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We propose a general continuous-time risk model with a constant interest rate. In this model,
claims arrive according to an arbitrary counting process, while their sizes have dominantly varying
tails and fulfill an extended negative dependence structure. We obtain an asymptotic formula for
the finite-time ruin probability, which extends a corresponding result of Wang (2008).

1. The Dependent General Risk Model

In this paper, we consider the finite-time ruin probability with constant interest rate in a
dependent general risk model. In this model, the claim sizes {Xn, n ≥ 1} form a sequence
of identically distributed, not necessarily independent, and nonnegative random variables
(r.v.s) with common distribution F such that F(x) = 1 − F(x) = P(X1 > x) > 0 for all x > 0;
the claim arrival process {N(t), t ≥ 0} is a general counting process, namely, a nonnegative,
nondecreasing, right continuous, and integer-valued stochastic process with 0 < EN(t) =
λ(t) < ∞ for all large t > 0. The times of the successive claims are denoted by {τn, n ≥ 1}. The
total amount of premiums accumulated up to time t ≥ 0, denoted by C(t) with C(0) = 0 and
C(t) < ∞ almost surely for every t > 0, is another nonnegative and nondecreasing stochastic
process. Assume that {Xn, n ≥ 1}, {N(t), t ≥ 0} and {C(t), t ≥ 0} are mutually independent.
Let δ > 0 be the constant interest rate (i.e., after time t one dollar becomes eδt dollars), and
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let x ≥ 0 be the initial capital reserve of an insurance company. Then, the total discounted
reserve up to time t ≥ 0, denoted by D(t, x), can be written as

D(t, x) = x +
∫ t

0
e−δsC(ds) −

N(t)∑
n=1

Xne
−δτn . (1.1)

For a finite time T > 0, the finite-time ruin probability is defined by

Ψ(x, T) = P(D(t, x) < 0, for some 0 ≤ t ≤ T)

= P

(
sup
t∈[0,T]

(
N(t)∑
n=1

Xne
−δτn −

∫ t

0
e−δsC(ds)

)
> x

)
,

(1.2)

while the ultimate ruin probability is defined by

Ψ(x) = Ψ(x,∞) = P(D(t, x) < 0, for some t ≥ 0). (1.3)

If the claim sizes {Xn, n ≥ 1} are independent r.v.s, the model is called the independent
general risk model, which was introduced by Wang [1]. In particular, if C(t) = ct, t ≥ 0, with
c > 0 a deterministic constant and {N(t), t ≥ 0} is a Poisson process, then the model reduces
to the classical one.

2. Introduction and Main Result

Hereafter, all limit relationships hold for x tending to ∞ unless otherwise stated. For two
positive functions f(x) and g(x), we write f(x) ∼ g(x) if lim f(x)/g(x) = 1; write f(x) �
g(x) if lim sup f(x)/g(x) ≤ 1 and f(x) = o(g(x)) if lim f(x)/g(x) = 0. The indicator function
of an eventA is denoted by 1A.

In risk theory, heavy-tailed distributions are often used to model large claim amounts.
They play a key role in insurance and finance. We will restrict the claim-size distribution F
to be heavy tailed. A distribution V is said to be dominatedly varying tailed, denoted by
V ∈ D, if lim supV (xy)/V (x) < ∞ for any y > 0. A distribution V is said to be long tailed,
denoted by V ∈ L, if limV (x + y)/V (x) = 1 for any y > 0. A distribution V is said to be
subexponential, denoted by V ∈ S, if V n∗(x) ∼ nV (x) for any n ≥ 2, where V n∗ denotes the
n-fold convolution of itself. A distribution V is said to be regularly varying tailed, denoted
by R−α, α > 0, if limV (xy)/V (x) = y−α for any y ≥ 1. A proper inclusion relationship holds
that

R−α ⊂ L ∩ D ⊂ S ⊂ L, (2.1)
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see, for example, Cline [2] or Embrechts and Omey [3]. For a distribution V , denote the upper
Matuszewska index of the distribution V by

J+V = − lim
y→∞

logV ∗
(
y
)

log y
with V ∗

(
y
)
= lim inf

x→∞
V
(
xy
)

V (x)
, y > 1. (2.2)

In the terminology of Bingham et al. [4], the quantity J+V is actually the upper Matuszewska
index of the function 1/V (x), x ≥ 0, as also pointed out in Tang and Tsitsiashvili [5].
Additionally, denote LV = limy↘1V ∗(y) (clearly, 0 ≤ LV ≤ 1 ). The presented definitions
yield that the following assertions are equivalent:

(i) V ∈ D, (ii) V ∗
(
y
)
> 0 for some y > 1, (iii) LV > 0, (iv) J+V < ∞.

(2.3)

The asymptotic behavior of the ruin probability in the classical risk model has
been extensively investigated in the literature. Klüppelberg and Stadtmüller [6] considered
the ultimate ruin probability for the case of regularly-varying-tailed claim sizes. Using
the reflected random walk theory, Asmussen [7] extended the study to a larger class of
heavy-tailed distributions; see Corollary 4.1(ii) of his paper. Complementary discussions
on the ultimate ruin probability can be found in Kalashnikov and Konstantinides [8],
Konstantinides et al. [9], Tang [10], among others.

In this paper, we are interested in the finite-time ruin probability. In this aspect, Tang
[11] established an asymptotic result in the classical risk model: under the condition F ∈ S,
he obtained that for every T > 0 for which λ(T) > 0,

Ψ(x, T) ∼
∫T
0−
F
(
xeδt
)
λ(dt). (2.4)

Recently, Wang [1] derived some important and interesting results in two independent risk
models. One is the delayed renewal risk model, in which (2.4) holds if F ∈ S; another is the
general risk model, in which (2.4) also holds if F ∈ L ∩ D. We are interested in the latter, for
example, the general risk model, and restate Theorem 2.2 of Wang [1] here.

Theorem 2.1. In the independent general risk model introduced in Section 1, assume that the claim
sizes {Xn, n ≥ 1} are independent and identically distributed nonnegative r.v.s with common
distribution F ∈ L ∩ D. Assume that for any T > 0 with λ(T) − λ(0) > 0, there exists some constant
η = η(T) > 0 such that

E
(
1 + η

)N(T)
< ∞. (2.5)

Then, (2.4) holds.

In the present paper, we aim to deal with the extended negatively dependent general
risk model to get a similar result under F ∈ D. Simultaneously, the condition (2.5) can be
weakened to (2.8) below.
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We call r.v.s {ξn, n ≥ 1} are extended negatively dependent (END) if there exists some
positive constant M such that both

P

(
n⋂

k=1

{
ξk > yk

}) ≤ M
n∏

k=1

P
(
ξk > yk

)
, (2.6)

P

(
n⋂

k=1

{
ξk ≤ yk

}) ≤ M
n∏

k=1

P
(
ξk ≤ yk

)
(2.7)

hold for each n ≥ 1 and all y1, . . . , yn. This dependence structure was introduced by Liu
[12]. Recall that r.v.s {ξn, n ≥ 1} are called upper negatively dependent (UND) if (2.6) holds
with M = 1, they are called lower negatively dependent (LND) if (2.7) holds with M = 1,
and they are called negatively dependent (ND) if both (2.6) and (2.7) hold withM = 1. These
negative dependence structures were introduced by Ebrahimi andGhosh [13] and Block et al.
[14]. Clearly, ND r.v.s must be END r.v.s., and Example 4.1 of Liu [12] shows that the END
structure also includes some other dependence structures.

Motivated by the work of Wang [1], under the END structure, we formulate our main
result as follows.

Theorem 2.2. In the dependent general risk model introduced in Section 1, assume that the claim
sizes {Xn, n ≥ 1} are END nonnegative r.v.s with common distribution F ∈ D and finite mean μ.
Assume that for any T > 0 with λ(T) − λ(0) > 0, there exists some constant p > J+F such that

E(N(T))p < ∞. (2.8)

Then, it holds that

LF

∫T

0−
F
(
xeδt
)
λ(dt) � Ψ(x, T) � L−1

F

∫T

0−
F
(
xeδt
)
λ(dt). (2.9)

Furthermore, if F ∈ L ∩ D, then (2.4) holds.

The rest of the present paper consists of two sections. We give some lemmas and the
proof of Theorem 2.2 in Section 3. In Section 4, we perform some numerical calculations to
verify the approximate relationship in our main result.

3. Proof of Main Result and Some Lemmas

In the sequel, M and a always represent some finite and positive constants whose values
may vary in different places. In this section, we start by giving some lemmas to show
some properties of the class D and the END structure. The first lemma is a combination of
Proposition 2.2.1 of Bingham et al. [4] and Lemma 3.5 of Tang and Tsitsiashvili [15].

Lemma 3.1. If a distribution V ∈ D, then

(i) for any γ > J+V , there exist positive constants a and b such that V (y)/V (x) ≤ a(y/x )−γ

holds for all x ≥ y ≥ b and

(ii) it holds for every γ > J+V that x−γ = o(V (x)).
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By direct verification, END r.v.s have the following properties similar to those of ND
r.v.s; see Lemma 3.1 of Liu [12]. For some refined properties of END r.v.s, one can refer to
Chen et al. [16]. The following lemma can also be found in Lemma 2.2 of Chen et al. [16].

Lemma 3.2. (i) If r.v.s {ξn, n ≥ 1} are nonnegative and END, then for any n ≥ 1, there exists some
positive constantM such that E(

∏n
k=1ξk) ≤ M

∏n
k=1Eξk.

(ii) If r.v.s {ξn, n ≥ 1} are END and {fn(·), n ≥ 1} are either all monotone increasing or all
monotone decreasing, then {fn(ξn), n ≥ 1} are still END.

The following two lemmas play important roles in the proof of our main result.

Lemma 3.3. Let {ξn, n ≥ 1} be identically distributed and END r.v.s with common distribution V
and μ+

V = Eξ11{ξ1≥0} < ∞. Then, for any θ > 0, x > 0 and n ≥ 1, there exists some positive constant
M such that

P

(
n∑

k=1

ξk > x

)
≤ nV (θx) +M

(
eμ+

V n

x

)θ−1

. (3.1)

Proof. Following the proof of Lemma 2.3 of Tang [17], we employ a standard truncation
argument to prove this lemma. For simplicity, we write Sξ

n =
∑n

k=1 ξk, n ≥ 1. If μ+
V = 0, then ξn

is almost surely nonpositive for each n ≥ 1, implying P(Sξ
n > x) = 0 for any positive x, and

thus (3.1) holds.
Let, in the following, μ+

V > 0. For any fixed θ > 0 and positive integer n, define

ξ̃n = min{ξn, θx},

ξ̃+n = max
{
ξ̃n, 0
}
= ξn1{0≤ξn≤θx} + θx1{ξn>θx}.

(3.2)

According to Lemma 3.2(ii), {ξ̃n, n ≥ 1} and {ξ̃+n, n ≥ 1} are still END r.v.s, respectively. Denote
S̃
ξ
n =
∑n

k=1 ξ̃k, n ≥ 1. Clearly,

P
(
S
ξ
n > x

)
= P
(
S
ξ
n > x,max

1≤k≤n
ξk > θx

)
+ P
(
S
ξ
n > x,max

1≤k≤n
ξk ≤ θx

)

≤ nV (θx) + P
(
S̃
ξ
n > x

)
.

(3.3)

It remains to estimate the second summand in (3.3). For a positive h, by Lemma 3.2(ii),
{ehξ̃+n , n ≥ 1} are END nonnegative r.v.s. Hence, using identity

Eehξ̃
+
1 =
∫θx

0

(
ehu − 1

)
V (du) +

(
ehθx − 1

)
V (θx) + 1, (3.4)
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by Markov inequality and Lemma 3.2(i) we have

P
(
S̃
ξ
n > x

)
≤ e−hxEehS̃

ξ
n

≤ e−hxEeh
∑n

k=1 ξ̃
+
k

≤ e−hxM(Eehξ̃
+
1 )

n

= Me−hx
(∫θx

0

(
ehu − 1

)
V (du) +

(
ehθx − 1

)
V (θx) + 1

)n

.

(3.5)

Since 1 + u ≤ eu for all u ∈ � and (ehu − 1)/u is strictly increasing in u > 0, from (3.5), we
obtain

P
(
S̃
ξ
n > x

)
≤ M exp

{
n

∫θx

0

ehu − 1
u

uV (du) + n
(
ehθx − 1

)
V (θx) − hx

}

≤ M exp

{
n

ehθx − 1
θx

(∫θx

0
uV (du) + θxV (θx)

)
− hx

}

≤ M exp

{
n

ehθx − 1
θx

μ+
V − hx

}
.

(3.6)

Choose h = (θx)−1 log(x(μ+
V n)

−1 + 1), which is positive. For such h, by (3.6), we have

P
(
S̃
ξ
n > x

)
≤ M exp

{
1
θ
− 1
θ
log

(
x

μ+
V n

+ 1

)}

≤ M exp

{
1
θ
log

eμ+
V n

x

}
.

(3.7)

The last estimate and (3.3) imply the desired estimate (3.1). The lemma is proved.

Lemma 3.4. In the dependent general risk model introduced in Section 1, assume that the claim sizes
{Xn, n ≥ 1} are END nonnegative r.v.s with common distribution F ∈ D. Let Z be an arbitrary
nonnegative r.v. and assume that {Xn, n ≥ 1}, {N(t), t ≥ 0} and Z are mutually independent. Then,
for any T > 0 and any positive integer n0,

LF

n0∑
k=1

k∑
j=1

P
(
Xje

−δτj > x,N(T) = k
)
�

n0∑
k=1

P

⎛
⎝ k∑

j=1

Xje
−δτj > x + Z,N(T) = k

⎞
⎠

� L−1
F

n0∑
k=1

k∑
j=1

P
(
Xje

−δτj > x,N(T) = k
)
.

(3.8)
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Furthermore, if F ∈ L ∩ D, then

n0∑
k=1

P

⎛
⎝ k∑

j=1

Xje
−δτj > x +Z,N(T) = k

⎞
⎠ ∼

n0∑
k=1

k∑
j=1

P
(
Xje

−δτj > x,N(T) = k
)
. (3.9)

We remark that if F is consistently varying tailed (see the definition in Chen and Yuen
[18]), then by conditioning (3.9) easily follows fromTheorem 3.2 of Chen andYuen [18]. Note
that this case is in a broader scope, since there is no need to assume independence between
(τ1, . . . , τn0) and Z.

Proof. We follow the line of the proof of Lemma 3.6 of Wang [1] with some modifications in
relation to the properties of the class D and the END structure. Clearly, for each k = 1, . . . , n0,

P

⎛
⎝ k∑

j=1

Xje
−δτj > x + Z,N(T) = k

⎞
⎠

=
∫
{0≤t1≤···≤tk≤T,tk+1>T}

∫∞

0−
P

⎛
⎝ k∑

j=1

Xje
−δtj > x + z

⎞
⎠ × P(Z ∈ dz, τ1 ∈ dt1, . . . , τk+1 ∈ dtk+1).

(3.10)

We first show the upper bound. For any fixed l > 0,

P

⎛
⎝ k∑

j=1

Xje
−δtj > x + z

⎞
⎠ ≤ P

⎛
⎝ k⋃

j=1

{
Xje

−δtj > x + z − l
}⎞⎠

+ P

⎛
⎝ k∑

j=1

Xje
−δtj > x + z,max

1≤j≤k
Xje

−δtj ≤ x + z − l

⎞
⎠ := I1 + I2.

(3.11)

By F ∈ D, for any 0 < θ < 1 and each k = 1, . . . , n0, we have uniformly for all t1, . . . , tk ∈ [0, T]
and z ∈ [0,∞),

I1 ≤
k∑
j=1

F
(
θ(x + z)eδtj

)
� L−1

F

k∑
j=1

F
(
(x + z)eδtj

)
, (3.12)
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by firstly letting x → ∞ then θ ↗ 1. We note that {Xn, n ≥ 1} are END r.v.s. Then, by
F ∈ D, there exists some positive constant M = M(n0) such that for sufficiently large x, each
k = 1, . . . , n0, all t1, . . . , tk ∈ [0, T] and z ∈ [0,∞),

I2 = P

⎛
⎝ k∑

j=1

Xje
−δtj > x + z,

x + z

k
< max

1≤j≤k
Xje

−δtj ≤ x + z − l

⎞
⎠

≤ P

⎛
⎝ k⋃

i=1

⎧⎨
⎩
∑
j /= i

Xje
−δtj > l, Xie

−δti >
x + z

k

⎫⎬
⎭
⎞
⎠

≤
k∑
i=1

∑
j /= i

P
(
Xje

−δtj >
l

k − 1
, Xie

−δti >
x + z

k

)

≤ M
k∑
i=1

∑
j /= i

F

(
leδtj

k − 1

)
F

(
(x + z)eδti

k

)

≤ MF

(
l

n0 − 1

) k∑
j=1

F
(
(x + z)eδtj

)
.

(3.13)

Since l can be arbitrarily large, it follows that

lim sup
l→∞

lim sup
x→∞

sup
t1,...,tk∈[0,T], z∈[0,∞)

I2∑k
j=1 F
(
(x + z)eδtj

) = 0. (3.14)

Hence, from (3.10)–(3.14), we obtain for each k = 1, . . . , n0,

P

⎛
⎝ k∑

j=1

Xje
−δτj > x +Z,N(T) = k

⎞
⎠ � L−1

F

k∑
j=1

∫
{0≤t1≤···≤t k≤T,tk+1>T}

∫∞

0−
F
(
(x + z)eδtj

)

× P(Z ∈ dz, τ1 ∈ dt1, . . . , τk+1 ∈ dtk+1)

= L−1
F

k∑
j=1

P
(
Xje

−δτj > x +Z,N(T) = k
)

≤ L−1
F

k∑
j=1

P
(
Xje

−δτj > x,N(T) = k
)
.

(3.15)
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As for the lower bound for (3.10), since {Xn, n ≥ 1} are END r.v.s, we have for sufficiently
large x and each k = 1, . . . , n0,

P

⎛
⎝ k∑

j=1

Xje
−δtj > x + z

⎞
⎠ ≥ P

⎛
⎝ k⋃

j=1

{
Xje

−δtj > x + z
}⎞⎠

≥
k∑
j=1

F
(
(x + z)eδtj

)
−
∑

1≤i<j≤k
P
(
Xie

−δti > x + z,Xje
−δtj > x + z

)

≥
k∑
j=1

F
(
(x + z)eδtj

)
−M

∑
1≤i<j≤k

F
(
(x + z)eδti

)
F
(
(x + z)eδtj

)

= (1 − o(1))
k∑
j=1

F
(
(x + z)ertj

)

(3.16)

holds uniformly for all t1, . . . , tk ∈ [0, T] and z ∈ [0,∞). By F ∈ D and Fatou’s lemma, we
have for any θ̃ > 1 and all j = 1, 2, . . .,

lim inf
1

F(x)
P
(
Xj > x + ZeδT

)
= lim inf

∫∞
0−

F
(
x + zeδT

)
F(x)

P(Z ∈ dz)

≥
∫∞

0−
lim inf

F
(
θ̃x
)

F(x)
P(Z ∈ dz)

= F∗
(
θ̃
)
−→ LF, θ̃ ↘ 1,

(3.17)

which means

P
(
Xj > x + ZeδT

)
� LFF(x). (3.18)

Similar to (3.15), from (3.10), (3.16), and (3.18), we obtain for each k = 1, . . . , n0,

P

⎛
⎝ k∑

j=1

Xje
−δτj > x + Z,N(T) = k

⎞
⎠

�
k∑
j=1

P
(
Xje

−δτj > x +Z,N(T) = k
)
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≥
k∑
j=1

∫
{0≤t1≤...≤tk≤T,tk+1>T}

P
(
Xj > xeδtj + ZeδT

)
P(τ1 ∈ dt1, . . . , τk+1 ∈ dtk+1)

� LF

k∑
j=1

∫
{0≤t1≤...≤tk≤T,tk+1>T}

F
(
xeδtj

)
P(τ1 ∈ dt1, . . . , τk+1 ∈ dtk+1)

= LF

k∑
j=1

P
(
Xje

−δτj > x,N(T) = k
)
.

(3.19)

The desired relation (3.8) follows now from (3.15) and (3.19).
If F ∈ L ∩ D, (3.9) follows by using the properties of the class L to establish analogies

of relations (3.12) and (3.17). This ends the proof of the lemma.

Proof of Theorem 2.2. We use the idea in the proof of Theorem 2.2 of Wang [1] (e.g.,
Theorem 2.1 of this paper) to prove this result. Clearly, F ∈ D and μ < ∞ imply J+F ≥ 1.
By (2.8), we have for any ε > 0, there exists some positive integer n1 = n1(T, ε) such that

E(N(T))p1{N(T)>n1} ≤ ε. (3.20)

To estimate the upper bound of Ψ(x, T), we split it into two parts as

Ψ(x, T) ≤ P

⎛
⎝N(T)∑

j=1

Xje
−δτj > x

⎞
⎠

=

(
n1∑
k=1

+
∞∑

k=n1+1

)
P

⎛
⎝ k∑

j=1

Xje
−δτj > x,N(T) = k

⎞
⎠ := I3 + I4.

(3.21)

According to Lemma 3.4 of this paper and Lemma 3.5 of Wang [1], we have for sufficiently
large x,

I3 ≤ (1 + ε)L−1
F

n1∑
k=1

k∑
j=1

P
(
Xje

−δτj > x,N(T) = k
)

≤ (1 + ε)L−1
F

∞∑
j=1

P
(
Xje

−δτj > x,N(T) ≥ j
)

= (1 + ε)L−1
F

∞∑
j=1

P
(
Xje

−δτj > x, τj ≤ T
)

= (1 + ε)L−1
F

∫T

0−
F
(
xeδt
)
λ(dt).

(3.22)
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By Lemma 3.3, F ∈ D, Lemma 3.1(ii), (3.20), and p > J+F ≥ 1, there exists some positive
constant M such that for sufficiently large x,

I4 ≤
∞∑

k=n1+1

P

⎛
⎝ k∑

j=1

Xj > x

⎞
⎠P(N(T) = k)

≤ F
(
p−1x
) ∞∑
k=n1+1

kP(N(T) = k) +M
(
eμ
)p
x−p

∞∑
k=n1+1

kpP(N(T) = k)

≤ MF(x)
(
EN(T)1{N(T)>n1} + E(N(t))p1{N(T)>n1}

)

= MεF(x).

(3.23)

By Lemma 3.1(i), for any γ > J+F , there exists some positive constant a such that for sufficiently
large x,

∫T

0−
F
(
xeδt
)
λ(dt) ≥ a−1F(x)

∫T

0−
e−γδtλ(dt)

≥ a−1e−γδT(λ(T) − λ(0))F(x),

(3.24)

which, combining (3.23) and λ(T) − λ(0) > 0, implies

I4 ≤ Mε

∫T

0−
F
(
xeδt
)
λ(dt). (3.25)

From (3.21), (3.22), and (3.25), we derive the right-hand side of (2.9).
As for the lower bound of Ψ(x, T), by Lemma 3.4, we have for the above given ε > 0

and sufficiently large x,

Ψ(x, T) ≥ P

⎛
⎝N(T)∑

j=1

Xje
−δτj > x +

∫T

0
e−δsC(ds)

⎞
⎠

≥
n1∑
k=1

P

⎛
⎝ k∑

j=1

Xje
−δτj > x +

∫T

0
e−δsC(ds),N(T) = k

⎞
⎠
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≥ (1 − ε)LF

n1∑
k=1

k∑
j=1

P
(
Xje

−δτj > x,N(T) = k
)

= (1 − ε)LF

⎛
⎝ ∞∑

j=1

P
(
Xje

−δτj > x, τj ≤ T
)
−

∞∑
k=n1+1

k∑
j=1

P
(
Xje

−δτj > x,N(T) = k
)⎞⎠

:= (1 − ε)LF

(∫T

0−
F
(
xeδt
)
λ(dt) − I5

)
.

(3.26)

Analogously to the estimate for I4, we have for sufficiently large x,

I5 ≤ F(x)EN(T)1{N(T)>n1}

≤ Mε

∫T

0−
F
(
xeδt
)
λ(dt).

(3.27)

From (3.26) and (3.27), we obtain the left-hand side of (2.9).
If F ∈ L ∩ D, then (2.4) follows by using (3.9) in the proof of (3.22) and (3.26).

4. Numerical Calculations

In this section, we perform some numerical calculations to check the accuracy of the asymp-
totic relations obtained in Theorem 2.2. The main work is to estimate the finite-time ruin
probability defined in (1.2).

We assume that the claim sizes {Xn, n ≥ 1} come from the common Pareto distribution
with parameter κ = 1, β = 2,

F
(
x;κ, β

)
= 1 −

(
κ

κ + x

)β

, x ≥ 0, (4.1)

which belongs to the class L ∩ D, and {(X2n−1, X2n), n ≥ 1} are independent replications of
(X1, X2) with the joint distribution

FX1,X2

(
x, y
)
= − 1

α
ln

(
1 +

(
e−αF(x) − 1

)(
e−αF(y) − 1

)
e−α − 1

)
, (4.2)

with parameter α = 1, where the joint distribution FX1,X2(x, y) is constructed according to the
Frank Copula. It has been proved in Example 4.2 of Liu [12] that X1 and X2 are END r.v.s.
Since {(X2n−1, X2n), n ≥ 1} are independent copies of (X1, X2), the r.v.s {Xn, n ≥ 1} are END
as well.

Assume that the claim arrival process N(t) is the homogeneous Poisson process with
intensity parameter λ. Clearly, such an integer-valued process N(t) satisfies the condition
(2.8). Choose λ = 0.1. The total amount of premiums is simplified as C(t) = ct with
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Table 1: Comparison between the analog value and the theoretical result in Theorem 2.2.

x (×103) Theoretical result Analog value
0.5 3.2846e − 6 3.8120e − 6 (16.1%)
1 8.2270e − 7 9.1100e − 7 (10.7%)
2 2.0586e − 7 2.2300e − 7 (8.3%)
5 3.2956e − 8 3.5000e − 8 (6.2%)

the premium rate c = 500, and the constant interest rate δ = 0.02. Here, we set the time T
as T = 10 and the initial capital reserve x = 500, 103, 2 × 103, 5 × 103, respectively. We aim to
verify the accuracy of relation (2.4). The procedure of the computation of the finite-time ruin
probability Ψ(x, T) in Theorem 2.2 is listed here.

Step 1. Assign a value for the variable x and set l = 0.

Step 2. Divide the close interval [0, T] into m = 1000 pieces, and denote each time point as ti,
i = 1, . . . , m.

Step 3. For each ti, generate a random number ni from the Poisson distribution P(λti), and
set ni as the sample size of the claims.

Step 4. Generate the accident arrival time {τi
k
, k = 1, . . . , ni} from the uniform distribution

U(0, ti) and the claim sizes {Xi
k
, k = 1, . . . , ni} from (4.1) and (4.2).

Step 5. Calculate the expression D below for each ti and denote them as {Di, i = 1, . . . , m}:

Di =
ni∑
k=1

Xi
ke

−rτi
k −
∫ ti

0
e−rsC(ds), i = 1, . . . , m, (4.3)

where r and C(t) have been defined and their values have also been assigned.

Step 6. Select the maximum value from {Di, i = 1, . . . , m}, and denote it as D∗, compare D∗

with x; if D∗ > x, then the value of l increases 1.

Step 7. Repeat Step 2 through Step 6,N = 109 times.

Step 8. Calculate the moment estimate of the finite-time ruin probability, l/N.

Step 9. Repeat Step 1 through Step 8 ten times and get ten estimates. Then, choose the median
of the ten estimates as the analog value of the finite-time ruin probability.

For different value of x, the analog value and the theoretical result of the finite-time
ruin probability are presented in Table 1, and the percentage of the error relative to the
theoretical result is also presented in the bracket behind the analog value. It can be found that
from Table 1, the larger x becomes, the smaller the difference between the analog value and
the theoretical result is. Therefore, the approximate relationship in Theorem 2.2 is reasonable.
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