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Error-correcting encoding is a mathematical manipulation of the information against transmission
errors over noisy communications channels. One class of error-correcting codes is the so-called
group codes. Presently, there are many good binary group codes which are abelian. A group code is
a family of bi-infinite sequences produced by a finite state machine (FSM) homomorphic encoder
defined on the extension of two finite groups. As a set of sequences, a group code is a dynamical
system and it is known that well-behaved dynamical systems must be necessarily controllable.
Thus, a good group code must be controllable. In this paper, we work with group codes defined
over nonabelian groups. This necessity on the encoder is because it has been shown that the
capacity of an additive white Gaussian noise (AWGN) channel using abelian group codes is
upper bounded by the capacity of the same channel using phase shift keying (PSK) modulation
eventually with different energies per symbol. We will show that when the trellis section group is
nonabelian and the input group of the encoder is a cyclic group with, p elements, p prime, then the
group code produced by the encoder is noncontrollable.

1. Introduction

Data to be transmitted through a noisy channel may suffer impairments when it arrives to
its destination. The most known channel noise is the Gaussian noise, which is modeled as a
random signal having a normal probabilistic distribution. The channels suffering Gaussian
noise are called additive white Gaussian noise—AWGN channels [1–4]. In the landmark paper
[5], Shannon showed that there exist methods to encode data against channel noise. One
key idea behind an error-correcting code—ECC—is the measure of the channel noise in
terms of error probability P(e). For binary data, P(e) of a given physical channel can be
obtained empirically. For instance, if after transmitting 1015 bits through the channel we
observe that 1015 − 1 bits were transmitted correctly and one bit was transmitted erroneously,
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then we can say that the upper bound of P(e), of this channel, is 10−15 or P(e) < 10−15. This
error probability can be reduced by enhancing the hardware components of the channel or
alternatively by using ECC. Mostly the use of ECC on the data to be transmitted is more
economic than the enhancing of hardware components of the physical channel. That is why
an ECC is important. Classically, the essence of an ECC is the splitting of the information data
to be transmitted in packages with constant size, let us say m, then is the added k symbols
which are functions of the previous m symbols. After that is transmitted, n = m + k encoded
symbols, instead of m. The introduction of the additional k symbols reduces the data rate
through the channel. To maintain the original velocity of the data transmission, the physical
channel demands either more power or more bandwidth.

In 1981, Ungerboeck in [6] introduced a way to encode data against transmission
errors, without increasing the consumption of bandwidth by using a technique called
set partitioning map. This technique matches the output symbols of a classical binary
convolutional encoder and the signal constellation from a phase shift keying—PSK—
modulation. Mathematically, the output symbols of a binary convolutional encoder with the
modulo-2 addition constitute an abelian group, whereas the PSK constellation constitutes
a discrete set of points from a bidimensional vector space isomorphic with the plane R

2.
Towards to generalize, Ungerboeck’s technique proposed the matching of a generic group
Y that could represent the output set of an encoder with a discrete set of points from an
Euclidean space R

n that could represent the signal constellation from ASK (amplitude shift
keying), FSK (frequency shift keying), or PSK modulation, [2, 7–9]. In this direction in
[7] is introduced the wide sense homomorphic encoder which is a finite state machine (FSM)
defined over extension of groups. The bi-infinite outputs of this encoder are the codewords and
constitute the group code. But, one important result that motivates our work was given in [8]
where it was shown that any AWGN channel using group codes over abelian groups has its
capacity upper bounded by some uncoded AWGN channel capacity using PSK modulation.
Thus, nonabelian and well-behaved group codes could surmount this PSK limit. In the sense
of control theory, a group code is well behaved when it is controllable and observable. Classical
group codes over binary groups always are well behaved, that is why there is not any concern
about control consideration of these kind of codes. This well behavior also is true for some
especial cases of abelian group codes. In the current paper, we deal with nonabelian group
codes but we do not construct any new code. Instead of it, we study the class of group codes
produced by an FSM encoder with a group S, representing the states of the FSM, inputs group
Zp = {0, 1, 2, . . . , p − 1}, cyclic group of order prime p. Then, our group codes are defined over
nonabelian extensions of Zp by S. For that, this paper is organized as follows.

In Section 2 is defined the extension of a generic groupU by the group S; this extension
is denoted asU�S. Then is defined the FSM encoder of a group code which also is called ISO
(input/state/output) machine. The next state mapping and the encoder (output) mapping
are defined over the extension U � S. Finally, is defined the group code C, produced by the
FSM encoder, as a family of bi-infinite sequences of outputs.

In Section 3, the group code C is presented as a dynamical system in the sense of
[10]. Also, a graphical description of a group code known as a trellis is presented. It is
established that the trellis diagram is a set of paths of transitions between states. After given
the control definition, a sufficient condition of noncontrollability is made in Theorem 3.4. Also
are presented the definition and conditions about parallel transitions that are used directly in
our main result.

In Section 4, we present our original contributions about the noncontrollability of
group codes produced by encoders defined on nonabelian extensions Zp �S. The main result
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of this work, which is Theorem 4.7, states that (a) if Zp �S is nonabelian, with S abelian, then
the resulting code will have parallel transitions and (b) if both Zp � S and S are nonabelian
then the resulting code will be noncontrollable. Therefore, the extension Zp � S is bad for
constructing group codes.

2. Group Extensions and Group Codes

2.1. Group Extensions

Definition 2.1. Given a groupGwith a normal subgroupN, consider the quotient groupG/N.
If there are two groups U and S such that U is isomorphic withN and S is isomorphic with
G/N, then it is said that G is an extension ofU by S [11].

We will denote the extension “U by S” by the symbol U � S, also we will use the
standard notations U ∼= N meaning “U is isomorphic with S” and N � G meaning
“N normal subgroup of G.” When G is an extension U � S, each element g ∈ G can be
“factored” as an unique ordered pair (u, s), u ∈ U and s ∈ S. The semidirect product
U � S is a particular case of extension, but also it is known that the semidirect product is
a generalization of the direct product U × S. A canonical definition of extension of groups is
given in [11, 12]; specially in [12] we find a “practical” way to decompose a given group G,
with normal subgroupN, in an extensionU � S. That decomposition depends on the choice
of isomorphisms υ : N → U, ψ : S → G/N and a lifting l : G/N → G such that l(N) = e,
the neutral element of G. Then, defining φ : S → Aut(U) by

φ(s)(u) = υ
[
l
(
ψ(s)

) · υ−1(u) · (l(ψ(s)))−1
]
, (2.1)

and ξ : S × S → U,

ξ(s1, s2) = l
(
ψ(s1, s2)

)
l
(
ψ(s1)

)
l
(
ψ(s2)

)
, (2.2)

the decompositionU � S with the group operation

(u1, s1) ∗ (u2, s2) =
(
u1 · φ(s1)(u2) · ξ(s1, s2), s1s2

)
(2.3)

is isomorphic with G, that is, g = (u, s).
Notice that the resulting pair of (u1, s1) ∗ (u2, s2), of the above operation (2.3), is

(u′, s1s2) for some u′ ∈ U and s1s2 is the operation on S. This property allows us to do not
be concerned to obtain an explicit result when multiple factors are acting. For instance, in the
proof of some Lemmas, it will be enough to say that (u′, s1s2 · · · sn) is the resulting pair of
the multiple product (u1, s1) ∗ (u2, s2) ∗ (u3, s3) ∗ · · · ∗ (un, sn), where u′ is some element ofU.
Analogously, (u, s)n = (u′, sn) for some u′ ∈ U.

Example 2.2. Consider the direct product group Z
3
2 = {(x1, x2, x3); xi ∈ Z2}. This abelian

group can be decomposed as an extension Z2 � Z
2
2.

By using the more convenient notation 00 instead of (0, 0), 010 instead of (0, 1, 0), and
so forth, we have that the normal subgroupN = {000, 100} � Z

3
2 is isomorphic with Z2. The
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quotient group Z
3
2/N = {{000, 100}, {010, 110}, {001, 101}, {111, 011}} is isomorphic with Z

2
2.

Thus, in an expected way, we have shown that Z
3
2 is an extension of Z2 � Z

2
2.

2.2. Finite State Machines and Group Codes

Finite state machines (FSM) are a subject of automata theory. Arbib in [13] describes a FSM
as a quintuple M = (I, S,O, δ, ξ), where I is the inputs alphabet, S is the alphabet of states
of the machine, O is the outputs alphabet, δ : I × S → S is the next-state mapping, and
ξ : I × S → O is the output mapping. Following [8, 9, 14] and by making modifications
on the FSM notation, suitable for our context of group codes, it is given the definition of an
encoder as follows.

Definition 2.3. LetU, S, and Y be finite groups. Let ν : U�S → S andω : U�S → Y be group
homomorphisms defined over an extensionU�S such that themappingΨ : U�S → S×Y×S
defined by

Ψ(u, s) = (s,ω(u, s), ν(u, s)) (2.4)

is injective with ν surjective.
Then, an encoder of a group code is the machineM = (U,S, Y, ν,ω).

The group U is called the uncoded information group and Y is called the encoded
information group. To begin working, the encoder needs an initial state s0 ∈ S and a sequence
of inputs {ui}ni=1, ui ∈ U. Then, the encoder will respond with two sequences {si}ni=1, si ∈ S,
and {yi}ni=1, yi ∈ Y in the following way:

ν(u1, s0) = s1, ω(u1, s0) = y1,
ν(u2, s1) = s2, ω(u2, s1) = y2,
ν(u3, s2) = s3, ω(u3, s2) = y3,

...
...

...
...

ν(un, sn−1) = sn ω(un, sn−1) = yn.

(2.5)

If we agree that the present time is 0 (zero) and the state s0 represents the present state, then
the next integer time is 1 (one) and s1 represents the next state from now. Analogously, the
next state from s1 will be s2 and generally si will be the next state from si−1. In this way, states
with positive indices, {si}ni=1, form a sequence of future states.

On the other hand, since ν is surjective, then must exist at least one pair (u0, s−1) such
that s0 = ν(u0, s−1). The state s−1 can represent the previous state from the present state s0.
Analogously for s−1, there must exist a pair (u−1, s−2) such that ν(u−1, s−2) = s−1 with s−2
representing a previous state from s−1 and so on s−i is one previous state from s{−i+1}. Thus,
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for a given present state s0, there are sequences of past states {si}−1i=−n, past outputs {yi}−1i=−n,
and past inputs {ui}0i=−n+1 such that

ν(u0, s−1) = s0, ω(u0, s−1) = y0,
ν(u−1, s−2) = s−1, ω(u−1, s−2) = y−1,
ν(u−2, s−3) = s−2, ω(u−2, s−3) = y−2,

...
...

...
...

ν
(
u{−n+1}, s−n

)
= s{−n+1} ω

(
u{−n+1}, s−n

)
= y{−n+1}.

(2.6)

Therefore, given bi-infinite sequence of inputs {ui}i∈Z
, ui ∈ U, and one state s0 ∈ S, the

encoderM = (U,S, Y, ν,ω) will response with the sequence {yi}i∈Z
, yi ∈ Y , of outputs while

its internal states will have the sequence {si}i∈Z
, si ∈ S. Notice that once made the choice of

one initial state s0, the future relations between the single sequences of inputs and the pair

of sequences of outputs and states are bijective, that is, {{uk}i∈N
}

1−1
� {{yi}i∈N

, {si}i∈N
}, where

N = {1, 2, 3, . . .} is the natural numbers set.

Definition 2.4. A time-invariant group code C is the family of bi-infinite sequences y = {yi}i∈Z

produced by the encoderM = (U,S, Y, ν,ω), with yi = ω(ui, si−1). Each sequence y = {yi}i∈Z

is called a codeword [7–9, 15].

Example 2.5. Consider the encoderM = (Z2,Z
2
2,Z

3
2, ν, ω) where ν : Z2 � Z

2
2 → Z

2
2 defined by

ν(u, s1, s2) = (u + s2, s1) and ω : Z2 � Z
2
2 → Z

3
2 is defined by ω(u, s1, s2) = (s2, u, s1).

Suppose that the encoder is initialized at state s0 = 00, then for the inputs sequence
{1, 1, 0, 0, 1, 1, 0, 1, 0, 1} the encoder states will be {10, 11, 11, 11, 01, 00, 00, 10, 01, 00} and the
sequence of encoded outputs will be {010, 011, 101, 101, 111, 110, 000, 010, 001, 110}.

3. Control and Group Codes

Each codeword of a group code satisfies the definition of a trajectory of a dynamical system
in the sense of Polderman and Willems [10]. From this, each group code C is a dynamical
system. In this context, the encoderM = (U,S, Y, ν,ω) is a realization of C [8, 9, 16].

Given a codeword y and a set of consecutive indices {i, i + 1, . . . , j − 1, j} = [i, j], the
projection of the codeword over these indices will be y|[i,j] = {yi, yi+1, . . . , yj}. Analogously,
y|[i,j) = {yi, yi+1, . . . , yj−1}, y|[i,+∞) = {yi, yi+1, . . .}, and so on. With this notation, the
concatenation of two codewords y1, y2 ∈ C in the instant j is a sequence y1 ∧j y2 defined by

y1 ∧j y2
∣∣
(−∞,j) = y1|(−∞,j),

y1 ∧j y2
∣∣
[j,+∞) = y2|[j,+∞).

(3.1)

Definition 3.1. If L is an integer greater than one, then a group code C is said L-controllable if,
for any pair of codewords y1 and y2, there are a codeword y3 and one integer k such that the
concatenation y1 ∧k y3 ∧k+L y2 is a codeword of the group code C [7, 10, 15].
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s = 10

s = 11

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

s = 00

s = 01

Figure 1: Trellis diagram of the encoderM = (Z2,Z
2
2,Z

3
2, ν, ω).

It is said that a natural number l > 1 is the index of controllability of a group code C
when l = min{L; C is L-controllable}. Any applicable group code, for correction of errors of
transmission and storage of information, needs to have an index of controllability. Shortly,
when a code has an index of controllability, then it is said that it is controllable [10]. Clearly,
a code C to be L-controllable is a sufficient condition for C to be controllable.

3.1. Trellis of a Group Code

The triplets (s,ω(u, s), ν(u, s)) of the set {Ψ(u, s)}(u,s)∈U�S, where Ψ is defined by (2.4), can
be represented graphically. In the context of graph theory [17], they are called edges whose
vertexes set is S and the graph is called state diagram labeled by ω(u, s). In Figure 1, the full
state diagram of the code generated by the FSM M = (Z2,Z

2
2,Z

3
2, ν, ω), from Example 2.5,

is shown between the times 2 and 3; also it is repeated between the times 3 and 4 and so
on until times 4 and 5. In the context of coding theory the elements of {Ψ(u, s)}(u,s)∈U�S

are called transitions or branches. The expansion in time of the state diagram is called trellis
diagram. This is made by concatenating at each time unit separate state diagram. For two
consecutive time units i and i + 1, the transitions bi = (si, ω(ui+1, si), ν(ui+1, si)) and bi+1 =
(si+1, ω(ui+2, si+1), ν(ui+2, si+1)) are said concatenated when si+1 = ν(ui+1, si). Hence, a bi-
infinite trellis path of transitions is a sequence b = {bi}i∈Z

such that bi and bi+1 are concatenated
for each i ∈ Z. The set of trellis paths form the trellis diagram. Since each codeword y passes
only by one state s at each unit of time, the relation between the codewords y and paths b
is bijective. Again from Example 2.5, consider the inputs sequence {ui}i∈Z

, such that u1 = 1,
u2 = 1, u3 = 0, u4 = 0, u5 = 1, u6 = 1, and ui = 0 for all i ∈ Z−{1, 2, 3, 4, 5, 6}. The response path
b = {bi}i∈Z

is such that b0 = (00, 010, 10), b1 = (10, 011, 11), b2 = (11, 101, 11), b3 = (11, 101, 11),
b4 = (11, 111, 01), b5 = (01, 110, 00), and bi = (00, 000, 00) for all i ∈ Z − {0, 1, 2, 3, 4, 5}. This
response path is shown by a traced line in Figure 1.

Definition 3.2. Two states s and r are said to be connected when there are a path b and
indices i, j ∈ Z such that b|[i,j] = {bi, bi+1, . . . , bj} with bi = (si, ω(ui+1, si), ν(ui+1, si)) and
bj = (sj , ω(uj+1, sj), ν(uj+1, sj)) such that s = si and r = ν(uj+1, sj).

Theorem 3.3. Let C be a group code produced by the encoder M = (U,S, Y, ν,ω). If there are two
states s ∈ S and r ∈ S for which there is no a finite path of transitions connecting them, then C is
noncontrollable.
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Proof. On contrary, there is l > 1 such that l is the controllability index of C. Let y1 be one
codeword passing by the state s at time k; let y2 be a codeword passing by the state r at time
k + L, L ≥ l. There must exist y3 ∈ C with its respective path b3 such that y3|(−∞,k) = y1|(−∞,k)

and y3|[k+L,+∞) = y2|[k+L,+∞) and b3|(k,k+L], a finite path, connecting s and r, a contradiction.

Equivalently, we can say that two states s and r are connected when there is a finite
sequence of inputs {ui}ni=1 such that

r = ν(un, ν(un1, . . . ν(u2, ν(u1, s)) · · · )). (3.2)

Theorem 3.4. Given an encoder (U,S, Y, ν,ω), consider the family of state subsets {Si}, recursively
defined by

S0 = {e},
...

...
...

Si = {ν(u, s); u ∈ U, s ∈ Si−1}, i ≥ 0

... =
...

(3.3)

then

(1) each Si is a subgroup of S,

(2) Si−1 is normal in Si, for all i ∈ {1, 2, . . .},
(3) if Si−1 = Si, then Si = Si+1,

(4) if the group code is controllable, then S = Sk for some k.

Proof. (1) Consider r, s ∈ Si. Since ν is surjective, there exist (u1, s1) and (u2, s2) with s1, s2 ∈
Si−1 and u1, u2 ∈ U such that r = ν(u1, s1) and s = ν(u2, s2). Hence, sr = ν(u1, s1) ∗ ν(u2, s2) =
ν(u3, s1s2), u3 ∈ U and thus sr ∈ Si.

(2) Clearly, S0 � S1. For i > 1, suppose that Sj−1 � Sj , for all j ≤ i. Given s ∈ Si+1 and
r ∈ Si, consider s · r · s−1 = ν(u, s1) ∗ ν(v, r1) ∗ ν(u, s1)−1, where s1 ∈ Si, r1 ∈ Si−1, u, v ∈ U.
Hence, s · r · s−1 = ν(u1, r1 · s1 · r−11 ) ∈ Si, because r1 · s1 · r−11 ∈ Si−1.

(3) Given s ∈ Si+1, there are r ∈ Si and u ∈ U such that ν(u, r) = s. Since Si = Si−1,
r ∈ Si−1. Hence, ν(u, r) = s ∈ Si.

(4) If not, then there is s ∈ S such that s /∈ Sk for any k ∈ N. Then, the neutral state
e ∈ Sk ⊂ S and s are not connected by any finite trellis path. Therefore, the group code is
noncontrollable.

In Figure 1 S0 = {00}, S1 = {00, 10}, S2 = {00, 10, 01, 11} = S, therefore the code is
controllable.

Definition 3.5. Two different transitions (s1, ω(u1, s1), ν(u1, s1)) and (s2, ω(u2, s2), ν(u2, s2))
are parallels if s1 = s2 and ν(u1, s1) = ν(u2, s2) and ω(u1, s1)/=ω(u2, s2).
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The Hamming distance dH(y1,y2) between two codewords y1 = {y1
i }i∈Z

and y2 =
{y2

i }i∈Z
is defined as the number of components which are different. The minimal distance of

a group code is

dmin = min{dH(y1,y2); y1,y2 are different codewords}. (3.4)

One desirable property of a group code is a high dmin; the greater dmin, the better the capability
to correction of errors. Clearly, when the trellis of a group code has parallel transitions, then
dmin = 1 and therefore a group code with parallel transitions will not be a good group code.

Lemma 3.6. Consider an encoder (U,S, Y, ν,ω). Let B+ and B− be subsets of the trellis section group
{Ψ(u, s)}(u,s)∈U�S such that B+ = {(e,ω(u, e), ν(u, e); u ∈ U}, the transitions outcoming from
the neutral state {e}, and B− = {(s,ω(u, s), ν(u, s); ν(u, s) = e}, the transitions incoming into the
neutral state {e}. Also, letH+ andH− be subsets ofU�S such thatH+ = U�{e} = {(u, e); u ∈ U}
andH− = Ker(ν) = {(u, s); ν(u, s) = e}, then

(1) H+ ∼= B+ andH− ∼= B−,

(2) bothH+ andH− are normal subgroups ofU � S,

(3) ifH+ ∩H− /= {(e, e)}, then {Ψ(u, s)}(u,s)∈U�S has parallel transitions,

(4) ifU�S is nonabelian and the states group S is abelian, then {Ψ(u, s)}(u,s)∈U�S has parallel
transitions.

Proof. (1) We have B+ = Ψ(H+) and B+ = Ψ(H+), where Ψ is defined in (2.4).
(2) Immediate.
(3) There exists (u, e) ∈ H+ ∩H−, with u/= e such that ν(u, e) = e. Since Ψ of (2.4) is

injective, ω(u, e)/= e. Therefore, the transitions (e,ω(e, e), ν(e, e)) and (e,ω(u, e), ν(u, e)) are
parallels.

(4) The states group S being abelian implies that G/H+ ∼= G/H− are abelian factor
groups. Then, the commutators subgroup (U � S)′ is a subgroup of H+ ∩H−. But U � S is
nonabelian, then (U � S)′ /= {(e, e)}. Therefore, from the above item (2.3), {Ψ(u, s)}(u,s)∈U�S

has parallel transitions.

4. Nonabelian Group Codes with Zp as information Group Are
Not Good

By using group extension of groups, subgroup of commutators, Theorem 3.4, and other group
theory ideas, we show here that we must search for good nonabelian group codes outside the
extension Zp � S.

Definition 4.1. Given a finite group G and a subgroup H ⊂ G, the index of H in G, denoted
by [G : H], is the number of different cosets ofH in G.

If |G|, |H| denote the orders of G and H, respectively, then [G : H] = |G|/|H|. It is
possible to represent graphically this index such as in Figure 2 where is represented the index
[Zp � S1: Zp � S0]. We see that if S1 = S0, then [Zp � S1: Zp � S0] = 1, and if S1 /=S0 then
[Zp � S1: Zp � S0] = p.
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1

1

1

Zp ⊠ S1

(Zp ⊠ S1) ∩ (Zp ⊠ S)′

Zp ⊠ S0

(a) If S1 = S0

1

p

p

Zp ⊠ S1

(Zp ⊠ S1) ∩ (Zp ⊠ S)′

Zp ⊠ S0

(b) If S1 /=S0

Figure 2: The intersection (Zp � S1) ∩ (Zp � S)′ when Zp � S0 ⊂ (Zp � S)′.

Definition 4.2. Given a group G, the group of commutators of G is the subgroup G′ =
{aba−1b−1; a, b ∈ G}.

Lemma 4.3. Let Zp � S be an extension which is a p-group. If Zp � S0 ⊂ (Zp � S)′, then Zp � Si ⊂
(Zp � S)′, and Si ⊂ S′, for each i ≥ 1.

Proof. Since ν is a group homomorphism, the image ν(Zp � S0) = S1 is in the commutators
subgroup S′ of S. If S1 = S0, then the lemma holds trivially (Figure 2(a)). If S1 /=S0, then
by the long commutators theorem from [18], there are s ∈ (S1 − S0) and a1, a2, . . . , at ∈ S
such that s = a1a2 · · ·ata−11 a−12 · · ·a−1t . Now, consider u ∈ Zp and {u1, u2, . . . , ut} ⊂ Zp such
that (u, s) = (u1, a1) ∗ (u2, a2) ∗ · · · ∗ (ut, at) ∗ (u1, a1)

−1 ∗ (u2, a2)
−1 ∗ · · · ∗ (ut, at)

−1. We have
(u, s) ∈ (Zp � S)′ and (u, s) /∈ Zp � S0. Therefore, Zp � S1 ⊂ (Zp � S)′ (Figure 2(b)).

Again, since ν is a group homomorphism, ν(Zp � S1) = S2 is in the commutators
subgroup S′ of S. Then, with very similar arguments, we can proof that if S2 /=S1, then (Zp �
S2) ⊂ (Zp � S)′ and ν(Zp � S2) = S3 ⊂ S′. Continuing in the same way, we conclude that
(Zp � S)′ and Si ⊂ S′, for any i ≥ 1.

Lemma 4.4. Let Zp � S be an extension which is a p-group. Consider the subgroups {Si} defined in
(3.3). Then, for each i, either each Si is abelian or Si ⊂ S′.

Proof. Since S1 is cyclic and S2 has at most order p2, we have that both S1 and S2 are abelian.
Then, let i ≥ 2 be such that S1, S2, . . . , Si are all abelian with Si+1 nonabelian. Then, there
are s1, s2 ∈ Si+1 such that s1s2 /= s2s1. Also, there must be u1, u2 ∈ Zp and r1, r2 ∈ Si, with
r1r2 = r2r1, such that s1 = ν(u1, r1) and s2 = ν(u2, r2). Then,

s1s2 /= s2s1,

ν(u1, r1) ∗ ν(u2, r2)/= ν(u2, r2) ∗ ν(u1, r1),

ν
(
(u1, r1) ∗ (u2, r2) ∗ (u1, r1)−1 ∗ (u2, r2)−1

)
/= e,
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ν
(
u′, r1r2r−11 r−12

)
/= e, for some u′ ∈ Zp,

ν
(
u′, e

)
/= e.

(4.1)

From this, u′ /= e and (u′, e) ∈ (Zp � S)′ ∩ (Zp � S0). Since the order of Zp � S0 is p, we have
that Zp �S0 ⊂ (Zp �S)′. By Lemma 4.3, (Zp �Si) ⊂ (Zp �S)′ and Si ⊂ S′, for each i. Therefore,
either Si is abelian or Si ⊂ S′.

Suppose now that we do not have the information about the order of Zp � S; that is,
we cannot use the hypothesis that Zp � S is a p-group. In this case, we need to consider S as
a generic and finite group. By looking back, again, the family {Si} defined by (3.3), we will
show that whenU = Zp, each Si must be a p-group. In that direction, we need to consider the
subgroupH− of Lemma 3.6 and from this the second projection of the kernel of ν:

Sd =
{
s ∈ S; ν(u, s) = e for some u ∈ Zp

}
. (4.2)

Clearly, Sd is a normal subgroup of S and it is isomorphic to Zp and we have the following
lemma.

Lemma 4.5. Consider the encoder M = (Zp, S, Y, ν, ω). Also, consider the subgroup Sd defined in
(4.2), then

(1) if there are s /= e and s ∈ Sd ∩ Si, then Sd ⊂ Si, for i ≥ 0,

(2) if Sd ⊂ Si, then ν(Zp, Sd) ⊂ Si, for i ≥ 0.

Proof. (1) Since p ∈ Sd ∩ Si, then {s, s2, . . . , sp−1, sp = e} ⊂ Sd ∩ Si.
(2) Given r /= e such that r ∈ Si ∩ Sd, suppose there is some u ∈ Zp such that ν(u, r) =

s /∈ Si. For the subgroup S1 = {s0, s1 = ν(u1, e), s2 = ν(u2, e), . . . , sp−1 = ν(up−1, e)}, we have
that sS1 is a coset where each element is ν(u, r)ν(ui, e) = ν(u′, r), for some u′ ∈ Zp. Hence
sS1 = {ν(Zp, r)} with sS1 ∩ Si = ∅. But, since r ∈ Sd, there is at least one u0 ∈ Zp such that
ν(u0, r) = e, in contradiction with sS1 ∩ Si = ∅.

Theorem 4.6. Consider the encoder M = (Zp, S, Y, ν, ω), where p is prime. Then, each Si of (3.3)
must be a p-group.

Proof. By induction over i, for i = 1 we have [S1 : S0] = p or [S1 : S0] = 1. Now, suppose
that there is a natural number k > 1 such that [Si : Si−1] = p, for all i ≤ k. We have that the
subgroup Sk has pk elements and each of its elements has order pi, i ≤ k. If p > [Sk+1 : Sk] > 1,
then [Sk+1 : Sk] = m = qr11 q

r2
2 · · · qrtt , where each qi is a prime and qi < p. There must be an

element s ∈ (Sk+1 − Sk) such that sq1 = e.
Let u ∈ Zp and r ∈ Sk be such that ν(u, r) = s, then ν(u1, rq1) = e. Hence, rq1 ∈ Sd ∩ Sk.
If r /= e, then rq1 /= e, because q1 < p. By Lemma 4.5, Sd ⊂ Sk and ν(u, r) = s ∈ Sk, a

contradiction.
If r = e, then ν(u, r) = s ∈ S1 ⊂ Sk, a contradiction.

Theorem 4.7. Consider the encoder M = (Zp, S, Y, ν, ω), where Zp � S is nonabelian and p is a
positive prime, then
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(1) if S is abelian, then the group code has bad minimal Hamming distance;

(2) if S is nonabelian, then the group code is noncontrollable.

Proof. (1) By Lemma 3.6, the group code has parallel transitions and by (3.4) has dmin = 1.
(2) If S is not a p-group, then by Theorem 4.6 the resulting code is noncontrollable. If S

is a p-group, thenZp�S is also a p-group, then by Lemma 4.4 S is abelian, a contradiction.

5. Conclusion

We have shown that there are no controllable group codes defined on the nonabelian
extension Zp � S, with p prime and for any finite nonabelian group S. When S is abelian,
the group code will have parallel transitions and therefore distance limitations. In contrast,
for the casesZ22�S and (Z2)

2�S, there are important examples of controllable and nonabelian
group codes such as theWei code [19]which has a trellis section isomorphic to the nonabelian
2-group (Z2)

2
� D8, where D8 is the symmetries of the square and the symbol � denotes the

semidirect product. This provides a strong clue about the controllability of some p-groups
with information groups Zpn or (Zp)

n.
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