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There exist two different types of equilibrium points in 3-D autonomous systems, named as saddle
foci of index 1 and index 2, which are crucial for chaos generation. Although saddle foci of
index 2 have been usually applied for creating double-scroll or double-wing chaotic attractors,
saddle foci of index 1 are further considered for chaos generation in this paper. A novel approach
for constructing chaotic systems is investigated by applying the switching control strategy and
yielding a heteroclinic loop which connects two saddle foci of index 1. A basic 3-D linear system
with an arbitrary normal direction of the eigenplane, possessing a saddle focus of index 1 whose
corresponding eigenvalues satisfy the Shil’nikov inequality, is first introduced. Then a heteroclinic
loop connecting two saddle foci of index 1 will be formed by applying the switching control
strategy to the basic 3-D linear system. The heteroclinic loop consists of an unstable manifold,
a stable manifold, and a heteroclinic point. Under the necessary conditions for forming the
heteroclinic loop, the intended two-segmented piecewise linear system which exhibits the chaotic
behavior in the sense of the Smale horseshoe can be finally constructed. An illustrative example is
given, confirming the effectiveness of the proposed method.

1. Introduction

It is well known that saddle foci of index 2 are crucial for chaos generation in 3-D autonomous
systems, where each saddle focus of index 2 creates one corresponding scroll or wing. Typical
examples include the double-scroll Chua system, the double-wing Lorenz system, and so
forth [1–5]. Among the three equilibrium points possessed by the double scroll Chua system,
two are the saddle foci of index 2 with eigenvalues γ, σ ± jω satisfying γ < 0, σ > 0
and |σ/γ | < 1, and one is the saddle focus of index 1 with eigenvalues γ, σ ± jω satisfying
γ > 0, σ < 0, and |σ/γ | < 1. The two saddle foci of index 2 create two corresponding
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scrolls leading to the emergence of the double-scroll chaotic attractor [1]. Among the three
equilibrium points possessed by the double-wing Lorenz system, two are the saddle foci of
index 2with eigenvalues γ, σ±jω satisfying γ < 0, σ > 0, and |σ/γ | < 1, and one is the saddle
point with eigenvalues γ1, γ2, γ3 satisfying γ1 < 0, γ2 > 0, and γ3 < 0. The two saddle foci of
index 2 create two corresponding wings leading to the emergence of the double-wing chaotic
attractor [2]. Similarly in many other double-scroll systems or the double-wing generalized
Lorenz system family, two saddle foci of index 2 generate two corresponding wings or
two scrolls [6]. Multiscroll or multiwing chaotic attractors can also be further generated by
extending the number of saddle foci of index 2 [7–9].

The above-mentioned method is also applied for constructing switching systems,
where only saddle foci of index 2 are considered for generating scrolls [10, 11]. For example,
Li and Chen present an approach for constructing a piecewise linear chaotic system based
on the heteroclinic Shil’nikov theorem, starting from a linear system with a saddle focus of
index 2 [10]. A heteroclinic loop can be easily constituted by the proposed method; however
it cannot be extended to the general case for the eigenplane of the linear system can only be
located on the x-y plane. In [11], a piecewise linear chaotic system is constructed based on
heteroclinic Shil’nikov theorem and the switching control strategy, by particularly selecting
two linear systems with two saddle foci of index 2, the eigenplanes of which are supposed to
be symmetric. The method presented in [11] cannot be applied into the general situation due
to the orientation restriction on the linear systems.

The review above indicates that for both smooth continuous chaotic systems and
piecewise linear chaotic ones, saddle foci of index 2 have been usually considered for creating
chaotic attractors. One may ask whether or not there is a possible way to break such a
limitation? This paper will provide a positive answer to the question.

Based on the heteroclinic Shil’nikov theorem and the switching control strategy,
this paper proposes a novel approach for constructing piecewise linear chaotic systems
by employing saddle foci of index 1. A basic 3-D linear system with an arbitrary normal
direction of the eigenplane is first introduced. This 3-D linear system has a saddle focus of
index 1 whose corresponding eigenvalues γ, σ ± jω satisfy γ > 0, σ < 0, and |σ/γ | < 1.
The necessary parameter conditions, which ensure the existence of the heteroclinic loop
connecting two saddle foci of index 1 in the controlled switching system, are then deduced.
In detail, the heteroclinic loop presented in the controlled switching chaotic system with
saddle foci of index 1 consists of three geometric invariant subsets, which are a 1-D unstable
manifold corresponding to real eigenvalues γ satisfying γ > 0, a 2-D stable manifold
corresponding to complex conjugate eigenvalues σ ± jω satisfying σ < 0 and |σ/γ | < 1, and
a heteroclinic point. Under the necessary parameter conditions for forming the heteroclinic
loop, the intended 2-segmented piecewise linear system, which exhibits the chaotic behavior
in the sense of the Smale horseshoe, can be finally constructed. The main differences between
this presentedmethod and [10, 11] lie in the following aspects: (i) two distinct types of saddle
foci are considered for chaos generation, of which saddle foci of index 1 are considered in this
paper while saddle foci of index 2 in [10, 11]; (ii) the normal direction of eigenplane proposed
in this paper is arbitrarily orientated while the eigenplane of the selected linear system can
only be located on the x-y plane in [10] or the orientations of the two linear systems are also
restricted since their eigenplanes are supposed to be symmetric in [11].

The rest of the paper is organized as follows. A basic 3-D linear system with a saddle
focus of index 1 is introduced in Section 2. Based on the heteroclinic Shil’nikov theorem
and the switching control strategy, the intended 2-segmented piecewise linear system which
exhibits the chaotic behavior in the sense of the Smale horseshoe is constructed in Section 3.
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The basic dynamic behaviors of the piecewise-linear chaotic system are further analyzed in
Section 4. Finally, concluding remarks are given in Section 5.

2. A Basic 3-D Linear Nominal System with a Saddle Focus of Index 1

In this section, the heteroclinic Shil’nikov theorem is first described. A basic 3-D linear system,
possessing a saddle focus of index 1 whose eigenvalues satisfy the Shil’nikov inequality, is
then introduced. After that, the mathematical expressions of the corresponding eigenvectors,
the unstable, and stable manifolds are derived.

2.1. The Heteroclinic Shil’nikov Theorem

Consider a 3-D autonomous dynamical system [12]

ẋ(t) = ξ(x), t ∈ R, x ∈ R3, (2.1)

where the vector field ξ : R3 → R3. Let P1(x1, y1, z1) and P2(x2, y2, z2) be two distinct
equilibrium points for (2.1). Suppose the following:

(i) both P1 and P2 are saddle foci that satisfy the Shil’nikov inequality |γi| > |σi| > 0 (i =
1, 2) with the further constraint ωi /= 0, σ1σ2 > 0 and γ1γ2 > 0;

(ii) there is a heteroclinic loop Hl joining P1 to P2 that is made up of two heteroclinic
orbits Hi (i = 1, 2).

Then both the original system of (2.1) and its perturbed varieties exhibit the Smale
horseshoe chaos.

2.2. Design of a Basic 3-D Linear Nominal System with
a Saddle Focus of Index 1

The state equation of the basic 3-D linear nominal system to be designed is given by

⎛
⎜⎜⎝

Ẋ

Ẏ

Ż

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎟⎠

⎛
⎜⎜⎝

X

Y

Z

⎞
⎟⎟⎠ = J

⎛
⎜⎜⎝

X

Y

Z

⎞
⎟⎟⎠, (2.2)

where a11 = 0.2857, a12 = 10, a13 = 0, a21 = 0.1, a22 = −0.5, a23 = 5, a31 = 0, a32 = −15, and
a33 = 0. There exists a unique equilibrium pointO(0, 0, 0)with the corresponding eigenvalues
γ = 0.2896 and σ ± jω = −0.2519 ± j8.5988 due to the full rank of the Jacobin matrix of
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(2.2). The system (2.2) therefore possesses a saddle focus of index 1 satisfying the Shil’nikov
inequality |γ | > |σ| > 0. The corresponding eigenvectors are described by

η = ξR ± jξI =

⎛
⎜⎜⎝

ξ1R

ξ2R

ξ3R

⎞
⎟⎟⎠ ± j

⎛
⎜⎜⎝

ξ1I

ξ2I

ξ3I

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−0.4998
0.0126

0.7512

⎞
⎟⎟⎠ ± j

⎛
⎜⎜⎝

0.0166

0.4306

0

⎞
⎟⎟⎠,

μ = ξγ =

⎛
⎜⎜⎝

ξ1γ

ξ2γ

ξ3γ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.9998

0.0004

−0.0199

⎞
⎟⎟⎠.

(2.3)

The 1-D unstable manifold EU
γ (O) corresponding to the real eigenvalue γ = 0.2896

and the 2-D stable manifold ES
σ+jω(O) corresponding to the complex conjugate eigenvalues

σ ± jω = −0.2519 ± j8.5988 are given by

EU
γ (O) :

X

l
=

Y

m
=

Z

n
,

ES
σ+jω(O) : AX + BY + CZ = 0,

(2.4)

where (l,m, n) = (0.9998, 0.0004,−0.0199), implying the direction of the 1-D unstable
manifold, and (A,B,C) = (0.3235, 0.0125, 0.2150), indicating the direction numbers of the
2-D stable manifold ES

σ+jω(O).

3. Constructing a Switching Chaotic System with
Saddle Foci of Index 1

In this section, starting from the basic 3-D linear nominal system (2.2), and based on the
heteroclinic Shil’nikov theorem and the switching control strategy, the necessary parameter
conditions, which ensure the existence of the heteroclinic loop connecting two saddle foci
of index 1 in the controlled switching system, are deduced. The intended 2-segmented
piecewise linear controlled system which exhibits the chaotic behavior in the sense of the
Smale horseshoe is then constructed.

According to the heteroclinic Shil’nikov theorem and the switching control strategy,
a switching controller F(x, y, z) with SZ = {(x, y, z) | z = 0} being the switching plane
is introduced into the system (2.2). A coordinate transformation at the equilibrium point
O(0, 0, 0) is then performed by the switching controller F(x, y, z). As a result, one gets

⎛
⎜⎜⎝

ẋ

ẏ

ż

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎟⎠

⎛
⎜⎜⎝

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠ − F

(
x, y, z

)
⎞
⎟⎟⎠, (3.1)
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Figure 1: The eigen-subspace corresponding to P1 and P2.

where a11 = 0.2857,a12 = 10, a13 = 0, a21 = 0.1, a22 = −0.5, a23 = 5, a31 = 0, a32 = −15,
and a33 = 0.

Obviously, the system (3.1) possesses two equilibrium points P1(x1, y1, z1) ∈ V1

and P2(x2, y2, z2) ∈ V2 appearing to lie on the opposite sides of the switching plane SZ.
Note that the detailed mathematical expression of the switching controller F(x, y, z) =
[f1(x, y, z), f2(x, y, z), f3(x, y, z)]

T in the system (3.1) will be determined by the necessary
parameter conditions for forming a heteroclinic loop which connects P1 and P2, the two
saddle foci of index 1.

Let EU
γ1(P1) denote the one-dimensional unstable manifold of the equilibrium point

P1 corresponding to the real eigenvalue γ1 = 0.2896, EU
γ2(P2) denote the one-dimensional

unstable manifold of the equilibrium point P2 corresponding to the real eigenvalue γ2 =
0.2896, ES

σ1+jω1
(P1) denote the two-dimensional stable manifold of P1 corresponding to the

complex conjugate eigenvalues σ1 ± jω1 = −0.2519 ± j8.5988, and ES
σ2+jω2

(P2) denote the
two-dimensional stable manifold of P2 corresponding to the complex conjugate eigenvalues
σ2 ± jω2 = −0.2519 ± j8.5988, respectively. Then, one gets

EU
γi (Pi) :

x − xi

l
=

y − yi

m
=

z − zi
n

,

ES
σi+jωi

(Pi) : A(x − xi) + B
(
y − yi

)
+ C(z − zi) = 0,

(3.2)

where i = 1, 2, l = 0.9998, m = 0.0004, n = −0.0199, A = 0.3235, B = 0.0125, and C = 0.2150.
The eigen-subspace corresponding to P1 and P2 with orbits on the stable planes spirally
approaching the equilibrium points is shown in Figure 1.

Let Q1 be the cross point of EU
γ1(P1) and SZ, Q2 be the cross point of EU

γ2(P2) and SZ,
ES
σ1+jω1

(P1) and SZ intersect in the line L1, and ES
σ2+jω2

(P2) and SZ intersect in the line L2,
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respectively. Then, one gets

Q1 = EU
γ1(P1) ∩ SZ :

(
x1 − l

n
z1, y1 − m

n
z1, 0

)
,

Q2 = EU
γ2(P2) ∩ SZ :

(
x2 − l

n
z2, y2 − m

n
z2, 0

)
,

L1 = ES
σ1+jω1

(P1) ∩ SZ :

⎧
⎨
⎩
A(x − x1) + B

(
y − y1

)
+ C(z − z1) = 0,

z = 0,

L2 = ES
σ2+jω2

(P2) ∩ SZ :

⎧
⎨
⎩
A(x − x2) + B

(
y − y2

)
+ C(z − z2) = 0,

z = 0.

(3.3)

As indicated in Figure 1, there exists a heteroclinic orbitH1 = EU
γ1(P1)∪Q1∪ES

σ2+jω2
(P2)

from P1 to P2 when Q1 appears to lie on L2. There exists another heteroclinic orbit H2 =
EU
γ2(P2)∪Q2∪ES

σ1+jω1
(P1) from P2 to P1 whenQ2 appears to lie on L1. Provided thatQ1 appears

to lie on L2 and that Q2 simultaneously appears to lie on L1, there must exist a heteroclinic
loop Hl connecting P1 and P2 that is made up of the two heteroclinic orbits H1 and H2.

From (3.3), one gets that Q1 appears to lie on L2, and Q2 simultaneously appears to
lie on L1when the coordinate parameters of the equilibrium points P1(x1, y1, z1) ∈ V1 and
P2(x2, y2, z2) ∈ V2 satisfy the following conditions:

A

(
x1 − l

n
z1 − x2

)
+ B

(
y1 − m

n
z1 − y2

)
− Cz2 = 0,

A

(
x2 − l

n
z2 − x1

)
+ B

(
y2 − m

n
z2 − y1

)
− Cz1 = 0.

(3.4)

According to the theory of the Smale horseshoe and the heteroclinic Shil’nikov theorem,when
the system (3.1) is chaotic, there exist infinite numbers of heteroclinic orbits, among which
there must exist a heteroclinic loop Hl connecting P1 and P2 through Q1 and Q2. In this case,
the system (3.1) exhibits the chaotic behavior in the sense of the Smale horseshoe.

In particular, when the switching plane is SZ = {(x, y, z) | z = 0}, and equilibrium
points P1(x1, y1, z1) ∈ V1 and P2(x2, y2, z2) ∈ V2 are of certain symmetry, such as x1 = −x2 =
x0, y1 = y2 = y0 ≥ 0, and z1 = −z2 = z0 > 0, (3.4) can be simplified into a single constraint
equation, given by

x0 =
Al + Bm − Cn

2An
z0, (3.5)
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where x0 exhibits dependence only on the value of z0 and y0 can be of arbitrary value. In brief,
suppose that the equilibrium points P1(x1, y1, z1) ∈ V1 and P2(x2, y2, z2) ∈ V2 are appointed
to satisfy the following coordinate parameter conditions:

x1 = −x2 =
z0(Al + Bm − Cn)

(2An)
,

y1 = y2,

z1 = −z2 = z0,

(3.6)

There exists a heteroclinic loop connecting equilibrium points P1 and P2 in the piecewise
linear system (3.1).

For the sake of simplicity, let y0 = 0 and z0 = 1. From (3.6), one gets the coordinates of
equilibrium points as: P1(x1, y1, z1) = P1(−25.4089, 0, 1) and P2(x2, y2, z2) = P2(25.4089, 0,−1),
which are the necessary parameter conditions for forming a heteroclinic loop. Based on
the equilibrium points with the above-mentioned coordinates, one can further obtain the
mathematical expression of the switching controller F(x, y, z) in the system (3.1), given by

F
(
x, y, z

)
=

⎛
⎜⎜⎝

f1
(
x, y, z

)

f2
(
x, y, z

)

f3
(
x, y, z

)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x0 sgn(z)

y0 sgn(z)

z0 sgn(z)

⎞
⎟⎟⎠, (3.7)

where x0 = −25.4089, y0 = 0, and z0 = 1.
The numerical simulation results of the chaotic attractor, obtained from the piecewise

linear system with saddle foci of index 1 described by (3.1) with (3.7), can be finally
demonstrated as an illustrative example shown in Figure 2.

4. Basic Dynamic Analysis of the Piecewise Linear Chaotic System

In this section, a basic dynamic analysis of the piecewise linear chaotic system is given,
including the dissipation, the Lyapunov exponents, and the solution of the state equations.

4.1. Dissipation and Lyapunov Exponents

According to (3.1) and (3.7), one can obtain the dissipation of the piecewise linear chaotic
system, given by

∇V = a11 + a22 + a33 = 0.2857 − 0.5 + 0 < 0. (4.1)

Therefore, the piecewise linear system with saddle foci of index 1 described by (3.1) with
(3.7) is dissipative.

The Lyapunov exponents (LE) are also obtained to further prove the existence of chaos
in the piecewise linear system, which are as follows: LE1 = 0.27, LE2 = 0.00, and LE3 = −0.49.
The existence of the positive LE implies the chaotic nature of the piecewise linear system.
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Figure 2: Chaotic attractor obtained from the piecewise linear system with saddle foci of index 1.

4.2. The Solution of the State Equations

The solution X(t) = (X(t), Y (t), Z(t))T of the linear system (2.2)with the initial value X(0) =
(X(0), Y (0), Z(0))T is given by

X(t) = P

⎛
⎜⎜⎝

eγt 0 0

0 eσt cosωt eσt sinωt

0 −eσt sinωt eσt cosωt

⎞
⎟⎟⎠P−1X(0) =

⎛
⎜⎜⎝

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎟⎟⎠X(0) = BX(0), (4.2)

where

P =

⎛
⎜⎜⎝

ξ1γ ξ1R ξ1I

ξ2γ ξ2R ξ2I

ξ3γ ξ3R ξ3I

⎞
⎟⎟⎠. (4.3)
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From (2.3) and (4.3), the coefficients bij (0 ≤ i, j ≤ 3) in (4.2) are given by

b11 = 1.0134eγt − 0.0134eσt cosωt − 0.0013eσt sinωt,

b21 = 3.9007 × 10−4eγt − 3.9007 × 10−4eσt cosωt + 0.0116eσt sinωt,

b31 = −0.0202eγt + 0.0202eσt cosωt + 0.0013eσt sinωt,

b12 = 0.0390eγt − 0.0390eσt cosωt + 1.1605eσt sinωt,

b22 = 1.5014 × 10−5eγt + 1.0000eσt cosωt − 0.0289eσt sinωt,

b32 = −7.7778 × 10−4eγt + 7.7778eσt cosωt − 1.7444eσt sinωt,

b13 = 0.6736eγt − 0.6736eσt cosωt − 0.0424eσt sinωt,

b23 = 2.5926 × 10−4eγt − 2.5926 × 10−4eσt cosωt + 0.5815eσt sinωt,

b33 = −0.0134eγt + 1.0134eσt cosωt + 0.0301eσt sinωt,

(4.4)

where γ = 0.2896, σ = −0.2519, and ω = 8.5988.
Since the piecewise linear chaotic system (3.1) is obtained from (2.2) by the coordinate

transformation with the switching control strategy, the solution of (3.1) is obtained based on
(4.2) as follows:

X1(t) = X(t) − P1 if x > 0,

X1(t) = X(t) − P2 if x < 0

Ẋ1(t) = BX(t),

, (4.5)

where X1(t) = (x(t), y(t), z(t))T is the solution of the system (3.1), X(t) = (X(t), Y (t), Z(t))T is
the solution of the system (2.2), X(0) = (X(0), Y (0), Z(0))T is the initial value, and P1 =
(x1, y1, z1)

T and P2 = (x2, y2, z2)
T are the equilibrium points.

5. Conclusions

Both saddle foci of index 1 and saddle foci of index 2 play a crucial role in chaos generation
in 3-D autonomous systems, whenever they are smooth continuous chaotic systems or
piecewise linear chaotic ones. Saddle foci of index 2 have been usually considered for
creating double-scroll or double-wing chaotic attractors in systems, such as the double-scroll
Chua system, the double-wing Lorenz system, and switching chaotic systems. Few detailed
reports have addressed the issue of applying saddle foci of index 1 for chaos generation.
To break such a limitation, this paper has proposed the application of saddle foci of index
1 for constructing chaotic systems, by using the switching control strategy and yielding a
heteroclinic loop which connects two saddle foci of index 1. On comparison with the existing
methods, the approach presented in this paper is characterized mainly by selecting saddle
foci of index 1 for chaos generation such that the intended 2-segmented piecewise linear
system exhibits the chaotic behavior in the sense of the Smale horseshoe. Furthermore, this
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approach is more of generalization for constructing switching chaotic systems since the
normal direction of uncontrolled basic 3-D linear system is arbitrarily orientated and is not
supposed to be fixed on a special position.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under
Grants 60572073, 60871025 and 61172023, the Natural Science Foundation of Guang-
dong Province under Grants 8151009001000060, 8351009001000002, 9151009001000030, and
S2011010001018, and the Science and Technology Program of Guangdong Province under
Grant 2009B010800037.

References

[1] L. O. Chua, M. Komuro, and T. Matsumoto, “The double scroll family,” IEEE Transactions on Circuits
and Systems I, vol. 33, no. 11, pp. 1073–1117, 1986.

[2] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130–141,
1963.

[3] G. R. Chen and T. Ueta, “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos,
vol. 9, no. 7, pp. 1465–1466, 1999.

[4] J. C. Sprott, “A new class of chaotic circuit,” Physics Letters A, vol. 266, no. 1, pp. 19–23, 2000.
[5] J. C. Sprott, “Simple chaotic systems and circuits,” American Journal of Physics, vol. 68, no. 8, pp. 758–

763, 2000.
[6] T. Zhou and G. Chen, “Classification of chaos in 3-D autonomous quadratic systems-I. Basic

framework and methods,” International Journal of Bifurcation and Chaos, vol. 16, no. 9, pp. 2459–2479,
2006.
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[9] S. Yu, J. Lü, G. Chen, and X. Yu, “Design and implementation of grid multiwing butterfly chaotic
attractors from a piecewise Lorenz system,” IEEE Transactions on Circuits and Systems II, vol. 57, no.
10, Article ID 5575404, pp. 803–807, 2010.

[10] G. Li and X. Chen, “Constructing piecewise linear chaotic system based on the heteroclinic Shil’nikov
theorem,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 1, pp. 194–203,
2009.
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