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This paper deals with a nearly circular crack, Ω in the plane elasticity. The problem of finding the
resulting shear stress can be formulated as a hypersingular integral equation over a considered
domain, Ω and it is then transformed into a similar equation over a circular region, D, using
conformal mapping. Appropriate collocation points are chosen on the region D to reduce the
hypersingular integral equation into a system of linear equations with (2N + 1)(N + 1) unknown
coefficients, which will later be used in the determination of energy release rate. Numerical results
for energy release rate are compared with the existing asymptotic solution and are displayed
graphically.

1. Introduction

The determination of energy release rate, a measurement of energy necessary for crack
initiation in fracture mechanics, has stirred a huge interest among researchers, and different
approaches have been applied. Williams and Isherwood [1] proposed an approximate
method in terms of a mean stress to approximate the strain-energy release rates of finite
plates. Sih [2] proposed the energy density theory as an alternative approach for fracture
prediction. Hayashi and Nemat-Nasser [3] modelled the kink as a continuous distribution of
infinitesimal edge dislocations to obtain the energy release rate at the onset of kinking of a
straight crack in an infinite elastic medium subjected to a predominantly Mode I loading.
Further, a similar method to [3] has also been adopted by Hayashi and Nemat-Nasser
[4] to obtain the energy release rate for a kinked from a straight crack under combined
loading based on the maximum energy release rate criterion. Gao and Rice [5] extended
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Figure 1: Stresses acting on a circular crack.

Rice’s work [6] in finding the energy release rate for a plane crack with a slightly curved
front subject to shear loading. While, Gao and Rice [7] and Gao [8] considered a penny-
shaped crack as a reference crack in solving the energy release rate for a nearly circular
crack subject to normal and shear loads. Jih and Sun [9] employed the finite element method
based on crack-closure integral in calculating the strain energy release rate elastostatic and
elastodynamic crack problems in finite bodies whereas Dattaguru et al. [10] adopted the
finite element analysis and modified crack closure integral technique in evaluating the strain
energy release rate. Poon and Ruiz [11] applied the hybrid experimental-numerical method
for determining the strain energy release rate. Wahab and de Roeck [12] evaluated the strain
energy release rate from three-dimensional finite element analysis with square-root stress
singularity using different displacement and stress fields based on the Irwin’s crack closure
integral method [13]. Guo et al. [14] used the extrapolation approach in order to avoid
the disadvantages of self-inconsistency in the point-by-point closed method to determine
the energy release rate of complex cracks. Xie et al. [15] applied the virtual crack closure
technique in conjunction with finite element analysis for the computation of energy release
rate subject to kinked crack, while interface element based on similar approach also adopted
by Xie and Biggers [16] in calculating the strain energy release rate for stationary cracks
subjected to the dynamic loading.

In this paper, we focus our work on obtaining the numerical results for energy release
rate for a nearly circular crack via the solution of hypersingular integral equation and
compare our computational results with Gao’s [8].

2. Formulation of the Problem

Consider the infinite isotropic elastic body containing a flat circular crack, Ω, as in Figure 1,
located on the Cartesian coordinate (x, y, x3) with origin O, and Ω lies in the plane x3 = 0.
Let the radius of the crack, Ω be a and Ω = {(r, θ) : 0 ≤ r < a, −π ≤ θ < π}.

If the equal and opposite shear stresses in the x and y directions, q1(x, y) and q2(x, y),
respectively, are applied to the crack plane, and it is assumed that the x3 direction is traction
free, then in the view of shear load, the entire plane, must free from the normal stress, that is

τ33
(
x, y, x3

)
= 0 for x3 = 0, (2.1)
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and the stress field can be found by considering the above problem subjected to the following
mixed boundary condition on its surface, x3 = 0:

τ13
(
x, y, x3

)
=

μ

1 − νq1
(
x, y

)
,

(
x, y

)
∈ Ω,

τ23
(
x, y, x3

)
=

μ

1 − νq2
(
x, y

)
,

(
x, y

)
∈ Ω,

u1
(
x, y, x3

)
= u2

(
x, y, x3

)
= 0,

(
x, y

)
∈ Γ \Ω,

(2.2)

where τij is stress tensor, μ is shear modulus, ν is denoted as Poisson’s ratio, and Γ is the
entire x3 = 0. Also, the problem satisfies the regularity conditions at infinity

ui
(
x, y, x3

)
= O

(
1
R

)
, τij

(
x, y, x3

)
= O

(
1
R

)
, i, j = 1, 2, 3, R → ∞, (2.3)

where R is the distance

R =
√
(x − x0)2 +

(
y − y0

)2
,

(
x0, y0

)
∈ Ω. (2.4)

Martin [17] showed that the problem of finding the resultant force with condition (2.2) can
be formulated as a hypersingular integral equation

1
8π
×
∫

Ω

(2 − ν)w
(
x, y

)
+ 3νe2jΘw

(
x, y

)

R3 dΩ = q
(
x0, y0

)
,

(
x0, y0

)
∈ Ω, (2.5)

where w(x, y) = [u1(x, y)] + j[u2(x, y)] is the unknown crack opening displacement, q(x0,

y0) = q1(x0, y0) + jq2(x0, y0), j2 =
√
−1, the w(x, y) = [u1(x, y)] − j[u2(x, y)], and the angle Θ

is defined by

x − x0 = R cosΘ, y − y0 = R sinΘ. (2.6)

The cross on the integral means the hypersingular, and it must be interpreted as a Hadamard
finite part integral [18, 19]. Equation (2.5) is to be solved subject to w = 0 on ∂Ω where ∂Ω is
boundary of Ω. For the constant shear stress in x direction, we have τ23 = 0 and [u2(x, y)] = 0,
hence, (2.5) becomes

1
8π
×
∫

Ω

2 − ν + 3νe2jΘ

R3
w
(
x, y

)
dΩ = q

(
x0, y0

)
,

(
x0, y0

)
∈ Ω. (2.7)

Polar coordinates (r, θ) and (r0, θ0) are chosen so that the loadings q(x, y) and q(x0, y0)
can be written as a Fourier series

q
(
x, y

)
=

∞∑

n=−∞
qn
( r
a

)
ejnθ, q

(
x0, y0

)
=

∞∑

n=−∞
qn

(
r0

a0

)
ejnθ0 , (2.8)
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where the Fourier components qn are j-complex. The j-complex crack opening displacement,
w(x, y) and w(x0, y0), have similar expressions

w
(
x, y

)
=

∞∑

n=−∞
wn

( r
a

)
ejnθ, w

(
x0, y0

)
=

∞∑

n=−∞
wn

(
r0

a0

)
ejnθ0 . (2.9)

Without loss of generality, we consider a = 1. Using Guidera and Lardner [20], the dimen-
sionless function qn and wn can be expressed as

qn(r) = r |n|
∞∑

k=0

Qn
k

Γ
(
|n| + 1

2

)
Γ
(
k +

3
2

)

(|n| + k)!
√

1 − r2
C
|n|+

1
2

2k+1

(√
1 − r2

)
,

wn(r) = r |n|
∞∑

k=0

Wn
k

Γ(|n| + 1/2)k!
Γ(|n| + k + 3/2)

C
|n|+1/2
2k+1

(√
1 − r2

)
,

(2.10)

where the j-complex coefficientsQn
k are known,Wn

k are unknown, andCλ
m(x) is an orthogonal

Gegenbauer polynomial of degree m and index λ, which is defined recursively by [21]

(m + 2)Cλ
m+2(x) = 2(m + λ + 1)xCλ

m+1(x) − (2λ +m)Cλ
m(x), (2.11)

with the initial values Cλ
0(x) = 1 and Cλ

1(x) = 2λx. For a constant shear loading, q(x, y) = −τ ,
the solution for a circular crack is obtainable.

3. Nearly Circular Crack

Let Ω be an arbitrary shaped crack of smooth boundary with respect to origin O, such that Ω
is defined as

Ω =
{
(r · θ) : 0 ≤ r < ρ(θ), −π ≤ θ < π

}
, (3.1)

where the boundary of Ω, ∂Ω is given by r = ρ(θ). Let ζ = ξ + iη = seiϕ with |ζ| < 1 such that
the unit disc is

D ≡
{(
s, ϕ

)
: 0 ≤ s < 1, −π ≤ ϕ < π

}
. (3.2)

By the properties of Reimann mapping theorem [22], a circular disc D is mapped conformally
onto Ω using z = af(ζ). This approach works for a general smooth star-shaped domain, Ω.
For a particular application, let f be an analytic function, simply connected in the domain Ω,
|f ′(ζ)| is nonzero and bounded for all |ζ| < 1,

f(ζ) = ζ + cg(ζ) with g(ζ) = ζm+1, (3.3)
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Figure 2: The domain Ω for f(ζ) = ζ + cζm+1 at different choices of c, m = 2.

which maps a unit circle, D in the ζ-plane into a nearly circular domain Ω in the z-plane
where c is a real parameter and r = ρ(θ) is the boundary of Ω. This domain has a smooth,
regular boundary for 0 ≤ (m + 1)|c| < 1. As (m + 1)|c| → 1 one or more cusps develop; see
Figure 2 with various choices of c.

Let

z − z0 = a
(
f(ζ) − f(ζ0)

)
= ReiΘ, (3.4)

and define S and Φ as

ζ − ζ0 = SeiΦ,

dΩ = dxdy = a2
∣
∣f ′(ζ)

∣
∣2
dξdη = a2

∣
∣f ′(ζ)

∣
∣2
sdsdϕ ,

(3.5)

where x = au(ξ, η) and y = av(ξ, η) so that f = u + iv. Next, we define δ and δ0 as

f ′(ζ) =
∣∣f ′(ζ)

∣∣eiδ, f ′(ζ0) =
∣∣f ′(ζ0)

∣∣eiδ0 . (3.6)

Set

w
(
x(ζ), y(ζ)

)
= a

∣∣f ′(ζ)
∣∣−1/2

ejδW
(
ξ, η

)
, (3.7)

q
(
x(ζ0), y(ζ0)

)
= a

∣∣f ′(ζ0)
∣∣−3/2

ejδ0Q
(
ξ0, η0

)
. (3.8)
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Substituting (3.5), (3.6), (3.7), and (3.8) into (2.7) gives

2 − ν + 3νe2jΘ

8π
×
∫

D

W
(
ξ, η

)

S3 dξdη +
2 − ν
8π
−
∫

D

W
(
ξ, η

)
K(1)(ζ, ζ0)dξdη

+
3ν
8π

∫

D

W
(
ξ, η

)
K(2)(ζ, ζ0)dξdη = Q

(
ξ0, η0

)
,

(
ξ0, η0

)
∈ D,

(3.9)

where the kernel K(1)(ζ, ζ0) and K(2)(ζ, ζ0) are [17]

K(1)(ζ, ζ0) =

∣∣f ′(ζ)
∣∣3/2∣∣f ′(ζ0)

∣∣3/2

∣∣f(ζ) − f(ζ0)
∣∣3

ej(δ−δ0) − 1

|ζ − ζ0|3
, (3.10)

K(2)(ζ, ζ0) =

∣∣f ′(ζ)
∣∣3/2∣∣f ′(ζ0)

∣∣3/2

∣
∣f(ζ) − f(ζ0)

∣
∣3

ej(2Θ−δ−δ0) − 1

|ζ − ζ0|3
e2jΦ. (3.11)

This hypersingular integral equation over a circular disc D is to be solved subject to W = 0
on s = 1, and the K(1)(ζ, ζ0) is a Cauchy-type singular kernel with order S−2, and the kernel
K(2)(ζ, ζ0) is weakly singular with O(S−1), as ζ → ζ0 (see the appendix).

We are going to solve (3.9) numerically. Write W(ξ, η) as a finite sum

W
(
ξ, η

)
=
∑

n,k

Wn
kA

n
k

(
s, ϕ

)
, (3.12)

where An
k(s, ϕ) is defined by

An
k

(
s, ϕ

)
= s|n|C|n|+1/2

2k+1

(√
1 − s2

)
ejnϕ,

∑

n,k

=
N1∑

n=−N1

N2∑

k=0

, N1,N2 ∈ �.
(3.13)

Introduce

Lmh
(
s, ϕ

)
= s|m|C|m|+1/2

2h+1

(√
1 − s2

)
cosmϕ, (3.14)

where m, h ∈ �. The relationship between these two functions, An
k
(s, ϕ), and Lm

h
(s, ϕ) can be

expressed as

∫

Ω
An
k

(
s, ϕ

)
Lmh

(
s, ϕ

) sdsdϕ
√

1 − s2
= Bnkδkhδmn, (3.15)
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where δij is Kronecker delta and

Bnk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2π
4k + 3

, n = 0,

π2Γ(2k + 2n + 2)

22n+1(2k + n + 3/2)(2k + 1)![Γ(n + 1/2)]2 , n /= 0.
(3.16)

Both functions An
k(s, ϕ) and Lmh (s, ϕ) have square-root zeros at s = 1.

Krenk [23] showed that

1
4π
×
∫

Ω

An
k

(
s, ϕ

)

R3 dΩ = −Enk
An
k

(
s0, ϕ0

)

√
1 − s2

0

, (3.17)

where

Enk =
Γ(|n| + k + 3/2)Γ(k + 3/2)

(|n| + k)!k!
. (3.18)

Substituting (3.17) and (3.12) into (3.9) yields

∑

n,k

Fnk
(
s0, ϕ0

)
Wn

k = Q
(
ξ0
(
s0, ϕ0

)
, η0

(
s0, ϕ0

))
, (3.19)

where

Fnk
(
s0, ϕ0

)
= −Enk

(
2 − ν + 3νe2jΘ)An

k

(
s0, ϕ0

)

2
√

1 − s2
0

+
2 − ν
8π

∫

D

An
k

(
s, ϕ

)
K(1)(ζ, ζ0)dξdη

+
3ν
8π

∫

D

An
k

(
s, ϕ

)
K(2)(ζ, ζ0)dξdη; 0 ≤ s ≤ 1, 0 ≤ ϕ < 2π.

(3.20)

Next, define

Wn
k = −W̃n

kG
|n|+1/2
2k+1

√
En
k

Bnk
, (3.21)

where G|n|+1/2
2k+1 = (2n + 2k + 1)!/(2k + 1)!(2n)!. Multiply (3.19) by Lm

h
(s0, ϕ0), integrate over D

and using (3.15), (3.19) becomes

∑

n,k

W̃n
k

(

−2 − ν + 3νe2jΘ

2
δhkδ|m||n| + Smnhk

)

= Qm
h , −N1 ≤ m ≤N1, 0 ≤ h ≤ N2, (3.22)
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where

Smnhk =
1

8π
√
En
k
Bn
k

√
Em
h
Bm
h

Tmnhk ,

Tmnhk =
∫

D

Lmh (ζ0)
∫

D

An
k(ζ)H(ζ, ζ0)dζdζ0,

Qm
h =

1
√
Em
h
Bm
h

∫

D

Lmh (ζ0)Q(ζ0)dζ0,

H(ζ, ζ0) = (2 − ν)K(1)(ζ, ζ0) + 3νK(2)(ζ, ζ0).

(3.23)

In (3.22), we have used the following notation: ζ0 = ζ0(s0, ϕ0), dζ0 = s0ds0dϕ0, and
Q(ζ0) = Q(ξ0, η0) = Q(s0 cosϕ0, s0 sinϕ0).

In evaluating the multiple integrals in (3.22), we have used the Gaussian quadrature
and trapezoidal formulas for the radial and angular directions, with the choice of collocation
points (s, ϕ) and (s0, ϕ0) defined as follows:

si =
π

4
+
π

4

M1∑

i=1

W(i), s0i =
π

4
+
π

4

M1∑

i=1

W0(i),

ϕj =
M2∑

j=1

jπ

M2
, ϕ0j =

M2∑

j=1

(
j + 0.5

)
π

M2
,

(3.24)

where W(i) and W0(i) are abscissas for si and s0i, respectively, M1 and M2 is the number
of collocation points in radial and angular directions, respectively. This effort leads to the
(2N1 + 1)(N2 + 1) × (2N1 + 1)(N2 + 1) system of linear equations

AW̃ = b̃, (3.25)

where A is a square matrix, and W̃ and b̃ are vectors, W̃ to be determined.

4. Energy Release Rate

The energy release rate (measured in JM−2), G(ϕ) by Irwin’s relation subject to shear load is
defined as [7, 8]

G
(
ϕ
)
=

(
1 − ν2)

E

[
KII

(
ϕ
)]2 +

(1 + ν)
E

[
KIII

(
ϕ
)]2

, (4.1)

where E, Young’s modulus, a measurement of the stiffness of an isotropic elastic material and
the relationship of E, ν and μ, is

ν =
E

2μ
− 1, (4.2)
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Table 1: Numerical convergence for the energy release rate, G(ϕ) for f(ζ) = ζ + cζ3 when c = 0.1.

N G(0.00) G(π/4) G(π/2) G(3π/4) G(π)

0 7.8676E − 10 9.0123E − 10 1.6067E − 09 9.0123E − 10 7.8676E − 10
1 7.2724E − 10 8.9392E − 10 1.3159E − 09 8.9392E − 10 7.2724E − 10
2 9.2668E − 07 7.4652E − 10 1.5649E − 09 7.4652E − 10 9.2668E − 07
3 0.0000E + 00 0.0000E + 00 6.3517E − 10 0.0000E + 00 0.0000E + 00
4 1.1859E − 05 7.4041E − 19 4.6709E − 09 7.4041E − 19 1.1859E − 05
5 3.1429E − 03 8.8211E − 04 9.2528E − 06 8.8211E − 04 3.1429E − 03
6 3.0421E − 03 8.7908E − 04 9.5791E − 04 8.7908E − 04 3.0421E − 03
7 1.5794E − 03 8.4308E − 04 9.2945E − 04 8.4308E − 04 1.5721E − 03
8 9.7557E − 04 1.1903E − 03 9.5001E − 04 1.1903E − 03 9.7557E − 04
9 9.7557E − 04 1.1903E − 03 9.5001E − 04 1.1903E − 03 9.7557E − 04
10 9.7557E − 04 1.1903E − 03 9.5001E − 04 1.1903E − 03 9.7557E − 04

and KII(ϕ) and KIII(ϕ), the sliding and tearing mode stress intensity factor, respectively, are
defined as [5, 7, 8]

Kj

(
ϕ
)
= lim

r→a
Vj

√
2π
a − rw

(
x, y

)
, j = II, III, (4.3)

where Vj are constants.
Let a(ϕ) = |f(eiϕ)|, r = |f(seiϕ)|, and as s close to 1, (4.3) leads to

Kj

(
ϕ
)
= lim

s→ 1−
Vj

√
2π

(1 − s)
∣∣f ′

(
eiϕ
)∣∣w

(
x, y

)
, j = II, III. (4.4)

Therefore, substituting (3.7) into (4.4) and simplifying gives

Kj

(
ϕ
)
= Vj

⎧
⎪⎨

⎪⎩

∣
∣∣f ′

(
eiϕ
)∣∣∣
−1∑

n,k

W̃n
k√

En
k
Bn
k

Yn
k

(
ϕ
)

⎫
⎪⎬

⎪⎭
, j = II, III, (4.5)

where Yn
k (ϕ) = D

|n|+1/2
2k+1 (0) cos(nϕ), and C

|n|+1/2
2k+1 (

√
1 − s2) =

√
1 − s2D

|n|+1/2
2k+1 (

√
1 − s2), where

Dλ
m(x) is defined recursively by

mDλ
m(x) = 2(m + λ − 1)xDλ

m−1(x) − (m + 2λ − 2)Dλ
m−2(x), m = 2, 3, . . ., (4.6)

with Dλ
0(x) = 2λ and Dλ

1(x) = 2λx.
Table 1 shows that our numerical scheme converges rapidly at a different point of the

crack with only a small value of N =N1 =N2 are used.
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Figure 3: The energy release rate, G(ϕ) for f(ζ) = ζ + 0.001ζ3 .
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Figure 4: The energy release rate, G(ϕ) for f(ζ) = ζ + 0.01ζ3.

Figures 3, 4, 5, and 6 show the variations of G against ϕ for c = 0.001, c = 0.01, c = 0.10,
and c = 0.30, respectively. It can be seen that the energy release rate has local extremal values
when the crack front is at cos(ϕ) = ±1 or sin(ϕ) = ±1. Similar behavior can be observed for
the solution of G(ϕ) for a different c and ν at c = 0.1, displayed in Figures 7 and 8. Our
results agree with those obtained asymptotically by Gao [8], with the maximum differences
for m = 2 are 3.6066×10−6, 4.7064×10−5, 5.3503×10−5, and 9.0000×10−5 for c = 0.001, c = 0.01,
c = 0.10, and c = 0.30, respectively.
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Figure 5: The energy release rate, G(ϕ) for f(ζ) = ζ + 0.1ζ3.
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Figure 6: The energy release rate, G(ϕ) for f(ζ) = ζ + 0.3ζ3.

5. Conclusion

In this paper, the hypersingular integral equation over a nearly circular crack is formulated.
Then, using the conformal mapping, the equation is transformed into hypersingular integral
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Figure 7: The energy release rate, G(ϕ) for f(ζ) = ζ + cζ3 at various c.
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Figure 8: The energy release rate, G(ϕ) for f(ζ) = ζ + 0.1ζ3 at various choices of ν with μ = 1.

equation over a circular crack, which enable us to use the formula obtained by Krenk [23]. By
choosing the appropriate collocation points, this equation is reduced into a system of linear
equations and solved for the unknown coefficients. The energy release rate for the mentioned
crack subject to shear load is presented graphically. Our computational results seem to agree
with the asymptotic solution obtained by Gao [8].
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Appendix

The Singularity of the Kernel K(1)(ζ, ζ0) and K(2)(ζ, ζ0)

At ζ = ζ0, we have

f(ζ) − f(ζ0) = (ζ − ζ0)f ′(ζ0) +
(ζ − ζ0)2f ′′(ζ0)

2
+ · · · . (A.1)

Differentiate f(ζ) with respect to ζ, we have

f ′(ζ) = f ′(ζ0) + (ζ − ζ0)f ′′(ζ0) +
(ζ − ζ0)2f ′′′(ζ0)

2
+ · · · . (A.2)

Let

F1 = (ζ − ζ0)
f ′′(ζ0)
f ′(ζ0)

= u1 + iv1 = O(S) , (A.3)

F2 = (ζ − ζ0)2 f
′′′(ζ0)

2f ′(ζ0)
= u2 + iv2 = O

(
S2
)

as S −→ 0, (A.4)

where u1, u2, v1, and v2 are real. As F1 = O(S) and F2 = O(S2) as S → 0, we see that ui and
vi are O(Si) as S → 0 (i = 1, 2).

Hence, (A.1) becomes

f(ζ) − f(ζ0) = f ′(ζ0)(ζ − ζ0)
[

1 +
F1

2
+ · · ·

]
. (A.5)

Substituting (A.3) into (A.2) gives

f ′(ζ) = f ′(ζ0)[1 + F1 + · · · ], f ′(ζ0) = f ′(ζ)[1 − F1 − · · · ]. (A.6)

As S → 0 and truncate (A.1) at second order, then (A.6) can be written as

f ′(ζ) 	 f ′(ζ0){1 + F1}, f ′(ζ0) 	 f ′(ζ){1 − F1}, (A.7)

respectively. Now, consider K(1)(ζ, ζ0). Let δ−δ0 	 v1 = O(S) where δ and δ0 defined in (3.6),
then, from (3.6), we have

ei(δ−δ0) =
f ′(ζ)

∣∣f ′(ζ0)
∣∣

f ′(ζ0)
∣∣f ′(ζ)

∣∣ . (A.8)
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Apply zz = |z|2 leads to

1 + F1

|1 + F1|
=

1 + F1

1 + u1
× 1 − u1

1 − u1

	 (1 + F1)(1 − u1)

	 1 + iv1.

(A.9)

Hence,

ej(δ−δ0) 	 1 + jv1. (A.10)

Martin [24] showed that

∣
∣1 + αF1 + βF2

∣
∣λ = |1 + αu1 + βu2 + i

(
αv1 + βv2

)
|λ/2

	 1 + αλu1 +
1
2
λ
{
(λ − 1)α2u2

1 + α
2v2

1 + 2βu2

}
,

(A.11)

where α, γ , and β are constants and

∣
∣f ′(ζ)

∣
∣3/2∣∣f ′(ζ0)

∣
∣3/2

∣∣f(ζ) − f(ζ0)
∣∣3 − 1

|ζ − ζ0|3
=

1
S3

(
|1 + F1 + F2|3/2

|1 + (1/2)F1 + (1/3)F2|3
− 1

)

= O
(
S−1

)
, (A.12)

as S → 0.
Next, using (A.12), (A.11), and (A.10), we obtain

K(1)(ζ, ζ0) =

∣∣f ′(ζ)
∣∣3/2∣∣f ′(ζ0)

∣∣3/2

∣
∣f(ζ) − f(ζ0)

∣
∣3

(
1 + jv1

)
− 1

|ζ − ζ0|3

=
1
S3

(
|1 + F1|3/2

|1 + F1/2|3
− 1

)

+
1
S3

(
|1 + F1|3/2

|1 + F1/2|3
jv1

)

,

(A.13)

where

|1 + F1|3/2

|1 + F1/2|3
− 1 	 3

8

(
v2

1 − u
2
1

)
,

∣∣∣
∣1 +

F1

2

∣∣∣
∣

3

−→ 1. (A.14)

Thus, K(1)(ζ, ζ0) reduces to

K(1)(ζ, ζ0) =
3

8S3

(
v2

1 − u
2
1

)
+

j

S3v1. (A.15)

Since F1 = u1 + iv1, then

(u1 + iv1)2 = u2
1 − v

2
1 + 2iu1v1, Re(F1) = −

(
v2

1 − u
2
1

)
, (A.16)



Mathematical Problems in Engineering 15

so, (A.3) leads to

Re
(
F2

1

)
= Re

{

e2jΦ

(
f ′′(ζ0)

)2

(
f ′(ζ0)

)2

}

	 D(ζ0,Φ)
S

, S −→ 0, (A.17)

where D(ζ0,Φ) = Re{e2jΦ((f ′′(ζ0))
2/(f ′(ζ0))

2
)} and ζ − ζ0 = SeiΦ defined in (2.7). Thus,

K(1)(ζ, ζ0) = O
(
S−1

)
+

1
S3
jv1

	 jv1S
−3

= O
(
S−2

)
.

(A.18)

Therefore, K(1)(ζ, ζ0) 	 jv1S−3, that is, K(1)(ξ, ξ0) 	 O(S−2) as S → 0.
For K(2)(ζ, ζ0), expand f(ζ) at ζ = ζ0, and truncating at second order, (3.4) gives

ReiΘ = a(ζ − ζ0)f ′(ζ0)
{

1 +
F1

2

}
, (A.19)

where

ei(Θ−Φ−δ0) 	
(

1 +
F1

2

)∣∣
∣∣1 +

F1

2

∣∣
∣∣

−1

= 1 + i
v2

2
. (A.20)

Next, substituting (A.5) and (A.7) into (3.4) gives

ReiΘ = a(ζ − ζ0)f ′(ζ)(1 − F1)
{

1 +
F1

2

}
, (A.21)

where

ei(Θ−Φ−δ) 	
(

1 − F1

2

)∣∣∣
∣1 −

F1

2

∣∣∣
∣

−1

= 1 + i
v2

2
. (A.22)

Using (A.22) and (A.20) yields

ei(2Θ−2Φ−δ−δ0) 	 1 + i2
1
4
v2

2 + iv2 = 1 +O
(
S2
)
. (A.23)

Hence, as S → 0, then ei(2Θ−2Φ−δ−δ0) 	 1 + O(S2). It is not difficult to see that R 	 a|f ′(ζ0)|S,
Θ 	 Φ + δ0, R 	 a|f ′(ζ)|S, and Θ 	 Φ + δ, respectively; then (3.11) becomes

K(2)(ζ, ζ0) =

∣∣f ′(ζ)
∣∣3/2∣∣f ′(ζ0)

∣∣3/2

∣∣f(ζ) − f(ζ0)
∣∣3

e2jΦ − 1

|ζ − ζ0|3
e2jΘ. (A.24)
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Applying similar procedures as in K1(ζ, ζ0) gives

1

|ζ − ζ0|3

(∣∣f ′(ζ)
∣∣3/2∣∣f ′(ζ0)

∣∣3/2

∣
∣f(ζ) − f(ζ0)

∣
∣3 |ζ − ζ0|3 − 1

)

=
1
S3

(
|1 + F1|3/2

|1 + F1/2|3
− 1

)

	 3
8

(
v2

1 − u
2
1

)

	 3
8
F(ζ0,Φ)

S
as S −→ 0.

(A.25)

Thus,

K(2)(ζ, ζ0) = e2jΦ 3
8
F(ζ0,Φ)

S

= O
(
S−1

)
as S −→ 0.

(A.26)
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