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This paper makes some great attempts to investigate the global exponential synchronization for
arrays of coupled delayed Cohen-Grossberg neural networks with both delayed coupling and one
single delayed one. By resorting to free-weighting matrix and Kronecker product techniques, two
novel synchronization criteria via linear matrix inequalities (LMIs) are presented based on convex
combination, in which these conditions are heavily dependent on the bounds of both the delay
and its derivative. Owing to that the addressed system can include some famous neural network
models as the special cases, the proposed methods can extend and improve those earlier reported
ones. The efficiency and applicability of the presented conditions can be demonstrated by two
numerical examples with simulations.

1. Introduction

In recent years, synchronization of various chaotic systems has gained considerable attention
since the pioneering works of Pecora and Carroll [1, 2]. It is widely known that many benefits
of having synchronization or chaos synchronization can be existent in various engineering
fields such as secure communication, image processing, and harmonic oscillation generation.
Thus recently, the problem on synchronization in chaotic systems has been extensively
studied owing to its potential applications in many engineering areas. Especially, since chaos
synchronization in arrays of linearly coupled dynamical systems was firstly studied in [3],
arrays of coupled systems including delayed chaotic ones have received much attention as
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they can exhibit some interesting phenomena [4, 5], and a great number of elegant results
have been derived [6–28].

As a typical complex systems, delayed neural networks (DNNs) have been verified
to exhibit some complex and unpredictable behaviors such as stable equilibria, periodic
oscillations, bifurcation, and chaotic attractors. Thus recently, chaos synchronization for
arrays of coupled DNNs have been discussed and some elegant results have been propose
[12–28]. The global synchronization of linearly coupled DNNs with delayed coupling was
investigated in [12], in which the dynamical behavior of the uncoupled system could
be chaotic or others. The authors in [13] have considered the robust synchronization of
coupled DNNs under general impulsive control. In [14], this paper has proposed an adaptive
procedure to the synchronization for coupled identical Yang-Yang fuzzy DNNs based on
one simple adaptive controller. In [15], with all the parameters unknown, the authors
focused on the robust synchronization between two coupled DNNs that were linearly and
unidirectionally coupled, in which neither symmetry nor negative (positive) definiteness of
the coupling matrix were required. However, those above-mentioned results were presented
in terms of some complicated inequalities, which makes them uneasily checked and applied
to real ceases by the most recently developed algorithms. By employing Kronecker product
and LMI technique, the global synchronization and cluster one have been studied for DNNs
with couplings, and some easy-to-test sufficient conditions have been obtained [16–25, 28].
Yet, the system forms addressed in [16–25] seemed simple and some improved techniques
have not been utilized to reduce the conservatism, which make the above-mentioned results
inapplicable to tackle DNNs of more general forms.

The Cohen-Grossberg neural network (CGNN) model, first proposed by Cohen and
Grossberg in 1983 [29], has recently gained particular research attention, since it is quite
general to include many famous network models as its special case and has promising
application potentials for tasks of associative memory, parallel computation, and nonlinear
optimization problems. Meanwhile, owing to complexity of CGNNs themselves, there were
few works studying the global synchronization for the coupled delayed CGNNs, except for
that some researchers have studied the slave-master synchronization for continuous CGNNs
in [26, 27] and synchronization for coupled discrete delayedCGNNs in [28]. Thus, it is urgent
and challenging to establish some easy-to-check and less conservative results ensuring the
global synchronization of coupled continuous-time delayed CGNNs, which constitutes the
main focus of this presented work.

In this paper, the global exponential synchronization of N identical delayed CGNNs
with both delayed coupling and one single delayed one is considered and two novel LMI-
based conditions are derived by using Kronecker product technique, which has not been
studied in the present literature. It shows that the chaos synchronization can be ensured by a
suitable design of inner coupled linking matrix and the inner delayed linking ones. Moreover,
some effectivemathematical techniques are employed to reduce the conservatism. Finally, the
efficiency of the derived criteria can be illustrated by utilizing two numerical examples.

Notations. Rn denotes the n-dimensional Euclidean space, and Rn×m is the set of all
n ×m real matrices. For the symmetric matrices X, Y,X > Y (respectively, X ≥ Y) means that
X − Y > 0 (X − Y ≥ 0) is a positive-definite (respectively, positive-semidefinite) matrix; AT

represents the transpose of the matrix A; λmax(A), λmin(A) denote the maximum eigenvalue
andminimum one ofmatrixA, respectively; I represents the identity matrix of an appropriate
dimension;

[
X Y
YT Z

]
=
[
X Y
∗ Z

]
.
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2. Problem Formulations and Preliminaries

Suppose the nodes are coupled with states xi(t), i ∈ {1, . . . ,N}, then the delayed Cohen-
Grossberg neural network models can be formulated as follows:

ẋi(t) = −α(xi(t))
[
β(xi(t)) −Af(xi(t)) − Bf(xi(t − τ(t))) − I(t)

]

+
N∑

j=1,j /= i

lijF
[
xj(t) − xi(t)

]

+
N∑

j=1,j /= i

lijK
[
xj(t − τ(t)) − xi(t)

]

+
N∑

j=1,j /= i

lijJ
[
xj(t − τ(t)) − xi(t − τ(t))

]
,

(2.1)

in which xi(t) = [xi1(t), . . . , xin(t)]T ∈ Rn is the state vector of the ith network at time t, α(xi) =
diag{α1(xi1), . . . , αn(xin)} represents the amplification function, β(xi) = [β1(xi1), . . . , βn(xin)]

T

is the behaved function, A = [aij]n×n, B = [bij]n×n, f(xi) = [f1(xi1), . . . , fn(xin)]
T ; I(t) =

[I1(t), . . . , In(t)]
T ∈ Rn is the external input vector; F = [fij]n×n, K = [kij]n×n, and J = [jij]n×n

are respectively the inner coupling matrices between the connected nodes i and j at times t
and t − τ(t).

For system (2.1), the following assumptions are introduced throughout this paper.

(A1) τ(t) denotes an interval time-varying delay satisfying

0 ≤ τ0 ≤ τ(t) ≤ τm, τ̇(t) ≤ μ < +∞, (2.2)

and we set τm = τm − τ0.

(A2) L = [lij]N×N is the configuration matrix that is irreducible and satisfies

lij = lji, i /= j, lii = −
N∑

j=1,j /= i

lij . (2.3)

Here lij > 0 if there is a connection between node i and the one j and otherwise, lij = 0.

(A3) For i ∈ {1, 2, . . . , n}, each αi(·) is Lipschitz continuous and there exists the positive
scalars ai, ai satisfying 0 < ai ≤ αi(·) ≤ ai; and there exist the positive scalars πi, γi
such that each function βi(·) satisfies 0 < γi ≤ (βi(x) − βi(y)/x − y) ≤ πi, and

[
β̇i(x) − β̇i

(
y
) − ρ−i

(
x − y

)][
β̇i(x) − β̇i

(
y
) − ρ+i

(
x − y

)] ≤ 0 ∀x, y ∈ R, i = 1, . . . , n,
(2.4)
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in which ρ−i , ρ
+
i are given constants. Here we set Λ = diag{a1, . . . , an}, Ψ = diag{a1, . . . , an},

Γ = diag{γ1, . . . , γn}, Π = diag{π1, . . . , πn}, and

Λ1 = diag
{
γ1π1, . . . , γnπn

}
, Λ2 = diag

{
π1 + γ1

2
, . . . ,

πn + γn

2

}
,

Υ1 = diag
{
ρ+1ρ

−
1 , . . . , ρ

+
nρ

−
n

}
, Υ2 = diag

{
ρ+1 + ρ−1

2
, . . . ,

ρ+n + ρ−n
2

}

.

(2.5)

(A4) For any α, β ∈ R, and ρ−i , ρ
+
i for i ∈ {1, 2, . . . , n}, the activation function fi(·) satisfies

[
fi(α) − fi

(
β
) − σ+

i

(
α − β

)][
fi(α) − fi

(
β
) − σ−

i

(
α − β

)] ≤ 0. (2.6)

Here we denote Σ1 = diag{σ+
1 σ

−
1 , . . . , σ

+
nσ

−
n} and Σ2 = diag{(σ+

1 + σ−
1 )/2, . . . , (σ

+
n + σ−

n )/2}.

Remark 2.1. In (A3), the assumption on the derivative of β(xi) in (2.4) is reasonable and does
not result in the conservatism in many cases such as that, choosing the appropriate scalars
a, b, c, the function β(xi) can be expressed as axi, axi +b sin(xi), axi+b sin2(xi), axi+c cos(xi),
axi + c cos3(xi), axi + c tanh(xi), respectively. Moreover, the activation functions in system
(2.1) can be of general description and those present ones in [22–26, 29] are just special cases
of the system (2.1).

Based on assumption(A2), system (2.1) can be rewritten as the following forms:

ẋi(t) = −α(xi(t))
[
β(xi(t)) −Af(xi(t)) − Bf(xi(t − τ(t))) − I(t)

] − liiK[xi(t − τ(t)) − xi(t)]

+
N∑

j=1

lijFxj(t) +
N∑

j=1

lij(K + J)xj(t − τ(t)).

(2.7)

To address the problem, we denote the set S = {x(s) = [xT
1 (s), . . . , x

T
N(s)] : xi(s) ∈ C([t0 −

τm, τ0],Rn), xi(s) = xj(s), i, j = 1, 2, . . . ,N} as the synchronization manifold for system (2.7).

Definition 2.2 (see [16]). Dynamical network (2.7) is said to be asymptotically synchronized,
if for any initial conditions φi(s), φj(s) ∈ C([t0 − τm, t0],Rn), i, j = 1, . . . ,N, there exist M > 0,
ε > 0 and sufficient large T > 0 such that ‖xi(t) − xj(t)‖ ≤ Me−εt for all t ≥ T , where ε and
M are said to be the decay rate and the decay coefficient, respectively. Here ‖ · ‖ denotes the
Euclidean norm.

Due to the communication delay, the array of coupled nodes cannot be decoupled,
and the synchronized state is always not the trajectory of an isolated node but a modified
one as (2.7). Furthermore, delayed coupling matrix and the degree of the node play the
important roles in the synchronized state, which has been illustrated in [21]. In the paper,
we give an improved discussion for such synchronization. In the case, system (2.7) reaches
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the synchronization, that is, x1(t) = · · · = xN(t) = s(t), we can deduce the synchronized state
equation

ṡ(t) = −α(s(t))[β(s(t)) −Af(s(t)) − Bf(s(t − τ(t))) − I(t)
] − liiK[s(t − τ(t)) − s(t)], (2.8)

where i = 1, 2, . . . ,N. Obviously, the synchronization is invariant for the coupled system (2.7).
Therefore, to realize complete synchronization, the assumption l11 = · · · = lNN = l has to be
imposed on the system (2.7).

3. Delay-Dependent Synchronization Criteria

Firstly, together with the Kronecker product in [16–21], we can reformulate the system (2.7)
as

ẋ(t) = −a(x(t))[b(x(t)) − (IN ⊗A)f(x(t)) − (IN ⊗ B)f(x(t − τ(t))) − I(t)] − l(IN ⊗K)

× [x(t − τ(t)) − x(t)] + (L ⊗ F)x(t) + (L ⊗ (K + J))x(t − τ(t))
(3.1)

with x(t) = [xT
1 (t), . . . , x

T
N(t)]T , a(x(t)) = diag{α(x1(t)), . . . , α(xN(t))}, b(x(t)) =

[βT (x1(t)), . . . , βT (xN(t))]T , f(x(·)) = [fT (x1(·)), . . . , fT (xN(·))]T , and I(t) = [IT(t), . . . , IT(t)]T .
In order to derive our results, the following lemmas are essential for obtaining the

synchronization criteria.

Lemma 3.1. Let D,S, and P > 0 be real matrices of appropriate dimensions and ε > 0. Then for any
vectors x and y with appropriate dimensions, one gets 2xTDTSy ≤ ε−1xTDTP−1Dx + εyTSTPSy.

Lemma 3.2. Let U = [uij]N×N , P ∈ Rn×n, x = [xT
1 , x

T
2 , . . . , x

T
N]T , and y = [yT

1 , y
T
2 , . . . , y

T
N]T

with xi, yi ∈ Rn, i = 1, . . . ,N. If U = UT and each row sum of U is 0, then xT (U ⊗ P)y =
−∑1≤i<j≤N uij(xi − xj)TP(yi − yj).

Then by utilizing the most improved techniques for achieving the criteria in [30], we
state and investigate the global exponential synchronization for the system (3.1).

Theorem 3.3. Supposing that assumptions (A1)–(A4) hold, then the dynamical system (3.1) is
globally exponentially synchronized, if there exist n×nmatrices P > 0, S > 0,Z > 0, Li(i = 1, 2, 3, 4),
n × n matrices Pl > 0, Ql > 0, Rl(l = 1, 2, 3) making

[
Pl Rl

∗ Ql

]
≥ 0, n × n diagonal matrices R > 0,

Q > 0, G > 0, E > 0, U > 0, V > 0, W > 0, H > 0, Ti > 0 (i = 1, 2), 13n × n matrices
Ni(i = 1, 2, 3), and one scalar δ > 0 such that, for 1 ≤ i < j ≤ N, the LMIs in (3.2) hold

⎡

⎢⎢
⎢⎢⎢
⎣

Ωij + $ + $T H
√
τ0N1

√
τmN2

∗ −δI 0 0

∗ ∗ −S 0

∗ ∗ ∗ −Z

⎤

⎥⎥
⎥⎥⎥
⎦

< 0,

⎡

⎢⎢
⎢⎢⎢
⎣

Ωij + $ + $T H
√
τ0N1

√
τmN3

∗ −δI 0 0

∗ ∗ −S 0

∗ ∗ ∗ −Z

⎤

⎥⎥
⎥⎥⎥
⎦
< 0,

(3.2)
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where $ = [N1 −N1 +N2 −N3 06n·13n −N2 +N3 03n·13n], H = [0n·13n Q(Λ−1 −Ψ−1) 0n·n]T ,

Ωij =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

Ξ11 0 0 Ξ14 0 0 Ξ17 LT
1 0 Ξ1,10 lLT

1K Ξ1,12 Ξ1,13

∗ Ξ22 0 0 Ξ25 0 0 0 0 0 0 0 0

∗ ∗ Ξ33 0 0 Ξ36 0 0 0 0 0 0 0

∗ ∗ ∗ Ξ44 0 0 0 ATL3 ATL4 0 0 ATQT 0

∗ ∗ ∗ ∗ Ξ55 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 −LT
2 0 Ξ7,10 lLT

2K −Ψ−1R 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 −LT
3 0 LT

3B −LT
3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0 LT
4B −LT

4 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ10,10 Ξ10,11 Ξ10,12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ11,11 BTQT 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ12,12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

(3.3)

with Ξ11 = P2 + l(LT
1K +KTL1)− lijN(LT

1F +FTL1)− 2ΓTG−UΣ1 − T1Π1 − T2Υ1, Ξ14 = R2 +UΣ2,
Ξ17 = P − LT

1 − lijNFTL2 + 2ΠTRΨ−1 − 2ΓTQΛ−1, Ξ1,10 = −lLT
1K − lijNLT

1 (K + J), Ξ1,12 =
lKTQΛ−1 − lijNFTQΛ−1 +GT + T1Π2, Ξ1,13 = T2Υ2 +QΛ−1 − RΨ−1, Ξ22 = −P2 + P1 + P3 −WΣ1,
Ξ25 = −R2 + R1 + R3 + WΣ2, Ξ33 = −P3 − HΣ1, Ξ36 = HΣ2 − R3, Ξ44 = −U + Q2, Ξ55 =
−Q2 +Q1 +Q3 −W , Ξ66 = −Q3 −H , Ξ77 = −LT

2 −L2 + τ0S+ τmZ, Ξ7,10 = −lLT
2K − lijNLT

2 (K + J),
Ξ88 = −E + δIn, Ξ99 = −LT

4 − L4 + ΨTEΨ, Ξ10,10 = −(1 − μ) P 1 − VΣ1, Ξ10,11 = −(1 − μ)R1 + VΣ2,
Ξ10,12 = −lKTQΛ−1 − lijN(K + J)TQΛ−1, Ξ11,11 = −(1 − μ)Q1 − V , Ξ12,12 = −2QT − T1.

Proof. Firstly, we can represent the system (3.1) as the following form:

ẋ(t) = y(t), (3.4)

y(t) = z(t) − l(IN ⊗K)[x(t − τ(t)) − x(t)] + (L ⊗ F)x(t) + (L ⊗ (K + J))x(t − τ(t)), (3.5)

z(t) = a(x(t))w(t), (3.6)

w(t) = −b(x(t)) + (IN ⊗A)f(x(t)) + (IN ⊗ B)f(x(t − τ(t))) + I(t). (3.7)

Based on assumptions (A1) and (A3), and

U =
[
uij

]
N·N =

⎡

⎢⎢⎢
⎣

N − 1 · · · −1
...

. . .
...

−1 · · · N − 1

⎤

⎥⎥⎥
⎦
, (3.8)
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we construct the following Lyapunov-Krasovskii functional:

V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t)) + V5(x(t)), (3.9)

where

V1(x(t)) = xT (t)(U ⊗ P)x(t) + 2[Θx(t) − b(x(t))]T
(
U ⊗ RΨ−1

)
x(t)

+ 2[b(x(t)) − Υx(t)]T
(
U ⊗QΛ−1

)
x(t),

V2(x(t)) =
∫ t−τ0

t−τ(t)

[
x(s)

f(x(s))

]T(

U ⊗
[
P1 R1

∗ Q1

])[
x(s)

f(x(s))

]

ds,

V3(x(t)) =
∫ t

t−τ0

[
x(s)

f(x(s))

]T(

U ⊗
[
P2 R2

∗ Q2

])[
x(s)

f(x(s))

]

ds,

V4(x(t)) =
∫ t−τ0

t−τm

[
x(s)

f(x(s))

]T(

U ⊗
[
P3 R3

∗ Q3

])[
x(s)

f(x(s))

]

ds,

V5(x(t)) =
∫0

−τ0

∫ t

t+θ
ẋT (s)(U ⊗ S)ẋ(s)dsdθ +

∫−τ0

−τm

∫ t

t+θ
ẋT (s)(U ⊗Z)ẋ(s)dsdθ

(3.10)

with two diagonal matrices R > 0, Q > 0, and setting Θ = diag{Π,Π, . . . ,Π
︸ ︷︷ ︸

N

}, Υ =

diag{Γ, Γ, . . . , Γ
︸ ︷︷ ︸

N

}. Based on (A3) and Lemma 3.1, one can easily verify the definite positiveness

of V1(x(t)).
Now, by directly calculating V̇1(x(t)) along the trajectory of the system (3.1), we can

deduce

V̇1(x(t)) = 2xT (t)(U ⊗ P)y(t) + 2[Θx(t) − b(x(t))]T
(
U ⊗ RΨ−1

)
y(t) + 2

[
Θy(t) − ḃ(x(t))

]T

×
(
U ⊗ RΨ−1

)
x(t) + 2[b(x(t)) − Υx(t)]T

×
(
U ⊗QΛ−1

)
y(t) + 2

[
ḃ(x(t)) − Υy(t)

]T(
U ⊗QΛ−1

)
x(t)

= 2xT (t)(U ⊗ P) y(t) + 2[Θx(t) − b(x(t))]T
(
U ⊗ RΨ−1

)
y(t) + 2bT(x(t))

×
(
U ⊗QΛ−1

)
y(t) + 2ḃT(x(t))

(
U ⊗

(
QΛ−1 − RΨ−1

))
x(t) + 2yT (t)

×
(
U ⊗

(
ΠTRΨ−1 − 2ΓTQΛ−1

))
x(t).

(3.11)
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Meanwhile by (3.5), it is easy to derive that

2bT(x(t))
(
U ⊗QΛ−1

)
y(t) = 2bT(x(t))

(
U ⊗QΛ−1

)
z(t) + 2bT(x(t))

(
U ⊗QΛ−1

)

×
[

− l(IN ⊗K)[x(t − τ(t)) − x(t)]

+(L ⊗ F)x(t) + (L ⊗ (K + J))x(t − τ(t))

]

.

(3.12)

Noting that U1/2 ≥ 0 does hold, then with Lemma 3.1 and δ > 0, one can estimate
2bT(x(t))(U ⊗QΛ−1)z(t) as

2bT(x(t))
(
U ⊗QΛ−1

)
z(t)

= 2bT(x(t))
(
U1/2 ⊗Q

[
Λ−1 − α−1(x(t))

])T(
U1/2 ⊗ I

)
z(t) + 2bT(x(t))(U ⊗Q)w(t)

≤ δzT (t)(U ⊗ In)z(t) + δ−1bT(x(t))

×
(
U ⊗

(
Λ−T−Ψ−T

)
QTQ

(
Λ−1−Ψ−1

))
b(x(t)) + 2bT(x(t))

× (U ⊗Q)[−b(x(t)) + (IN ⊗A)f(x(t))+(IN ⊗ B)f(x(t − τ(t)))+I(t)].
(3.13)

Now combining with terms (3.12) and (3.13) yields

V̇1(x(t)) ≤ 2xT (t)(U ⊗ P)y(t) + 2[Θx(t) − b(x(t))]T
(
U ⊗ RΨ−1

)
y(t) + δzT (t)(U ⊗ In)z(t)

+ δ−1bT (x(t))
(
U ⊗

(
Λ−T −Ψ−T

)
QTQ

(
Λ−1 −Ψ−1

))
b(x(t)) + 2bT(x(t))(U ⊗Q)

× [−b(x(t)) + (IN ⊗A) f(x(t)) + (IN ⊗ B) f(x(t − τ(t))) + I(t)] + 2bT(x(t))

×
(
U ⊗QΛ−1

)
[−l(IN ⊗K)[x(t − τ(t))−x(t)]+(L ⊗ F)x(t)+(L ⊗ (K + J))x(t−τ(t))]

+ 2ḃT(x(t))
(
U ⊗

(
QΛ−1 − RΨ−1

))
x(t) + 2yT (t)

(
U ⊗

(
ΠTRΨ−1 − 2ΓTQΛ−1

))
x(t),

(3.14)

V̇2(x(t)) ≤
[

xT (t − τ0)(U ⊗ P1)x(t − τ0)+2xT (t − τ0)(U ⊗ R1)f(x(t − τ0))+fT(x(t − τ0))

×(U ⊗Q1)f(x(t − τ0))

]

− (1 − μ
)
[

xT (t − τ(t))(U ⊗ P1)x(t − τ(t)) + 2xT(t − τ(t))(U ⊗ R1)f(x(t − τ(t))) ,

+fT(x(t − τ(t)))(U ⊗Q1)f(x(t − τ(t)))

]

,

(3.15)
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V̇3(x(t)) =
[
xT (t)(U ⊗ P2)x(t) + 2xT (t)(U ⊗ R2)f(x(t)) + fT(x(t))(U ⊗Q2)f(x(t))

]

−
[

xT (t − τ0)(U ⊗ P2)x(t − τ0) + 2xT (t − τ0)(U ⊗ R2)f(x(t − τ0))

+fT(x(t − τ0))(U ⊗Q2)f(x(t − τ0))

]

,

(3.16)

V̇4(x(t)) =

[

xT (t − τ0)(U ⊗ P3)x(t − τ0) + 2xT (t − τ0)(U ⊗ R3)f(x(t − τ0))

+ fT(x(t − τ0))(U ⊗Q3) × f(x(t − τ0))

]

−
[

xT (t − τm)(U ⊗ P3) x(t − τm) + 2xT (t − τm)(U ⊗ R3)f(x(t − τm))

+ fT(x(t − τm))(U ⊗Q3)f(x(t − τm))

]

,

(3.17)

V̇5(x(t)) = yT (t)[τ0(U ⊗ S) + τm(U ⊗ Z)]y(t) −
∫ t

t−τ0
yT (s)(U ⊗ S)y(s)ds

−
∫ t−τ0

t−τm
yT (s)(U ⊗ Z)y(s)ds.

(3.18)

For any n × n matrices Li(i = 1, 2, 3, 4), it follows from (3.5) and (3.7) that

0 = 2
[
xT (t)

(
U ⊗ LT

1

)
+ yT (t)

(
U ⊗ LT

2

)]

×[−y(t) + z(t) − l(IN ⊗K)[x(t − τ(t)) − x(t)] + (L ⊗ F)x(t) + (L ⊗ (K + J))x(t − τ(t))
]
,

(3.19)

0 = 2
[
zT (t)

(
U ⊗ LT

3

)
+wT (t)

(
U ⊗ LT

4

)]

×[−w(t) − b(x(t)) + (IN ⊗A)f(x(t)) + (IN ⊗ B)f(x(t − τ(t))) + I(t)].
(3.20)

By utilizing (A3) and (3.6), for any n × n diagonal matrices G ≥ 0, E ≥ 0, the following
inequality holds

0 ≤ 2
[
bT(x(t))(U ⊗G)x(t) − xT (t)

(
U ⊗ ΓTG

)
x(t)

]

+
[
wT (t)

(
U ⊗ΨTEΨ

)
w(t) − zT (t)(U ⊗ E)z(t)

]
.

(3.21)
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Meanwhile, based on (3.14) and (3.19), it is easy to check that UL = NL, and

(
U ⊗QΛ−1

)
(L ⊗ F) =(NL) ⊗

(
QΛ−1F

)
,

(
U ⊗QΛ−1

)
(L ⊗ (K + J))= (NL) ⊗

(
QΛ−1(K + J)

)
,

(
U ⊗ LT

i

)
(L ⊗ F) =(NL) ⊗

(
LT
i F
)
,

(
U ⊗ LT

i

)
(L ⊗ (K + J))=(NL) ⊗

(
LT
i (K + J)

)
,

i = 1, 2.
(3.22)

Here we can employ the following notations to simplify the subsequent proof

xij =xi − xj , yij = yi − yj, zij = zi − zj , wij = wi −wj,

β
(
xij

)
= β(xi) − β

(
xj

)
, f

(
xij

)
= f(xi) − f

(
xj

)
.

(3.23)

Then together with (U ⊗Q)I(t) = 0 in (3.14) and (U ⊗ LT
3 )I(t) = (U ⊗ LT

4 )I(t) = 0 in (3.19), it
follows from Lemma 3.2 and (3.14)–(3.22) that

V̇ (x(t))

≤ −
∑

1≤i<j≤N

⎧
⎨

⎩
uij

[
2xT

ij(t)Pyij(t) + 2
[
Πxij(t) − β

(
xij(t)

)]]T
RΨ−1yij(t) + δzTij(t)Inzij(t)

+ δ−1βT
(
xij(t)

)(
Λ−T −Ψ−T

)
QTQ

(
Λ−1 −Ψ−1

)
β
(
xij(t)

)
+ 2βT

(
xij(t)

)

×Q
[−β(xij(t)

)
+Af

(
xij(t)

)
+ Bf

(
xij(t − τ(t))

)]
+ 2βT

(
xij(t)

)
QΛ−1

× [−lK[xij(t − τ(t)) − xij(t)
]]

+ 2β̇T
(
xij(t)

)(
QΛ−1 − RΨ−1

)
xij(t) + 2yT

ij(t)

×
(
ΠTRΨ−1 − 2ΓTQΛ−1

)
xij(t)

+

⎡

⎣xT
ij(t − τ0)(P1 − P2 + P3)xij(t − τ0) + 2xT

ij(t − τ0)(R1 − R2 + R3)

×f(xij(t − τ0)
)
+fT(xij(t − τ0)

)
(Q1 −Q2 +Q3)f

(
xij(t − τ0)

)
⎤

⎦

×
⎡

⎣xT
ij(t − τ(t))P1xij(t − τ(t)) + 2xT

ij(t − τ(t))R1f
(
xij(t − τ(t))

)

+fT(xij(t − τ(t))
)
Q1f

(
xij(t − τ(t))

)
⎤

⎦
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×
[
xT
ij(t)P2xij(t) + 2xT

ij(t)R2f
(
xij(t)

)
+ fT(xij(t)

)
Q2f

(
xij(t)

)]

−
⎡

⎣xT
ij(t − τm)P3xij(t − τm)+2xT

ij(t − τm)R3f
(
xij(t − τm)

)

+fT(xij(t − τm)
)
Q3f

(
xij(t − τm)

)
⎤

⎦ + yT
ij(t)(τ0S + τmZ)yij(t)

−
∫ t

t−τ0
yT
ij(s)Syij(s)ds −

∫ t−τ0

t−τm
yT
ij(s)Zyij(s)ds + 2

[
xT
ij(t)L

T
1 + yT

ij(t)L
T
2

]

× [−yij(t) + zij(t) − lK
[
xij(t − τ(t)) − xij(t)

]]

+ 2
[
zTij(t)L

T
3 +wT

ij(t)L
T
4

][−wij(t) − β
(
xij(t)

)
+Af

(
xij(t)

)
+ Bf

(
xij(t − τ(t))

)]

+ 2
[
βT
(
xij(t)

)
Gxij(t) − xT

ij(t)Γ
TGxij(t)

]
+
[
wT

ij(t)Ψ
TEΨwij(t) − zTij(t)Ezij(t)

]

+ 2Nlij
[[
βT
(
xij(t)

)
QΛ−1 + xT

ij(t)L
T
1 + yT

ij(t)L
T
2

]
Fxij(t)

+
[
βT
(
xij(t)

)
QΛ−1 + xT

ij(t)L
T
1 + yT

ij(t)L
T
2

]
(K + J)xij(t − τ(t))

]
⎫
⎬

⎭
.

(3.24)

For any n × n diagonal matrices U > 0, V > 0, W > 0, H > 0, Ti > 0(i = 1, 2), and Σi, Πi,
Υi(i = 1, 2) in (A3)-(A4), it can be deduced that

0 ≤
∑

1≤i<j≤N

⎧
⎨

⎩
−
[
xT
ij(t)UΣ1xij(t) − 2xT

ij(t)UΣ2f
(
xij(t)

)
+ fT(xij(t)

)
Uf

(
xij(t)

)]

−
⎡

⎣xT
ij(t − τ(t))VΣ1 × xij(t − τ(t)) − 2xT

ij(t − τ(t))VΣ2f
(
xij(t − τ(t))

)

+fT(xij(t − τ(t))
)
Vf

(
xij(t − τ(t))

)
⎤

⎦

−
[
xT
ij(t − τ0)WΣ1xij(t − τ0) − 2xT

ij(t − τ0)WΣ2f
(
xij(t − τ0)

)

+fT(xij(t − τ0)
)
Wf

(
xij(t − τ0)

)]

−
[
xT
ij(t − τm)HΣ1xij(t − τm) − 2xT

ij(t − τm)HΣ2f
(
xij(t − τm)

)

+fT(xij(t − τm)
)
Hf

(
xij(t − τm)

)]
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−
[
xT
ij(t)T1Π1xij(t) − 2xT

ij(t)T1Π2β
(
xij(t)

)
+ βT

(
xij(t)

)
T1β

(
xij(t)

)]

−
[
xT
ij(t)T2Υ1xij(t) − 2xT

ij(t)T2Υ2β̇
(
xij(t)

)
+ β̇T

(
xij(t)

)
T2β̇

(
xij(t)

)]
⎫
⎬

⎭
.

(3.25)

For any 13 n × n matricesNi(i = 1, 2, 3), it follows from Newton-Leibniz formula that

0 = 2
∑

1≤i<j≤N
ζTij(t)

{

N1

[

xij(t) − xij(t − τ0) −
∫ t−τ0

t−τ(t)
yij(s)

]

+N2

[

xij(t − τ0) − xij(t − τ(t)) −
∫ t−τ0

t−τ(t)
yij(s)

]

+N3

[

xij(t − τ(t)) − xij(t − τm) −
∫ t−τ(t)

t−τm
yij(s)

]}

,

(3.26)

where

ζTij(t) =
[
xT
ij(t) xT

ij(t − τ0) xT
ij(t − τm) fT(xij(t)

)
fT(xij(t − τ0)

)
fT(xij(t − τm)

)
yT
ij(t) zTij(t)

× wT
ij(t) xT

ij(t − τ(t)) fT(xij(t − τ(t))
)
βT
(
xij(t)

)
β̇T
(
xij(t)

)]
.

(3.27)

Now together with the terms (3.24)–(3.26), and uij = −1, we can deduce that

V̇ (x(t)) ≤
∑

1≤i<j≤N
ζTij(t)

⎧
⎨

⎩
Ωij + $ + $T + δ−1HH

T
+ τ0N1S

−1NT
1

+[τ(t) − τ0]N2Z
−1NT

2 + [τm − τ(t)]N3Z
−1NT

3

⎫
⎬

⎭
ζij(t)

:=
∑

1≤i<j≤N
ζTij(t)Δij(t)ζij(t),

(3.28)

where Ωij , $, and H are presented in (3.2). Through using Schur-complement and convex
combination, the LMIs in (3.2) can guarantee Δij(t) < 0 and thus, there must exist one scalar
χ > 0 such that Δij(t) ≤ −χI < 0. Therefore, one can get

V̇ (x(t)) ≤
∑

1≤i<j≤N
ζTij(t)Δij(t)ζij(t) ≤ −χ

⎡

⎣
∑

1≤i<j≤N

∥∥xij(t)
∥∥2 +

∑

1≤i<j≤N

∥∥xij(t − τ(t))
∥∥2

⎤

⎦, (3.29)

which indicates that the system (3.1) can reach the global asymptotical synchronization.



Mathematical Problems in Engineering 13

Based on (A1)–(A4), (3.9), and direct computing, there must exist three scalars Θi >
0 (i = 1, 2, 3) such that

V (x(t)) ≤
∑

1≤i<j≤N

[

Θ1
∥
∥xij(t)

∥
∥2 + Θ2

∫ t

t−τm

∥
∥xij(s)

∥
∥2
ds + Θ3

∫ t

t−τm

∥
∥xij(s − τ(s))

∥
∥2
ds

]

. (3.30)

Letting V (x(t)) = e2ktV (x(t)), one can deduce that V̇ (x(t)) = 2ke2ktV (x(t)) + e2ktV̇ (x(t)), and

V (x(t)) − V (x(0)) =
∫ t

o

V̇ (x(s))ds

≤
∑

1≤i<j≤N

∫ t

o

e2ks
{

− χ
[∥∥xij(s)

∥∥2 +
∥∥xij(s − τ(s))

∥∥2
]

+ 2k

[

Θ1
∥
∥xij(s)

∥
∥2 + Θ2

∫ s

s−τm

∥
∥xij(θ)

∥
∥2
dθ

+Θ3

∫ s

s−τm

∥∥xij(θ − τ(θ))
∥∥2
dθ

]}

ds.

(3.31)

By 1 ≤ i < j ≤ N and changing the integration sequences, we have

∫ t

0
e2ks

∫ s

s−τm

∥
∥xij(θ)

∥
∥2
dθds ≤ τme

2kτm

[∫0

−τm

∥
∥xij(θ)

∥
∥2
e2kθdθ +

∫ t

0

∥
∥xij(θ)

∥
∥2
e2kθdθ

]

,

∫ t

0
e2ks

∫ s

s−τm

∥∥xij(θ − τ(θ))
∥∥2
dθds ≤ τme

2kτm

×
[∫0

−2τm

∥∥xij(θ)
∥∥2
e2kθdθ +

∫ t

0

∥∥xij(θ − τ(θ))
∥∥2
e2kθdθ

]

.

(3.32)

Substituting the terms (3.32) into the relevant ones in (3.31), it is easy to have

V (x(t)) ≤ V (x(0)) +
∑

1≤i<j≤N

{[
2kΘ1 + 2kΘ2τme

2kτm − χ
] ∫ t

0

∥
∥xij(θ)

∥
∥2
e2kθdθ

+
[
2kΘ3τme

2kτm − χ
] ∫ t

0

∥∥xij(θ − τ(θ))
∥∥2
e2kθdθ + h(k)

} (3.33)

in which h(k) = 2kΘ2τme2kτm
∫0
−τm ‖xij(θ)‖2dθ + 2kΘ3τme2kτm

∫0
−2τm ‖xij(θ)‖2dθ. Choose an

appropriate scalar k0 > 0 such that 2k0Θ1 + 2k0Θ2τme
2k0τm − χ ≤ 0, 2k0Θ3τme

2k0τm − χ ≤ 0,
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one has V (x(t)) ≤ h(k0) + V (x(0)). By directly computing, there must exist a positive scalar
� > 0 such that

h(k0) + V (x(0)) ≤ �
∑

1≤i<j≤N
sup

−2τm≤s≤0

∥∥φi(s) − φj(s)
∥∥2
. (3.34)

Meanwhile, V (x(t)) ≥ λmin(P)
∑

1≤i<j≤N
e2k0t‖xij(t)‖2. Therefore, it can be deduced that

∥∥xij(t)
∥∥ ≤

√
λ−1
min(P)� ·

∑

1≤i<j≤N
sup

−2τm≤s≤0

∥∥φi(s) − φj(s)
∥∥e−k0t, ∀t ≥ 0. (3.35)

By Definition 2.2, the system (3.1) is globally exponentially synchronized, and the proof is
completed.

Remark 3.4. Theorem 3.3 presents a novel delay-dependent criterion guaranteeing arrays of
coupled Cohen-Grossberg neural networks (2.7) to be globally synchronized. In [16–22],
the authors considered global synchronization of an array of coupled neural networks of
simple forms and in the paper, we derive a more general delayed neural networks and
extended the case to the time variable one, which generalizes the earlier ones. Moreover,
the conditions are expressed in terms of LMIs, therefore, by using LMI in Matlab Toolbox,
it is straightforward and convenient to check the feasibility of the proposed results without
tuning any parameters.

If there does not exist one single delayed coupling in system (2.1), that is,K = 0, which
means that the restriction l11 = l22 = · · · = lNN = l in L = [lij]N×N is removed. Then together
with the proof of Theorem 3.3, we can derive the following theorem.

Theorem 3.5. Supposing that assumptions (A1)–(A4) hold, then the dynamical system (3.1) is
globally exponentially synchronized, if there exist n×n matrices P > 0, S > 0, Z > 0, Li(i = 1, 2, 3, 4),
n × n matrices Pl > 0, Ql > 0, Rl(l = 1, 2, 3) making

[
Pl Rl

∗ Ql

]
≥ 0, n × n diagonal matrices R > 0,

Q > 0,G > 0, E > 0,U > 0, V > 0,W > 0,H > 0, Ti > 0(i = 1, 2), 13 n×nmatricesNi(i = 1, 2, 3),
and one scalar δ > 0 such that, for 1 ≤ i < j ≤ N, the LMIs in (3.36) hold

⎡

⎢⎢
⎢⎢⎢
⎣

Ωij + $ + $T H
√
τ0N1

√
τmN2

∗ −δI 0 0

∗ ∗ −S 0

∗ ∗ ∗ −Z

⎤

⎥⎥
⎥⎥⎥
⎦

< 0,

⎡

⎢⎢
⎢⎢⎢
⎣

Ωij + $ + $T H
√
τ0N1

√
τmN3

∗ −δI 0 0

∗ ∗ −S 0

∗ ∗ ∗ −Z

⎤

⎥⎥
⎥⎥⎥
⎦
< 0,

(3.36)
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where $ = [N1 −N1 +N2 −N3 06n·13n −N2 +N3 03n·13n], H = [0n·11n Q(Λ−1 −Ψ−1) 0n·n]T ,

Ωij =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

Ξ11 0 0 Ξ14 0 0 Ξ17 LT
1 0 Ξ1,10 0 Ξ1,12 Ξ1,13

∗ Ξ22 0 0 Ξ25 0 0 0 0 0 0 0 0

∗ ∗ Ξ33 0 0 Ξ36 0 0 0 0 0 0 0

∗ ∗ ∗ Ξ44 0 0 0 ATL3 ATL4 0 0 ATQT 0

∗ ∗ ∗ ∗ Ξ55 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 −LT
2 0 Ξ7,10 0 −Ψ−1R 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 −LT
3 0 LT

3B −LT
3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0 LT
4B −LT

4 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ10,10 Ξ10,11 Ξ10,12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ11,11 BTQT 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ12,12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

(3.37)

with Ξ11 = P2 − lijN(LT
1F + FTL1) − ΓTG − GTΓ − UΣ1 − T1Π1 − T2Υ1, Ξ14 = R2 + UΣ2, Ξ17 =

P − LT
1 − lijNFTL2 + 2ΠTRΨ−1 − 2ΓTQΛ−1, Ξ1,10 = −lijNLT

1 J , Ξ1,12 = −lijNFTQΛ−1 +GT + T1Π2,
Ξ1,13 = T2Υ2 + QΛ−1 − RΨ−1, Ξ22 = −P2 + P1 + P3 − WΣ1, Ξ25 = −R2 + R1 + R3 + W Σ2, Ξ33 =
−P3 − HΣ1, Ξ36 = HΣ2 − R3, Ξ44 = −U + Q2, Ξ55 = −Q2 + Q1 + Q3 − W , Ξ66 = −Q3 − H ,
Ξ77 = −LT

2 − L2 + τ0S + τmZ, Ξ7,10 = −lijNLT
2 J , Ξ88 = −E + δIn, Ξ99 = −LT

4 − L4 + ΨTEΨ,
Ξ10,10 = −(1−μ)P1−VΣ1,Ξ10,11 = −(1−μ)R1+VΣ2,Ξ10,12 = −lijNJTQΛ−1,Ξ11,11 = −(1−μ)Q1−V ,
Ξ12,12 = −2QT − T1.

Proof. Letting K = 0 in system (2.1) and employing similar methods of proving Theorem 3.3,
we can easily derive the theorem and the detailed proof is omitted here.

Remark 3.6. Theorems 3.3-3.5 require the upper bound μ of time-delay τ(t) to be known. If
μ is unknown, by setting P1 = R1 = Q1 in (3.9), we can derive the delay-dependent and
delay-derivative-independent synchronization criteria for the coupled systems (2.7) based
on Theorems 3.3-3.5.

Remark 3.7. Together with the similar proof, we can deal with the global synchronization for
arrays of coupled CGNNs with hybrid couplings described in [18]. Moreover, we still can
investigate the global synchronization for arrays of coupled uncertain CGNNs with more
general forms

ẋi(t) = −α(xi(t))
[
β(xi(t)) −A(t)f(xi(t)) − B(t)f(xi(t − τ(t))) − I(t)

]

+
N∑

j=1,j /= i

l1ijF
[
xj(t) − xi(t)

]
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+
N∑

j=1,j /= i

l2ijK
[
xj(t − τ(t)) − xi(t)

]

+
N∑

j=1,j /= i

l3ijJ
[
xj(t − τ(t)) − xi(t − τ(t))

]
,

(3.38)

in whichA(t) = A+ΔA(t), B(t) = B+ΔB(t), and we set Lh = [lhij]n×n for h =, 1, 2, 3. HereΔA(t)
and ΔB(t) are unknown matrices representing variable parametric uncertainties satisfying

[ΔA(t)ΔB(t)] = F0Δ(t)[E1E2], Δ(t) = Λ(t)(I − J0Λ(t))−1, I − JT0 J0 > 0, (3.39)

in which F0, J0, Ei(i = 1, 2) are known appropriately as dimensional matrices and Λ(t) is an
unknown variable matrix function satisfying ΛT (t)Λ(t) ≤ I. By utilizing the similar methods
in Theorems 3.3-3.5, one can easily derive the more general results based on [30, Lemma 5].

Remark 3.8. It is worth pointing out that it is possible to extend our main results to
more complex Cohen-Grossberg neural networks, such as CGNNs with distributed delay,
stochastic perturbations, andMarkovian jumping parameters. The corresponding results will
appear in our future works.

4. Numerical Examples

In the section, two examples are provided to illustrate the effectiveness of the proposed
results.

Example 4.1. We consider the delayed Cohen-Grossberg neural network models described by

ẋ(t) = −α(x(t))[β(x(t)) −Af(x(t)) − Bf(x(t − τ(t))) − I(t)
]

(4.1)

with α(x) = diag{0.8 + 0.2| cos(2x1)|, 1.0 − 0.2| cos(2x2)|, 0.8 + 0.2| sin(2x3)|},

A =

⎡

⎢⎢
⎣

−10 10 2

1 0 1

0 −10 0

⎤

⎥⎥
⎦, B =

⎡

⎢⎢
⎣

3 2 −2
2 −3 2

−2 2 3

⎤

⎥⎥
⎦, β(x) =

⎡

⎢⎢
⎣

0.9x1 + 0.05 sin(2x1)

0.9x2 + 0.05 cos(2x2)

0.9x3 + 0.05 sin(2x3)

⎤

⎥⎥
⎦,

f(x) =

⎡

⎢⎢
⎣

0.3(|x1 + 1| − |x1 − 1|)
0.3(|x2 + 1| − |x2 − 1|)
0.3(|x3 + 1| − |x3 − 1|)

⎤

⎥⎥
⎦, I(t) = 0, τ(t) = 0.4 + 0.2 sin(20t) + 0.05cos2(40t).

(4.2)

One can get τ0 = 0.2, τm = 0.65,μ = 8, and the functions βi(·), fi(·) satisfy the assumptions (A3)

and (A4), respectively. Through setting the inner linking matrix L =
[ −2 1 1

1 −2 1
1 1 −2

]
, we consider
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Figure 1: The synchronized trajectory and total synchronous error of system (4.3).

a dynamical networks comprised of three linearly coupled identical neural network models
with time-delay couplings as follows:

ẋi(t) = −α(xi(t))
[
β(xi(t)) −Af(xi(t)) − Bf(xi(t − τ(t)))

]
+

3∑

j=1

lijFxj(t)

+
3∑

j=1

lij(K + J)xj(t − τ(t)) − lK[xi(t − τ(t)) − xi(t)], i = 1, 2, 3,

(4.3)

and choose the coupling matrices as

F =

⎡

⎢⎢
⎣

10 0 0

0 10 0

0 0 10

⎤

⎥⎥
⎦, K =

⎡

⎢⎢
⎣

0.05 0 0

0 0.05 0

0 0 0.05

⎤

⎥⎥
⎦, J =

⎡

⎢⎢
⎣

0.1 0 0

0 0.1 0

0 0 0.1

⎤

⎥⎥
⎦. (4.4)

Figure 1 shows that the system has a chaotic attractor. Together with Theorem 3.3 and LMI in
Matlab Toolbox, it is easy to check that there exists the feasible solution to the LMIs in (3.2),
which can guarantee the array of the system (4.3) to achieve the exponential synchronization.
The total error is defined by

error(t) =
3∑

i=1

√
[x1i(t) − x2i(t)]2 + [x2i(t) − x3i(t)]2 (4.5)

and the synchronization error can be seen in Figure 1. During the process of simulation, the
initial conditions of nodes are selected as x1 = [−0.5,−0.3, 0.3]T , x2 = [0.7,−0.5,−0.6]T , and
x3 = [1, 0.5, 0.3]T .
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Figure 2: The synchronized trajectory and total synchronous error of system (4.8).

Example 4.2. Consider one 2-dimensional delayed Cohen-Grossberg neural networks as
follows:

ẋ(t) = −α(x(t))[β(x(t)) −Af(x(t)) − Bf(x(t − τ(t))) − I(t)
]
, (4.6)

where α(x) = diag{0.9 + 0.1 sin(x1), 0.9 + 0.1 cos(x1)}, β(x) =
[
1.1x1 + 0.1 sin(x1)
1.1x2 + 0.1 sin(x2)

]
, A =

[ 2 −0.2
−0.3 3

]
,

B =
[ −1.5 −0.1
−0.2 −2.5

]
, I(t) =

[
0.1
0.1

]
, f(x) =

[
0.7 tanh(x1)+ 0.15(|x1+1|−|x1−1|)
0.7 tanh(x2)+ 0.15(|x2+1|−|x2−1|)

]
, and τ(t) = 0.5 + 0.3 cos(6t) +

0.05 sin2(40t). Choosing the following inner linking matrix and the coupling matrices,
respectively,

L =

⎡

⎢⎢
⎣

−3 1 2

1 −2 1

2 1 −3

⎤

⎥⎥
⎦, F =

[
10 0

0 10

]

, K = 0, J =

[
0.1 0

0 0.1

]

, (4.7)

we still consider a dynamical networks comprised of three coupled identical CGNNs with
delayed couplings as

ẋi(t) = −α(xi(t))
[
β(xi(t)) −Af(xi(t)) − Bf(xi(t − τ(t))) − I(t)

]

+
3∑

j=1

lijFxj(t) +
3∑

j=1

lijKxj(t − τ(t)).
(4.8)
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Then based on Theorem 3.5 and Matlab LMI Toolbox, one can get part feasible solution to
(3.36) as follows:

P =

[
2.0635 0.0234

0.0234 2.2078

]

, S =

[
0.0274 −0.0036
−0.0036 0.0032

]

, Z =

[
0.0757 0.0016

0.0016 0.0870

]

,

R =

[
0.0415 0

0 0.0415

]

, Q =

[
0.0966 0

0 0.0966

]

, G =

[
1.2804 0

0 1.2804

]

,

E =

[
0.0658 0

0 0.0658

]

, U =

[
9.4219 0

0 9.4219

]

, V =

[
0.6964 0

0 0.6964

]

,

W =

[
1.1489 0

0 1.1489

]

, H =

[
0.6611 0

0 0.6611

]

, T1 =

[
1.9626 0

0 1.9626

]

,

T2 =

[
1.6523 0

0 1.6523

]

,

[
P1 R1

RT
1 Q1

]

=

⎡

⎢⎢
⎢⎢⎢
⎣

0.0201 0.0013 −0.0316 0.0005

0.0013 0.0286 0.0003 −0.0281
−0.0316 0.0003 0.0621 −0.0047
0.0005 −0.0281 −0.0047 0.0289

⎤

⎥⎥
⎥⎥⎥
⎦
,

[
P2 R2

RT
2 Q2

]

=

⎡

⎢⎢⎢⎢
⎢
⎣

4.2730 0.8822 −0.4717 −0.0002
0.8822 10.2251 0.0277 −0.3621
−0.4717 0.0277 2.6380 0.0486

−0.0002 −0.3621 0.0486 0.7271

⎤

⎥⎥⎥⎥
⎥
⎦
,

[
P3 R3

RT
3 Q3

]

=

⎡

⎢⎢
⎢⎢⎢
⎣

2.0131 0.3881 −0.2455 0.0047

0.3881 4.6532 0.0180 −0.2932
−0.2455 0.0180 1.5619 0.0179

0.0047 −0.2932 0.0179 0.9050

⎤

⎥⎥
⎥⎥⎥
⎦

(4.9)

which means that the global exponential synchronization is achieved for system (4.8). The
total error of the array of the system (4.8) is defined by

error(t) =
2∑

i=1

√
[x1i(t) − x2i(t)]2 + [x2i(t) − x3i(t)]2, (4.10)

and the synchronization state and total synchronous error can be depicted in Figure 2 with
the initial conditions x1 = [−0.5,−0.3]T , x2 = [0.3, 0.7]T , and x3 = [−0.5,−0.6]T . Moreover, if
we choose α(x) = diag{0.8+0.2(ex1/1+ex1), 0.8+0.2(ex2/1+ex2)}, and τ(t) = 0.5+0.3 sin(20t)+
0.05 cos2(30 t), then the synchronization state and total synchronous error can be described in
Figure 3.
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Figure 3: The synchronized trajectory and total synchronous error of system (4.8).

5. Conclusions

This paper has investigated the global exponential synchronization for the coupled Cohen-
Grossberg neural networks with both delayed couplings and time-varying delay. Two novel
conditions have been derived by employing Lyapunov-Krasovskii functional and convex
combination. It is worth pointing out that, the addressed systems can include many neural
network models as its special cases and some good mathematical techniques have been
employed, which improve and extend those present results. The derived synchronization
criteria are presented in terms of LMIs, which can be checked easily by resorting to Matlab
LMI Toolbox. Finally, two numerical examples are utilized to illustrate the effectiveness of the
derived methods based on the simulation results.
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