structures with
external and internal radii rB = 1.0m and rA = 0.95m, respectively, made of an elastic material
with density ρs = 7850.0 kg/m3, and allowing a dilatational wave velocity αs = 6009.0m/s
and a shear wave velocity βs = 3212.0m/s; these structures are filled with a fluid material
with the same properties as water. The described scenario is excited by a cylindrical pressure
source placed near the bottom of the waveguide at x = −10.0m and y = 2.0m.

To simulate this problem, two virtual circular interfaces with a radius of 1.2m are
defined to account for the two subdomains containing the buried structures. Each of those
interfaces is defined using 35 collocation points, and two sets of virtual sources are positioned
at a distance of 0.4 times the radius of the virtual interface.

Calculations are then performed over a frequency range between 20.0Hz and
2560.0Hz, assuming a frequency step of 20.0Hz; for the purpose of calculating time
responses, the defined increment allows a total analysis time of T = 50.0ms. Time domain
signals are computed by means of an inverse Fourier transform, using the methodology
described earlier.

The pressure field in the waveguide was computed over a grid of receivers, equally
spaced at Δx = 0.5m, Δy = 0.5m, placed between x = 0.0m and x = 25.0m and y = 0.0m
and y = 20.0m. A sequence of snapshots displaying the pressure wave field over the grid
of receivers, at different instants, is presented to illustrate the results. Figure 8 displays
snapshots of the pressure response, for different time instants, over the grid of receivers
placed in the waveguide, generated by a source emitting a Ricker pulse with a characteristic
frequency fk = 400Hz. A grayscale is used to represent the amplitudes of the waves arriving
at the receivers, with lighter colors corresponding to higher values and darker colors rep-
resenting lower values. These responses were computed assuming the waveguide with a
sedimentary seabed which allows the propagation of dilatational waves with a velocity
αf2 = 2100.0m/s without shell structures buried.

At time t = 0.0ms, the load creates a cylindrical pressure wave that propagates away
from it. In the snapshot of Figure 8(a), corresponding to t = 14.6ms, this incident pulse is
visible (identified as P1), followed by a first reflection from the bottom of the waveguide
(identified as P2). At receivers placed near the ground, a third reflection may also be
identified, which is related to the headwave generated in the surface of the seabed (identified
as P3). This wave is originated at the interface between the two media and travels along this
interface with the velocity of the faster medium, which is the seabed, with αf2 = 2100.0m/s;
therefore, it appears in the plot at receivers placed farther from the source. As time increases,
it is possible to identify the reflections generated at the free surface (identified as P4), with
inverted polarity (see Figure 8(b)). For subsequent instants, a sequence of pulses originated
by multiple reflections in the surface and bottom of the waveguide can be identified (see
Figures 8(c) and 8(d)). These reflections tend to lose energy as time increases, with part of
the energy being transmitted to the seabed, and a stationary field is generated inside the
waveguide by these waves, which travel up and down between the surfaces of the channel
and tend to become flat as time increases.

When the two shell structures are buried in the seabed a different wave pattern
inside the waveguide may be created. In order to assess the presence of these structures
under different conditions, snapshots of the sound propagation within the waveguide were
captured for two different sets of properties of the seabed: αf2 = 2100.0m/s (see first column
of Figure 9) and αf2 = 1600.0m/s (see second column of Figure 9), respectively. When the
seabed allows a velocity αf2 = 2100.0m/s (see first column of Figure 9), a set of additional
pulses appear in the response (labeled as Pshell), which refer to reflections originated by
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Figure 8: Snapshots displaying the pressure wave field over the grid of receivers at different instants, in
the waveguide assuming the seabed with αf2 = 2100.0m/s, without the shell structures: (a) t = 14.6ms;
(b) t = 24.4ms; (c) t = 34.2ms; (d) t = 39.1ms.

the presence of the shell structures. These reflections can further be identified in the snapshots
corresponding to subsequent instants (see Figures 9(b1)–9(d1)) although displaying smaller
amplitudes, due to the contrast between media, which tends to hinder energy exchanges. As
expected, when the seabed assumes a dilatational wave velocity which approaches that of the
fluid in the waveguide (see plots provided in the second column of Figure 9), the amplitudes
of the scattered pulses provided by the shell structures are increased, providing a clear
perception of their presence. For later instants, the responses display multiple pulses, related
not only to reflections of waves generated in the waveguide, but also to several reflections
originated at the shell structures, at the top and at the bottom of the waveguide. It is also
interesting to note that for both cases, the reflection pattern originated at the buried structures
is quite complex, revealing multiple reverberation effects that occur not only between the
structures and the sea bottom, but also within the structures themselves and within the fluid
that fills their interior.

With the aim of understanding how the properties of the fluid inside the shell struc-
tures may influence the responses, the time domain response, originated by a source emitting
a Ricker pulse with a characteristic frequency fk = 800Hz, has been calculated along a line
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Figure 9: Snapshots displaying the pressure wave field over the grid of receivers placed in the waveguide
with a seabed, where shell structures are buried: (a) t = 14.6ms; (b) t = 24.4ms; (c) t = 34.2ms; (d)
t = 39.1ms.

of receivers placed at y = 0.5m and between x = 0.0m and x = 25.0m (see Figure 10). Three
different cases were analyzed with this purpose: in the first case, the structure is filled with a
fluid with the properties of the water; in a second case, the filling fluid is air (ρf3 = 1.22 kg/m3

and αf3 = 340.0m/s), simulating empty structures; in a third case, rigid inclusions are
modeled. A first set of simulations was performed for a seabed allowing an acoustic wave
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Figure 10: Time domain responses captured along a line of receivers placed at y = 0.50m, assuming the
waveguide with a seabed allowing a dilatational wave velocity of αf2 = 2100.0m/s: (a) without any
shell structures; (b) with the two buried shell structures, filled with water; (c) with the two buried shell
structures, filled with air; (d) with two buried rigid inclusions.

velocity of αf2 = 2100.0m/s. Responses computed for the waveguide without the buried
structures are displayed in Figure 10(a) as a reference. In that first plot, the initial reflections
occurring between the free surface and the fluid-fluid interface can clearly be identified, with
a 180◦ phase change occurring when the incident pulse is reflected at the free surface (P2
and P4). The so-called “head wave” can also be identified in this plot (P3), travelling at
2100m/s along the interface. Whenwater-filled shell structures are introduced (Figure 10(b))
a clear identification of a sequence of scattered pulses originated by these structures is
also possible. Interestingly, this sequence allows identifying a reverberation effect in which
multiple reflections are occurring within the structure, both on the solid shell and on the
filling fluid. This effect is even clearer in the second series of pulses, originated when the
pulses coming from the free surface hit the buried structure. In fact, as the incident pulse hits
the interface at an almost tangent angle, it is mainly reflected back to the waveguide, and
very little energy penetrates the seabed; this no longer occurs for the second set of pulses,
which reach this surface at larger angles, and thus allow more energy to be transmitted to the
bottom. Some differences are visible when the shell structure is filled with air, for which case
the scattered pulses are captured at these receivers with smaller amplitudes; in fact, the high
contrast between the solid and the interior fluid (air), makes the energy exchanges among
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Figure 11: Time domain responses, captured along a line of receivers placed at y = 0.5m, assuming the
waveguide with a seabed, allowing a dilatational wave velocity of αf2 = 1600.0m/s and with (a) the shell
structures filled with water and (b) the shell structures filled with air.

materials more difficult to happen. As a consequence, energy tends to dissipate faster, as
time increases, and thus reduces significantly the reverberation effect. In the reference result
of Figure 10(d), considering the external boundary of the inclusions to be rigid, no energy
propagates to the interior of the shell, and, as a result, the response reveals fewer pulses
coming from the buried structures. These results clearly show the importance of accurately
modeling both the solid of the shell and the fluid in its interior and show that the commonly
used approximation of assuming a rigid behavior of the structures neglects important parts
of the propagation phenomena.

To emphasize these findings, two further plots are presented in Figure 11, considering
the water-filled and air-filled structures buried in a seabed which allows a propagation
velocity of 1600m/s. In Figures 11(a) and 11(b), plots are presented illustrating the time
responses for water-filled shells and air-filled shells. For these cases, the difference between
the scattering patterns is significantly increased, due to the smaller contrast between the
waveguide and the seabed. The reverberation effect is now very clear in the case of water-
filled shells, with rings of pulses being generated due to multiple reflections within the
structure and filling fluid. This effect is much less pronounced when the structure is filled
with air. One additional feature of this response corresponds to the presence of two distinct
sets of pulses, originated at each of the two inclusions; the first arrival of each set occurs
approximately at the receivers placed immediately above the buried structure and allows an
identification of the presence of the two separate shells.

7. Conclusions

In this paper, the coupling between different analytical solutions using the MFS is proposed
to address the problem of scattering of acoustic waves in a waveguide in the presence of
buried structures. The scattering structure is assumed to be buried in the fluid seabed bellow
a water waveguide and is a circular elastic shell filled with a fluid that may have different
properties from the host medium. The proposed strategy was formulated and implemented
andwas shown to provide good results when compared with alternative numerical modeling
techniques. Since it performs the coupling between closed-form solutions, the method pro-
vides accurate results, while allowing a compact and simple model description. One major
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advantage of the proposed model is that it allows the simulation of very thin solid structures,
without the problems usually associated with thin bodies when using alternative methods.
A number of applications were presented, revealing that taking into account both the elastic
properties of the buried shell and the properties of a fluid which fills that structure can be
important, leading to marked differences when results are compared with usual simplifica-
tions, such as considering the buried structure to be rigid.

Appendix

This appendix presents the system of equations required to obtain Green’s function for a flat
fluid waveguide bounded bellow by a fluid halfspace and above by a free surface as defined
in Figure 2.

This system can be defined as

⎡
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