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The Hamilton-Poisson geometry has proved to be an interesting approach for a lot of dynamics
arising from different areas like biology (Gümral and Nutku, 1993), economics (Dănăiasă et al.,
2008), or engineering (Ginoux and Rossetto, 2006). The Lü system was first proposed by Lü and
Chen (2002) as a model of a nonlinear electrical circuit, and it was studied from various points of
view. We intend to study it from mechanical geometry point of view and to point out some of its
geometrical and dynamical properties.

1. Introduction

The original Lü system of differential equations on �3 has the following form

ẋ = a
(
y − x

)
,

ẏ = −xz + by,

ż = −cz + xy,

(1.1)

where a, b, c ∈ �.
The goal of our paper is to find the relations between a, b, and c parameters, for which

the system (1.1) admits a Hamilton-Poisson realization. The Hamilton-Poisson realization
offers us the tools to study the Lü system from mechanical geometry point of view.

To do this, one needs first to find the constants of the motion of our system. Due to the
numerous parameters of the system and trying to simplify the computation, we will focus
on finding only constants of motion being polynomials of degree at most three of the system
(1.1).
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Proposition 1.1. The following smooth real functionsH are three degree polynomial constants of the
motion defined by the system (1.1).

(i) If a ∈ �∗ , b = c = 0 the system becomes:

ẋ = a
(
y − x

)
,

ẏ = −xz,
ż = xy,

(1.2)

H
(
x, y, z

)
= α

(
y2 + z2

)
+ β, α, β ∈ �. (1.3)

(ii) If a = 0, b, c ∈ �∗ the system becomes:

ẋ = 0,

ẏ = −xz + by,

ż = xy − cz,

(1.4)

H
(
x, y, z

)
= f(x), f ∈ C1(�). (1.5)

(iii) If a ∈ �∗ , b = c ∈ � the system becomes:

ẋ = 0,

ẏ = −xz + by,

ż = xy − bz,

(1.6)

H
(
x, y, z

)
= α

(
xy2 − 2byz + xz2

)
+ f(x), α ∈ �, f ∈ C1(�). (1.7)

(iv) If a = b = c = 0 the system becomes:

ẋ = 0,

ẏ = −xz,
ż = xy,

(1.8)

H
(
x, y, z

)
= α

(
y2 + z2

)
+ β

(
xy2 + xz2

)
+ f(x), α, β ∈ �, f ∈ C1(�). (1.9)

Proof. It is easy to see that dH = 0 for each case mentioned above.



Mathematical Problems in Engineering 3

2. Hamilton-Poisson Realizations for the System (1.2)

Let us take for the system (1.2) the Hamiltonian function given by:

H
(
x, y, z

)
=

1
2

(
y2 + z2

)
. (2.1)

To find the Poisson structure in this case, we will use a method described by Haas and
Goedert (see [5] for details). Let us consider the skew-symmetric matrix given by:

Π :=

⎡

⎢
⎢
⎣

0 p1
(
x, y, z

)
p2
(
x, y, z

)

−p1
(
x, y, z

)
0 p3

(
x, y, z

)

−p2
(
x, y, z

) −p3
(
x, y, z

)
0

⎤

⎥
⎥
⎦. (2.2)

We have to find the real smooth functions p1, p2, p3 : �3 → � such that:

⎡

⎢⎢
⎣

ẋ

ẏ

ż

⎤

⎥⎥
⎦ = Π · ∇H, (2.3)

that is, the following relations hold:

yp1
(
x, y, z

)
+ zp2

(
x, y, z

)
= a

(
y − x

)
,

zp3
(
x, y, z

)
= −xz,

−yp3
(
x, y, z

)
= xy.

(2.4)

It is easy to see that p3(x, y, z) = −x. Let us denote now p1(x, y, z) = p; from the second
equation we obtain

p2
(
x, y, z

)
= a

y − x

z
− y

z
p. (2.5)

Our goal now is to insert p1, p2, p3 into Jacobi identity and to find the function p(x, y, z).
In the beginning, let us denote:

v1 := a
(
y − z

)
,

v2 := −xz,
v3 := xy.

(2.6)
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The function p is the solution of the following first order ODE (see [5] for details):

v1
∂p

∂x
+ v2

∂p

∂y
+ v3

∂p

∂z
= A · p + B, (2.7)

where

A =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
− (∂v1/∂z)(∂H/∂x) + (∂v2/∂z)

(
∂H/∂y

)
+ (∂v3/∂z)(∂H/∂z)

∂H/∂z
,

B =
v1(∂v2/∂z) − v2(∂v1/∂z)

(∂H/∂z)
.

(2.8)

Equation (2.7) becomes:

a
(
y − x

)∂p
∂x

− xz
∂p

∂y
+ xy

∂p

∂z
=
(
−a +

xy

z

)
p − a

(
y − x

)x
z
. (2.9)

If a = 0, then (2.9) has the solution p(x, y, z) = xz.
If a/= 0, then finding the solution of (2.9) remains an open problem.
Now, one can reach the following result.

Proposition 2.1. If a = 0, the system (1.2) has the Hamilton-Poisson realization:

(
�
3 ,Π :=

[
Πij

]
,H

)
, (2.10)

where

Π =

⎡

⎢
⎢
⎣

0 xz −xy
−xz 0 −x
xy x 0

⎤

⎥
⎥
⎦,

H
(
x, y, z

)
=
1
2

(
y2 + z2

)
.

(2.11)

Remark 2.2. There exists only one functionally independent Casimir of our Poisson configu-
ration, given by C : �3 → �,

C
(
x, y, z

)
= 2x − y2 − z2. (2.12)

Proof. Indeed, one can easily check that:

Π · ∇C = 0. (2.13)

As the rank of Π equals 2, it follows from the general theory of PDEs that C is the only
functionally independent Casimir function of the configuration (see, e.g., [6] for details).
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The phase curves of the dynamics (1.2) are the intersections of the surfaces:

H = const.

C = const,
(2.14)

see Figure 1.

Remark 2.3. If a = b = c = 0, then the system (1.2) becomes:

ẋ = 0,

ẏ = −xz,

ż = xy.

(2.15)

For the specific case a = b = c = 0, we extended the results presented in Proposition 2.1
to the following one.

Proposition 2.4 (Alternative Hamilton-Poisson structures). The system (2.15) may be modeled
as an Hamilton-Poisson system in an infinite number of different ways, that is, there exists infinitely
many different (in general nonisomorphic) Poisson structures on �3 such that the system (2.15) is
induced by an appropriate Hamiltonian.

Proof. The triplets:

(
R3{., .}αβ,Hγδ

)
, (2.16)

where

{
f, g

}
αβ

= ∇Cαβ ·
(∇f × ∇g

)
, ∀f, g ∈ C∞

(
�
3 ,�

)
,

Cαβ = αC + βH, Hγδ = γC + δH, α, β, γ, δ ∈ �, αδ − βγ = 1,

H =
1
2

(
2x − y2 − z2

)
, C =

1
2
x2,

(2.17)

define Hamilton-Poisson realizations of the dynamics (2.15).
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Indeed, we have:

{
x,Hγδ

}
αβ

=

∣
∣∣∣
∣∣∣∣

αx + β −βy −βz
1 0 0

γx + δ −δy −δz

∣
∣∣∣
∣∣∣∣

= 0 = ẋ;

{
y,Hγδ

}
αβ

=

∣∣∣
∣∣∣
∣∣

αx + β −βy −βz
0 1 0

γx + δ −δy −δz

∣∣∣
∣∣∣
∣∣

= −xz = ẏ;

{
z,Hγδ

}
αβ

=

∣
∣∣∣
∣∣∣∣

αx + β −βy −βz
0 0 1

γx + δ −δy −δz

∣
∣∣∣
∣∣∣∣

= xy = ż.

(2.18)

Let us pass now to study some geometrical and dynamical aspects of the system (2.15).

Proposition 2.5 (Lax formulation). The dynamics (2.15) allows a formulation in terms of Lax pairs.

Proof. Let us take:

L =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

0 αx − αβγ
√
β2 − γ2

z + δ
αγ

√
β2 − γ2

x + αβz +
γδ

√
β2 − γ2

−αx +
αβγ

√
β2 − γ2

z − δ 0 − αβ2
√
β2 − γ2

y

− αγ
√
β2 − γ2

x − αβz − γδ
√
β2 − γ2

αβ2
√
β2 − γ2

y 0

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

B =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

0 γz −

√
β2 − γ2δ

αβ
−
√
β2 − γ2z − γδ

αβ

−γz +

√
β2 − γ2δ

αβ
0 βy

√
β2 − γ2z +

γδ

αβ
−βy 0

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

,

(2.19)

where α, β, γ, δ ∈ �, i = √−1.
Then, using MATHEMATICA 7.0, we can put the system (2.15) in the equivalent form

L̇ = [L, B] (2.20)

as desired.
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Figure 1: The phase curves of the dynamics (1.2).

Let us continue now with a discussion concerning the nonlinear stability of equilib-
rium states of our system (2.15) (see [7] for details).

It is obvious to see that the equilibrium points of our dynamics are given by:

eM1 = (M, 0, 0), M ∈ �,

eM2 = (0,M,N), M,N ∈ �.
(2.21)

About their stability,we reached the following result.

Proposition 2.6 (A stability result). The equilibrium states eM1 are nonlinearly stable for any
M ∈ �.

Proof. We shall use energy-Casimir method, see [8] for details. Let

Hϕ = H + ϕ(C) =
1
2

(
y2 + z2

)
+ ϕ

(
2x − y2 − z2

)
(2.22)

be the energy-Casimir function, where ϕ : R → R is a smooth real valued function defined
on R.

Now, the first variation of Hϕ is given by:

δHϕ = yδy + zδz + ϕ̇
(
2x − y2 − z2

)(
2δx − 2yδy − 2zδz

)
. (2.23)

This equals zero at the equilibrium of interest if and only if

ϕ̇(2M) = 0. (2.24)
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The second variation ofHϕ is given by:

δ2Hϕ =
(
δy

)2 + (δz)2 + ϕ̈ · (2δx − 2yδy − 2zδz
)2 − 2ϕ̇

((
δy

)2 + (δz)2
)
. (2.25)

At the equilibrium of interest, the second variation becomes:

δ2Hϕ(M, 0, 0) =
(
δy

)2 + (δz)2 + 4ϕ̈ · (δx)2. (2.26)

Having chosen ϕ such that:

ϕ̇(2M) = 0,

ϕ̈(2M) > 0,
(2.27)

we can conclude that the second variation of Hϕ at the equilibrium of interest is positive
defined and thus eM is nonlinearly stable.

As a consequence, we can reach the periodical orbits of the equilibrium points eM1 .

Proposition 2.7 (Periodical orbits). The reduced dynamics to the coadjoint orbit

2x − y2 − z2 = 2M (2.28)

has near the equilibrium point eM1 at least one periodic solution whose period is close to

2π
|M| . (2.29)

Proof. Indeed, we have successively

(i) the restriction of our dynamics (1.2) to the coadjoint orbit

2x − y2 − z2 = 2M (2.30)

gives rise to a classical Hamiltonian system,

(ii) the matrix of the linear part of the reduced dynamics has purely imaginary roots,
more exactly

λ1 = 0, λ2,3 = ±Mi. (2.31)

(iii) span(∇C(eM1 )) = V0, where

V0 = ker
(
A
(
eM1

))
, (2.32)



Mathematical Problems in Engineering 9

(iv) the reduced Hamiltonian has a local minimum at the equilibrium state eM1 (see the
proof of Proposition 2.4).

Then our assertion follows via the Moser-Weinstein theoremwith zero eigenvalue, see
[9] for details.

Remark 2.8. The nonlinear stability of the equilibrium states eM,N
2 remains an open problem,

both energy methods (energy-Casimir method and Arnold method) being inconclusive.

3. Hamilton-Poisson Realizations of the System (1.4)

As we have proved in [10], the system (1.4) admits a Hamilton-Poisson realization only in
the special case b = c; more exactly, we have reached the following result.

Proposition 3.1. If a = 0 and b = c, the system (1.4) has the Hamilton-Poisson realization

(
�
3 ,Π :=

[
Πij

]
,H

)
, (3.1)

where

Π : =

⎡

⎢⎢⎢
⎢
⎣

0 xz − by bz − xy

−xz + by 0
1
2
(
y2 + z2

)

−bz + xy −1
2
(
y2 + z2

)
0

⎤

⎥⎥⎥
⎥
⎦

,

H
(
x, y, z

)
= x.

(3.2)

Using a method described in [6], we have found the Casimir of the configuration
given by.

C
(
x, y, z

)
=
1
2

(
y2 + z2

)
x − byz, b ∈ �∗ , (3.3)

(see [10]).
Now we can broaden this result to the following one.

Proposition 3.2 (Alternative Hamilton-Poisson structures). The system (1.4) may be realized as
a Hamilton-Poisson system in an infinite number of different ways, that is, there exists infinitely many
different (in general nonisomorphic) Poisson structures on �3 such that the system (1.4) is induced
by an appropriate Hamiltonian.

Proof. The triples:

(
R3{., .}αβ,Hγδ

)
, (3.4)
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where

{
f, g

}
αβ

= ∇Cαβ ·
(∇f × ∇g

)
, ∀f, g ∈ C∞

(
�
3 ,�

)
,

Cαβ = αC + βH, Hγδ = γC + δH, α, β, γ, δ ∈ �, αδ − βγ = 1,

H = x, C =
1
2
x
(
y2 + z2

)
− byz, b ∈ �,

(3.5)

define Hamilton-Poisson realizations of the dynamics (1.4).
Indeed, we have:

{
x,Hγδ

}
αβ

=

∣∣∣
∣∣∣
∣∣∣
∣

α +
β

2
(
y2 + z2

)
β
(
xy − bz

)
β
(
xz − by

)

1 0 0

γ +
δ

2
(
y2 + z2

)
δ
(
xy − bz

)
δ
(
xz − by

)

∣∣∣
∣∣∣
∣∣∣
∣

= 0 = ẋ;

{
y,Hγδ

}
αβ

=

∣∣
∣∣∣
∣∣∣∣
∣

α +
β

2
(
y2 + z2

)
β
(
xy − bz

)
β
(
xz − by

)

0 1 0

γ +
δ

2
(
y2 + z2

)
δ
(
xy − bz

)
δ
(
xz − by

)

∣∣
∣∣∣
∣∣∣∣
∣

= xz − by = ẏ;

{
z,Hγδ

}
αβ

=

∣∣
∣∣∣
∣∣∣
∣∣

α +
β

2
(
y2 + z2

)
β
(
xy − bz

)
β
(
xz − by

)

0 0 1

γ +
δ

2
(
y2 + z2

)
δ
(
xy − bz

)
δ
(
xz − by

)

∣∣
∣∣∣
∣∣∣
∣∣

= bz − xy = ż.

(3.6)

Let us pass to discuss some dynamical and geometrical properties of the system (1.4).

Proposition 3.3 (Lax formulation). The dynamics (1.4) allows a formulation in terms of Lax pairs.

Proof. Let us take

L =

⎡

⎢⎢
⎣

0 u v

−u 0 w

−v −w 0

⎤

⎥⎥
⎦, (3.7)
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where

u = α +
α
(
β2 + γ2 − δ2)i

√
β2 + γ2

2bδ
(
β2 + γ2

) x +
αβγδ

(
β2 + γ2 − δ2)i

√
β2 + γ2

2bδ
(
β2 + γ2

)2 y − αβγ
(
β2 + γ2 − δ2)

2bδ
(
β2 + γ2

) z,

v = −
αi
√
β2 + γ2

β
+
αγ2i

√
β2 + γ2

β
(
β2 + γ2

) +
αβ

(
β2 + γ2 − δ2)

2bδ
(
β2 + γ2

) x +
αγ

(
β2 + γ2 − δ2)

2b
(
β2 + γ2

) y

+
αγ

(
β2 + γ2 − δ2)i

√
β2 + γ2

2bδ
(
β2 + γ2

) z,

w =
αγ2

(
β2 + γ2 − δ2)i

√
β2 + γ2

2b
(
β2 + γ2

)2 y − αγ2
(
β2 + γ2 − δ2)

2bδ
(
β2 + γ2

) z,

B =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

0 ω ϕ

−ω 0 γ

⎛

⎜
⎝y − δ

i
√
β2 + γ2

z

⎞

⎟
⎠

−ϕ −γ

⎛

⎜
⎝y − δ

i
√
β2 + γ2

z

⎞

⎟
⎠ 0

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

(3.8)

where

ω =
−bi

√
β2 + γ2

(
β2 + γ2

)(
β2 + γ2 + δ2) + βγ

(
β2 + γ2 − δ2)

((
β2 + γ2

)
y + iδ

√
β2 + γ2z

)

γ
(
β2 + γ2

)(
β2 + γ2 − δ2

) ,

ϕ = −bβ
(
β2 + γ2 + δ2)

γ
(
β2 + γ2 − δ2

) − i
√
β2 + γ2y + δz, i =

√
−1

(3.9)

and α, β, γ, δ ∈ �.
Then, using MATHEMATICA 7.0, we can put the system (1.4) in the equivalent form

L̇ = [L, B] (3.10)

as desired.
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The equilibrium points of the dynamics (1.4) are given by

eM1 = (M, 0, 0), M ∈ �,

eM2 = (−b,M,−M), M, b ∈ �,

eM3 = (b,M,M), M, b ∈ �.

(3.11)

About their stability, we have proven in [10] the following result,

Proposition 3.4 (Stability problem). If M > b or M < −b, b > 0, then the equilibrium states eM1
are nonlinearly stable.

As a consequence, we can find the periodical orbits of the equilibrium points eM1 .

Proposition 3.5 (Periodical orbits). If M > b, b > 0, the reduced dynamics to the coadjoint orbit
x = M has near the equilibrium point at least one periodic solution whose period is close to

2π√
M2 − b2

. (3.12)

Proof. Indeed, we have successively

(i) the restriction of our dynamics (1.4) to the coadjoint orbit

x = M (3.13)

gives rise to a classical Hamiltonian system,

(ii) the matrix of the linear part of the reduced dynamics has purely imaginary roots,
more exactly

λ1 = 0, λ2,3 = ±i
√
M2 − b2. (3.14)

(iii) span(∇C(eM1 )) = V0, where

V0 = ker
(
A
(
eM1

))
, (3.15)

(iv) if M > b, b > 0, then the reduced Hamiltonian has a local minimum at the
equilibrium state eM1 (see the proof of Proposition 3.4 [10]).

Then our assertion follows via the Moser-Weinstein theoremwith zero eigenvalue, see
[9] for details.
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4. Conclusion

The paper presents Hamilton-Poisson realizations of a dynamical system arising from
electrical engineering; due to its chaotic behavior, finding the solution of the system could
be very difficult. A Hamilton-Poisson realization offers us the possibility to find this solution
as the intersection of two surfaces, the surfaces equation being given by the Hamiltonian and
the Casimir of our configuration. The first paragraph of the paper presents the only four cases
for which the Lü system admits as Hamiltonian a three degree polynomial function. Finding
another kind of function as a Hamiltonian of the Lü system remains an open problem. The
first case, a ∈ �, b, c = 0 is the subject of the second paragraph. For this specific case, we
have proved that a Hamilton-Poisson realization exists if and only if a = 0. Lax formulation,
stability problems, and the existence of the periodical orbits are discussed, too. The third
part of the paper analyses the case a = 0, b, c ∈ �. We have proved that Hamilton-Poisson
realization exists only if b = c. The last two cases, a = 0, b = c and a = b = c = 0, can
be found as the first studied cases. We can conclude that the Lü system admits Hamilton-
Poisson realization with a three degree polynomial function as the Hamiltonian only if a = 0,
b = c ∈ �, or a = b = c = 0.
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[4] J. Lü and G. Chen, “A new chaotic attractor coined,” International Journal of Bifurcation and Chaos in
Applied Sciences and Engineering, vol. 12, no. 3, pp. 659–661, 2002.

[5] F. Haas and J. Goedert, “On the generalized Hamiltonian structure of 3D dynamical systems,” Physics
Letters A, vol. 199, no. 3-4, pp. 173–179, 1995.

[6] B. Hernández-Bermejo and V. Fairén, “Simple evaluation of Casimir invariants in finite-dimensional
Poisson systems,” Physics Letters A, vol. 241, no. 3, pp. 148–154, 1998.

[7] M.W. Hirsch, S. Smale, and R. L. Devaney,Differential Equations, Dynamical Systems and an Introduction
to Chaos, Elsevier, New York, NY, USA, 2003.

[8] P. Birtea and M. Puta, “Equivalence of energy methods in stability theory,” Journal of Mathematical
Physics, vol. 48, no. 4, pp. 81–99, 2007.

[9] P. Birtea, M. Puta, and R. M. Tudoran, “Periodic orbits in the case of a zero eigenvalue,” Comptes
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