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This paper presents an image interpolation model with nonlocal p-Laplacian regularization. The
nonlocal p-Laplacian regularization overcomes the drawback of the partial differential equation
(PDE) proposed by Belahmidi and Guichard (2004) that image density diffuses in the directions
pointed by local gradient. The grey values of images diffuse along image feature direction not
gradient direction under the control of the proposed model, that is, minimal smoothing in the
directions across the image features and maximal smoothing in the directions along the image
features. The total regularizer combines the advantages of nonlocal p-Laplacian regularization
and total variation (TV) regularization (preserving discontinuities and 1D image structures). The
derived model efficiently reconstructs the real image, leading to a natural interpolation, with
reduced blurring and staircase artifacts. We present experimental results that prove the potential
and efficacy of the method.

1. Introduction

Digital image interpolation is an important technology in digital photography, TV, multime-
dia, advertising, and printing industries, which is applied to obtain higher-resolution image
with better perceptual quality. The key task in image interpolation is to remove zigzagging,
blurry, and other artifacts producing visually pleasing resulting image. Many literatures are
devoted to address these problems [1–10]. These methods, usually known as edge directed,
level set based, or isophote oriented, vary considerably.

The methods based on edge direction were proposed to obtain smooth edges of the
resulting images [1–3]. However, these methods suffer from degradations on edge-free re-
gions because they rely on local directions estimation, creating false edges in uniform re-
gions. Wang and Ward have developed an interesting technique based on the detection of
ridges (straight edges) in images [4], which allows them to interpolate directionally only
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pixels situated on straight edges and avoid the apparition of false edges. In [5], the zigzagging
artifacts are reduced by restricting curvature of the interpolated isophotes (equi-intensity
contours). Minimum curvature is required on isophotes of the interpolated images. Cha and
Kim proposed a method based on the TV energy in order to remove the so-called check-
erboard effect and to form reliable edges [6]. Morse and Schwartzwald [7] presented a
scheme that uses existing interpolation techniques as an initial approximation and then iter-
atively reconstructs the isophotes using constrained smoothing. However, they are complex
compared to traditional methods and thus computationally expensive. Malgouyres and
Guichard [8] proposed to choose as solution of the interpolation the image that minimizes the
TV. This method leads to resulting images without blurring effects, as it allows discontinuities
and preserves 1D fine structures. Aly and Dubois [9] proposed a model-based TV regu-
larization image up sampling methods. Image acquisition process is modeled after a lowpass
filtering followed by sampling. However, TV minimization is based on the assumption that
the desirable image is almost piecewise constant, which yields a result with over smoothed
homogeneous regions. Belahmidi and Guichard [10] have improved the TV-based interpo-
lation by developing a nonlinear anisotropic PDE, hereafter referred to as BG interpolation
method. In order to enhance edge preservation, this PDE performs a diffusion with strength
and orientation adapted to image structures. This method balances linear zooming on homo-
geneous regions and anisotropic diffusion near edges, trying to combine the advantages of
these two processes. The anisotropic diffusion scheme, including edge-directed or isophote-
oriented method, uses the gradient to extract the image feature (edge) direction, that is, the
gradient direction is considered to be the direction across the image feature. Nevertheless,
the information contained in the gradient is local, not good to determine the edge directions.
Nonlocal information should be considered in determining edge directions.

Recently, a nonlocal evolution equation and variations of it have been widely used to
model diffusion processes in many areas [11, 12]. Let us briefly introduce some references of
nonlocal problem considered along this work. A nonlocal evolution equation corresponding
to the Laplacian equation is presented as follows

ut(x, t) = J ∗ u − u(x, t) =
∫
RN

J
(
x − y

)(
u
(
y, t
) − u(x, t)

)
dy. (1.1)

It is called a nonlocal diffusion equation since the diffusion of the density at a point x and
time t does not only depend on u(x; t), but on all the values of u in a neighborhood of x
through the convolution term J ∗ u. This equation shares many properties with the classical
heat equation ut = Δu. More precisely, as stated in [13], if u(t, x) is thought of as the density
at the point x at time t, and J(x, y) is thought of as the probability distribution of jumping
from location y to location x, then the convolution (J ∗ u)(x, t) =

∫
RN J(y − x)u(y, t)dy is

the rate at which individuals are arriving to position x from all other places, and −u(x, t) =
− ∫RN J(y − x)u(y, t)dy is the rate at which they are leaving location x to travel to all other
sites. This nonlocal evolution can be thought of as nonlocal isotropic diffusion.

In this paper, we propose a new method for image interpolation based on nonlocal p-
Laplacian evolution. The nonlocal p-Laplacian and TV act as a regularizer to restrict edges
of resulting image. The evolution is similar to an anisotropic energy dissipation process.
The diffusion performs accurately along the direction of edges curves and its orthogonal
direction. Themagnitude of |u(y, t) − u(x, t)|p−2 determines diffusion directions. It suppresses
diffusion across the image feature direction and enhances diffusion along the image feature
direction.
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The rest of the paper is organized as follows. In Section 2, we review the method based
on image up sampling with TV regularization in [9] and BG image interpolation [10]. The
proposed nonlocal p-Laplacian evolution for image interpolation is presented in Section 3. In
Section 4, we demonstrate the experimental results to verify the effectiveness of our method,
and the last section is for conclusion.

2. Background

We can think that a digital lower-resolution image u0 (input image) defined on some lattice is
obtained by transforming a high-resolution image u (output image) defined on some better
precision lattice, that is,

u0 = Hu, (2.1)

where H is a sparse matrix that combines both filtering and down sampling process. The
goal of image interpolation is to solve the inverse problem (2.1), an ill-posed inverse problem.
This ill-posed inverse problem is generally approached in a regularization-based framework,
which would be formulated as an energy functional [9],

E(u) = Jd(u, u0) + λJr(u), (2.2)

where λ is a regularization parameter that controls the tradeoff between Jd and Jr . The data
fidelity function Jd generally is formulated in the classical least-squares sense as Jd(u, u0) =
(1/2)|Hu − u0|2. The TV regularizer Jr is taken as Jr(u) =

∫
Ω |∇u(x)|dx. The formula (2.2) is

rewritten as follows

E(u) = λ

∫
Ω
|∇u|dx +

1
2
|Hu − u0|2. (2.3)

Using Euler’s equation, the minimizer is the steady-state solution of the nonlinear PDE given
by

ut = λ|∇u|div
( ∇u

|∇u|
)
+HT (Hu − u0). (2.4)

On the other hand, Belahmidi and Guichard solve the ill-posed inverse problem based
on the classical heat diffusion model [10]. Let η denote the direction of local gradient, and ξ
the direction perpendicular to the gradient, namely,

η =
1

|∇u|
(
ux, uy

)
, ξ =

1
|∇u|

(−uy, ux

)
. (2.5)
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The second-order directional derivatives of the image u along the directions of η and
ξ are easily computed as follows:

∂2u

∂ξ2
= ξ

(
uxx uxy

uxy uyy

)
ξT =

uxxu
2
y − 2uxyuxuy + uyyu

2
x

|∇u|2
,

∂2u

∂η2
= η

(
uxx uxy

uxy uyy

)
ηT =

uxxu
2
x + 2uxyuxuy + uyyu

2
y

|∇u|2
.

(2.6)

The interpolation scheme based on heat diffusion model is formulated as follows:

ut = |∇u|∂
2u

∂ξ2
+ g(|∇u|)∂

2u

∂η2
−HT (Hu − u0). (2.7)

In this equation, the function g(s) is typically defined as

g(s) =
1

1 + (s/K)2
, (2.8)

with K > 0 is a constant to be tuned for a particular application. The role of the diffusion
coefficient g(|∇u|) is to control the smoothing adaptively.

When g ≡ 0, (2.7) reduces to (2.4) with λ = 1. All these models can be
viewed as interpolation schemes based on nonlinear diffusion model. The two regularizers
|∇u|div(∇u/|∇u|) and |∇u|(∂2u/∂ξ2)+g(|∇u|)(∂2u/∂η2), respectively, in (2.4) and (2.7) result
in different interpolation effects. In fact, |∇u|div(∇u/|∇u|) = |∇u|(∂2u/∂ξ2) is the second-
order directional derivative in the direction that is orthogonal to the gradient |∇u|, and
∂2u/∂η2 is the second-order directional derivative in the direction of the gradient |∇u|.

From the viewpoint of geometry, the evolution processes in the artificial time t given
by these models are seen as energy dissipation processes in two orthogonal directions η and
ξ [9]. The diffusion process of u(x, t) along ξ will preserve the location and the intensity
transitions of the contours, while smoothing along them maintaining their crispness. This
diffusion term is used to maintain edges with smooth isophotes in [9, 10]. The diffusion of the
grey values along ηwalks across both sides of the local image contour. This process blurs crisp
contours as in the case of linear interpolators. Two divided means are used to deal with it.
The diffusion process along η is cast aside in [9], while controlled by edge-stopping function
g(|∇u|) to balance the two diffusion terms in [10].

TV regularization in (2.3) does an excellent job at preserving edges while reconstruct-
ing images [14]. This phenomenon can also be explained physically, since the resulting
diffusion is strictly orthogonal to the gradient of the image. But TV-based interpolation favors
solutions that are piecewise constant. This sometimes causes a staircasing effect in homo-
geneous regions, which are long observed in the literature in denoising, for example, [15, 16].
Not only having blocky solutions, but they can also develop false edges in resulting image.

The function g in (2.7) is to be chosen with values between 0 and 1. The energy dis-
sipation process (2.7) is adaptively controlled in the direction η and ξ, that is, minimal
smoothing in the directions η (across the image features) preserving sharp edges, and
maximal smoothing in the directions ξ (along the image features) obtaining smooth contours.
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The anisotropic diffusion scheme that uses the gradient to extract the image feature direction
can mistakenly give maximal smoothing to the across feature direction and severely damage
the image features, especially the image lines and textures [17]. And blurry and/or oscillatory
edges are introduced in interpolated image. The drawback of this model is that the gradient
used to extract the image feature direction is too local. The information contained in the gra-
dient is limited to a point and its immediate neighbors, while the edge curve that determines
the edge directions is not a local event. The interpolation direction extraction should base on
a larger neighborhood.

3. Nonlocal p-Laplacian Image Interpolation

In this section, we adopt nonlocal p-Laplacian evolution to overcome the local limit. Our pro-
posed energy functional for regularized image interpolation is given by

E(u) = α

∫
Ω
|∇u|dx +

β

2p

∫∫
Ω
J
(
x − y

)∣∣u(y) − u(x)
∣∣pdydx +

1
2
|Hu − u0|2. (3.1)

The first part (the sum of the first term and the second) of right-hand side is regularizer, and
the other is data fidelity function. The gradient flow associated to the functional E(u) is

ut(x, t) = αdiv
(
|∇u|−1∇u

)
+ βP

J
p (u) −HT (Hu − u0),

u(x, 0) = HTu0,

(3.2)

where

P
J
p (u) =

∫
Ω
J
(
x, y
)∣∣u(y, t) − u(x, t)

∣∣p−2(u(y, t) − u(x, t)
)
dy. (3.3)

The kernel J : Ω → R is assumed to be nonnegative, bounded continuous radial function,
with sup(J) ⊂ B(0, d) and

∫
Ω J(z)dz = 1.

The nonlocal energy dissipation is implemented mostly by P
J
p (u) in our model. It is

necessary to investigate the relation between the heat diffusion equation related to (2.7) and
the p-Laplacian equation. The p-Laplacian evolution equation ut = div(|∇u|p−2∇u) is well
studied in image processing, which can be represented as [18]

ut = |∇u|p−2 ∂
2u

∂ξ2
+
(
p − 1

)|∇u|p−2 ∂
2u

∂η2
. (3.4)

When p = 1, it is the TV flow keeping the edges but suffering from the staircase effect. When
p = 2, ut = Δu, this is isotropic diffusion because of the same diffusion coefficients. This model
can smooth image, while bluring sharp edges. When 1 < p < 2, the grey values of u(x, t) in
(3.4) diffuse along the directions η and ξ, respectively, as in the following equation:

ut = |∇u|∂
2u

∂ξ2
+ g(|∇u|)∂

2u

∂η2
, (3.5)
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which has different control factor compared with (3.4). That is to say, (3.4) and (3.5) all pre-
serve advantage of adaptive smoothing.

A nonlocal improvement to p-Laplacian equation was studied in [19],

ut(x, t) =
∫
Ω
J
(
x, y
)∣∣u(y, t) − u(x, t)

∣∣p−2(u(y, t) − u(x, t)
)
dy. (3.6)

Moreover, nonlocal problems of type (3.6) have been used recently in the study of deblurring
and denoising of images [20]. With Neumann boundary conditions, the solutions to problem
(3.6) converge to the solution of the classical p-Laplacian if p > 1 [19]. The nonlocal p-La-
placian evolution (3.6) improves the limit of the diffusion direction extraction depending on
gradient (local information). The diffusion of the density at a point x and time t depends on
all the values of u in a larger neighborhood of x. More precisely, if u(t, x) is thought of as
the density at the point x at time t, and J(x, y) is thought of as the probability distribution of
jumping from location y to location x, then P

J
p (u) is the rate at which individuals are arriving

to position x from all other places. In image interpolation, PJ
p (u) is also the rate at which in-

dividuals are devoting to interpolated pixel x from all other pixels. The evolution process
in the artificial time t given by (3.6) is seen as an anisotropic energy dissipation process.
The direction of anisotropic diffusion is indicated by the magnitude of |u(y, t) − u(x, t)|p−2 in
a larger neighborhood. It approximates to the direction of edge curve more accurate than
the direction indicated by gradient. When 1 < p < 2, the energy dissipation process is
adaptively controlled by |u(y, t) − u(x, t)|p−2 along the direction of edge curves and the or-
thogonal direction to edge curves. The diffusion process along the direction of edge curves is
suppressed for small |u(y, t) − u(x, t)|p−2, and the diffusion along the orthogonal direction is
enhanced for larger |u(y, t) − u(x, t)|p−2. This results in minimal smoothing in the directions
across the image features preserving sharp edges and maximal smoothing in the directions
along the image features reducing zigzagging artifacts and oscillatory.

4. Numerical Algorithm and Experimental Results

In this section, we develop a fully discrete numerical method to approximate problem (3.2).
We recall first the notations in the finite differences scheme used in our paper. Let h and Δt
be the space and time steps, respectively, and let (x1i;x2j) = (ih; jh) be the grid points. Let
un(i; j) be an approximation of the function u(nΔt;x1i;x2j), with n ≥ 0. Equation (3.2) can be
discretized as follows:

un+1(i, j) − un
(
i, j
)

Δt
=
(
αdiv

( ∇u

|∇u|
)
−HT (Hu − u0)

)
ij

+ β
∑

(k,l)∈Ω

[
J
(
(k, l) − (i, j))∣∣un(k, l) − un(i, j)∣∣p−2(un(k, l) − un(i, j))].

(4.1)
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(a) (b) (c) (d)

Figure 1: Barbara reduced and expanded by 2 × 2 (portion). (a)NEDI interpolation; (b) EGI interpolation;
(c) BG method; (d) proposed method.

In all numerical experiments, we choose the following kernel function:

J(x) :=

⎧⎪⎪⎨
⎪⎪⎩

C exp

(
1

|x|2 − d2

)
if x < d,

0 if x ≥ d.

(4.2)

The constant C > 0 is selected such that
∫
Ω J(x)dx = 1.

We tested the proposed interpolation method on a variety of images. Some of the
results are shown in Figures 1–3. Images are expanded by a factor of 2 × 2 in Figures 1 and 2
and by a factor of 10 × 10 in Figure 3. For comparison, we also show images interpolated
using the BG image interpolation proposed in [10], the edge-guided image interpolation
(EGI) in [21], and the edge-directed interpolation (NEDI) proposed in [3]. The choice of the
parameters is based on subjective quality of the results assessed informally by our personal
preference as human viewers in terms of edge sharpness, contour crispness, no ringing in
smooth regions, and no ringing near edges. We use the following parameters: α = 0.5,
β = 0.0001, and p = 1.8 for the proposed interpolation method, k = 0.0001 for the heat
diffusion model, and time step Δt = 0.15 for these experiments. There is a non visible im-
provement on subjective or objective quality of the results when the parameters are not badly
changed. The iteration is terminated, when |un+1 − un|2 < 10−6, normally within a few decade
iterations.

In the first experiments, Barbara image with a size of 512×512 was lowpass filtered and
subsampled by a factor of 2 × 2, then the subsampled image was interpolated to the original
image size. The interpolation was performed by four different methods, and a portion of
the results is shown in Figure 1. Figure 2 shows a portion of a result interpolating a given
flower image with a size of 320 × 240 by a factor of 2 × 2 without subsample. From the
two examples, the NEDI interpolation method tends to introduce the zigzagging artifacts
(Figures 1(a) and 2(a)). The BG results produce slight blurry edges (stripes in Figure 1(c))
and ringing in smooth regions (as shown in Figure 2(c)), because the direction decided by
gradient misses their real directions as stated in Section 2. Our proposed method and the
EGI method produce sharp edges and smooth contours, but the EGI method and the NEDI
interpolation are applied only by a factor of 2 × 2.
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(a) (b) (c) (d)

Figure 2: Flower expanded by 2×2 (portion). (a)NEDI interpolation; (b) EGI interpolation; (c) BGmethod;
(d) proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 3: A portion of Barbara, Mandrill, and house images expanded by 10 × 10. Top row: BG method;
bottom row: proposed method.
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Table 1: Comparison of different interpolation algorithms using PSNR values.

Image The proposed BD EGI NEDI
Lena 34.6483 33.5438 30.5031 35.1024
Cameraman 26.7846 26.2239 24.3987 27.5413
Barche 28.0214 27.4137 25.7585 29.6238
Peppers 27.9167 27.4998 25.9046 29.8716
Mandrill 23.7041 23.2248 22.4871 24.8313
Resolution test 21.6378 21.0777 18.7030 22.7104
Barbara 25.2955 24.9608 24.3268 26.9344

Table 2: Comparison of different interpolation algorithms using MSSIM values.

Image The proposed BD EGI NEDI
Lena 0.9908 0.9836 0.9640 0.9609
Cameraman 0.8728 0.8575 0.8202 0.8105
Barche 0.8447 0.8237 0.7790 0.7671
Peppers 0.9144 0.9036 0.8704 0.8616
Mandrill 0.9528 0.9169 0.8851 0.8718
Resolution test 0.9147 0.9042 0.8547 0.8388
Barbara 0.9438 0.9204 0.9011 0.8952

The second experiment directly interpolates a portion of images (Barbara, mandrill,
and house) by a factor of 10 × 10 shown in Figure 3. This experiment is performed by
the BG method and our proposed method since the other methods only resize image by a
factor of 2×2. It is clear from the figures that results obtained with the proposed approach are
better than the results by the BG method in [10]. The proposed method generates sharper
and crisper stripes in Figure 3(d) compared to the result in Figure 3(a). The BG method
produces blurry edges (the stripes in Figure 3(a), the beard in Figure 3(b)), zigzagging
artifacts, and oscillatory (the line in Figure 3(c)), and images tend to be less natural. In the BG
interpolation result, the boundaries of the text suffer from artifacts that make visualization
difficult. It can be seen that our method results in an interpolated image with the fewer
spurious patterns.

We use two measures, the classic PSNR and the mean structural similarity (MSSIM)
index [22], to characterize the difference between the reference image and the output of
a method. The MSSIM seems to approximate the perceived visual quality of an image
better than PSNR or various other measures [23]. MSSIM index takes values in [0, 1] and
increases as the quality increases. It is calculated by the code available at http://www
.cns.nyu.edu/lcv/ssim/, using the default parameters. We use several test images of size
512×512 including Lena, mandrill, and Barbara of size 256×256 including cameraman, barche,
peppers, and resolution test. To show the true power of the interpolation algorithms, we first
downsampled each image by a factor of 2 × 2 and then interpolated the result back to its
original size. The PSNR is shown on Table 1 and the MSSIM on Table 2. From the two tables,
the proposed method yields improved PSNR (except for the NEDI), and MSSIM results in all
the experiments. This improvement may be attributed to the fact that the nonlocal p-Lapla-
cian evolution works better than other methods.
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5. Conclusion

In this paper, a new image interpolation model based on TV and nonlocal p-Laplacian reg-
ularization is proposed. It combines the advantages of TV regularizer and nonlocal p-Lapla-
cian regularizer, that is, allowing discontinuities and preserving 1D image structures and
the diffusion of the grey values of images along image feature direction. It overcomes the
drawbacks of the anisotropic diffusion proposed by Belahmidi and Guichard. The direction
of anisotropic diffusion is indicated by the information of image feature in a larger neigh-
borhood. This results in minimal smoothing in the directions across the image features
preserving sharp edges and maximal smoothing in the directions along the image features
reducing zigzagging artifacts and oscillatory. We have shown improvement over nonlocal
p-Laplacian on a subjective scale, and in many cases with an improvement in PSNR and
MSSIM. We expect to prove convergence of the evolution equation in future work.
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