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The vertical stripe defects on silicon steel surface seriously affect the appearance and electromag-
netic properties of silicon steel products. Eliminating such defects is adifficult and urgent technical
problem. This paper investigates the relationship between the defects and their influence factors
by classification methods. However, when the common classification methods are used in the
problem, we cannot obtain a classifier with high accuracy. Byanalysis of the data set, we find
that it is imbalanced and inconsistent. Because the common classification methods are based on
accuracy-maximization criterion, they are not applicable to imbalanced and inconsistent data set.
Thus, we propose asupport-degree-maximization criterion and anovel cost-sensitive loss function
and also establish an improved L1/2 regularization approach for solution of the problem.Moreover,
by employing reweighted iteration gradient boosting algorithm, we obtain a linear classifier with a
high support degree. Through analyzing the classifier, we formulate a rule under which the silicon
steel vertical stripe defects do not occur in the existing production environment. By applying the
proposed rule to 50TW600 silicon steel production, the vertical stripe defects of the silicon steel
products have been greatly decreased.

1. Introduction
Under normal process of silicon steel production, the surface of silicon steel products is
smooth, as shown in Figure 1(a), but when production process is controlled imperfectly, the
vertical stripes appear on the surface of the silicon steels at times, as shown in Figure 1(b).
Such defects (briefly denoted as vertical stripe defects, or VSD in the following) not
only affect the appearance effect of silicon steel, but also much degraded the lamination
performance, resistance between layers and electromagnetic properties of silicon steel. How
to eliminate the VSD problem has become one of the most important technical problems in
silicon steel production.

In [1], the intrinsic mechanism of forming VSD was interpreted as follows: the high
contents of Si and Al in silicon steel essentially lead to thick columnar crystals in the
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Figure 1: (a) A normal silicon steel sheet; (b) a silicon steel sheet with vertical stripes.

casting slab organization, and thus α-γ phase transitions cannot occur in hot-rolling working
procedure. Due to slow dynamic recovery and difficult recrystallization in later cold rolling
and annealing process, such thick columnar crystals are hard to be completely broken. So, the
vertical stripes arise on the surface of silicon steel products.

To eliminate the VSD, chemical analysis method and the equipment method have
been generally employed in current silicon steel production [1]. The former method aims
at enhancing the occurrence of α-γ phase transitions and accelerating the recrystallizing by
empirically reducing the contents of Si andAl in silicon steel. The latter method eliminates the
VSD mainly through the following ways: (i) adding a preannealing treatment; (ii) installing
an electromagnetic stirring apparatus to enlarge the proportion of equiaxial crystals in casting
plate slab; (iii) adding a normalization device in acidifying equipment group to increase the
proportion of recrystallization of hot-rolled roiled sheet.

However, the above two methods suffer from some difficulties in the production of
silicon steel [1]. The chemical analysis method cuts down the electromagnetic properties
of silicon steel while reducing the contents of Si and Al. The equipment method needs a
long period of technological reformation and huge investment. These difficulties above have
hampered the further application of these methods.

In the process of silicon steel production, an amount of data of the VSD problem
have been accumulated. We propose a data modeling method to search for the relationship
between the VSD and its influence factors. Specifically, we transform the VSD problem into a
special binary classification problem. For such a special classification problem, we cannot
obtain an ideal classifier by common classification methods, such as the support vector
machine [2], logistic regression [3], neural networks [4], and Fisher discriminant analysis
[5], which are based on accuracy-maximization criterion.

In this paper, we propose a support-degree-maximization criterion instead of the
common accuracy-maximization criterion and formulate a cost-sensitive loss function in
place of usual loss function, and also we establish an L1/2 regularization model to distinguish
the key factors of the VSD. Furthermore, by utilizing the reweighted iteration gradient
boosting algorithm, we obtain a linear model. In the model, the coefficients of some influence
factors are very small or zeros. These results indicate that these factors are some less
important influence factors and can be ignored under the existing production conditions.
Through analyzing the coefficients of influence factors in the linear model, we put forward
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a rule to avoid the VSD problem under existing production environment. Based on this rule,
we propose an effective quality control strategy in the production of 50TW600 silicon steel.

The rest of this paper is arranged as follows: the VSD problem is formulated in
Section 2. The methodologies, including the mathematical model and the related algorithm,
are presented in Section 3. The experiments and their results are reported in Section 4. Finally,
we conclude the paper with some useful remarks.

2. Problem Formulation

Silicon steel production is a very complicated process, including a series of working
procedures, such as steel making, rough rolling, fine rolling, acid cleaning, rolling, annealing,
coating, and cutting. In these working procedures, a large amount of complex chemical
changes and physical changes occur continuously. As mentioned in [1], many working
procedures are relevant to the VSD. The VSD problem is too difficult to model by the chemical
and physical mechanism. So, we accumulated an amount of production data of the VSD to
model the relationship between the VSD and its influence factors. But, there are too many
influence factors related to the VSD, and the data of some influence factors are not easy to
acquire. Therefore, by analyzing the arising mechanism of the VSD in 50TW600 silicon steel
production [1], we select the 15 main factors and ignore some factors with little influence on
the VSD, as listed in the following:

(i) T1, T2, and T3(
�C): three tundish temperatures;

(ii) V1, V2, and V3 (m ·min−1): three casting speeds;

(iii) CC, CSi, CMn, CS, CP, and CAl(%): the contents of C, Si, Mn, S, P, and Al in silicon
steel;

(iv) RT0, FT6(
�C): rough rolling and fine rolling temperatures;

(v) CT(�C): coiling temperature.

According to the seriousness of the VSD, the products on production line of silicon
steel are divided into two categories: (i) the negative class (majority class), labeled as “−1,”
and the products in the class have no vertical stripe or slight vertical stripes which do not
affect the physical properties of silicon steel. (ii) the positive class (minority class), labeled
as “+1,” and the products in the class have serious vertical stripes which affect the physical
performance of silicon steel. The negative class is acceptable to customers, while the positive
class is unacceptable.

In order to eliminate the VSD, it is very necessary to make sure which factors
have main influence on the VSD under existing control conditions of silicon steel
production, and which factors are positive or negative influence. So, we need to model
the relationship between the category of the VSD y ∈ {−1,+1} and its influence factors
x = (T1, T2, T3, V1, V2, V3, CC, CSi, CMn, CS, CP, CAl, RT0, FT6, CT)T . This is a special binary
classification problem because the problem has the following characteristics.

(1) The data set of the VSD problem is imbalanced. In silicon steel products, qualified
products (products without the VSD) are much more than unqualified ones (the
products with the VSD).

(2) The data set of the VSD problem is inconsistent. In the complicated process of
silicon steel production, there are many factors intrinsically influencing the VSD.
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Majority class distribution

Minority class distribution

Figure 2: Class distributions of the imbalanced and inconsistent data set.

Through the analysis of the influence factors, we ignore lots of little influence factors
and only select 15 main ones. The little influence factors ignored results in that there
exist lots of samples whose numeric values of the influence factors are extremely
close while their corresponding categories of the VSD are different.

In summary, the data set of the VSD problem is imbalanced and inconsistent, and its
class distributions are shown in Figure 2.

In recent years, the knowledge discovery methods for inconsistent data concentrate
on rough set approaches [6], and these methods are only suitable for discrete data. For
continuous data, several methods for imbalance learning problems were reported [7].
These methods can be classified into two groups: resampling methods and algorithmic
methods. Resampling methods rebalance class distributions by resampling the data space.
And algorithmic methods strengthen to learn from minority class to improve common
classification learning algorithms [2]. Further, extensive researches suggested that cost-
sensitive methods in algorithmic methods are more superior than resampling methods in
many application domains [4, 7–9]. But all methods mentioned above are not very effective
to the VSD problem since the data set of the VSD problem is not only imbalanced but also
inconsistent. In addition, the VSD problem needs to carry out variable selection. Recently,
L1/2 regularization methods were proposed and proved to be an effective classification
approaches embedded variable selection [10]. Therefore, this paper investigates improved
L1/2 regularization methods by a cost-sensitive loss function to deal with the imbalanced and
inconsistent data set of the VSD problem. The detail of the approach will be introduced in the
following section.

3. Methodology

Before presenting our approach for the VSD problem, we need to introduce some preliminar-
ies of the regularization methodology firstly.

3.1. The Regularization Framework of Classification Problems

Given a data set S = {(x1, y1), (x2, y2), . . . , (xN, yN)}, the binary classification problem can be
modeled as follows [10]:

̂β(λ) = argmin
β

(

Remp
(

β
)

+ λP
(

β
))

, (3.1)
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Figure 3: Comparison of common loss functions.

where Remp = (1/N)
∑N

i=1L(yif(xi, β)),f(xi, β) is a given function with unknown parameter
vector β, L(yf) is a loss function about yf , P(β) is a penalty term, and λ(≥ 0) is a parameter
tuning trade-off between Remp and the penalty term P(β).

Obviously, in (3.1), the following three elements are very important:
(a) the classification discriminant function f(x, β). Generally, given a set of basis

functions H = {h1(x), h2(x), . . . , hp(x)}, where p is the number of the basis functions,

f
(

x, β
)

=
p
∑

j=1

βjhj(x), βj ∈ Rp. (3.2)

In many applications, f is usually taken as the linear form, that is, hj(x) = xj , j = 1, 2, . . . , p;
(b) the penalty term P(β). When f is taken as a the linear function, the penalty function

P(β) is often formulated as

P
(

β
)

=
∥

∥β
∥

∥

k

k, (3.3)

where ‖β‖k is the k-norm of the coefficient vector of linear model;
(c) the loss function L(yf). In binary classification problem, yf is defined as the

margin. Usually, a loss function L(yf) is a nonnegative and convex function about yf , such
as logistic loss function L(yf) = log(1 + e−yf), exponential loss function L(yf) = e−yf ,
SVM Hinge loss function L(yf) = 1 + yf if yf < 1; 0 if yf ≥ 1, square loss function
L(yf) = (1 − yf)2, and square Hinge loss function L(yf) = (1 − yf)2 if yf < 1; 0 if yf ≥ 1.
The comparison of loss functions is shown in Figure 3.

From (3.1) and Figure 3, we can see that the different loss functions and different
penalties result in different regularization algorithms. For example, in the Lasso [11],
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the discriminant function f , the loss function, and the penalty term are taken as a linear
function, the square loss function, and 1-norm of the coefficient vector of linear model,
respectively. In the SVM [12], the three elements are taken as a linear function, square Hinge
loss, and the square of 2-norm of the coefficient vector of linear model, respectively.

Based on the three important elements (a), (b), and (c) above, we will establish an L1/2

regularization form to solve the VSD problem in the following.

3.2. L1/2 Regularization Form for VSD Problem

In this subsection, we propose a support-degree-maximization criterion for an imbalanced
and inconsistent data set and then give a cost-sensitive loss function to achieve support-
degree maximization. And we preset linear function as classification discriminant function
and take ‖β‖1/21/2 as the penalty term in regularization form the VSD problem.

(a) Support-degree-maximization criterion: in Section 2, we have pointed out that the
data set of the VSD problem is imbalanced and inconsistent such that the problem cannot be
solved by common classification methods. This is due to the fact that these methods employ
the accuracy-maximization criterion. Hence, we propose a support-degree-maximization
criterion. The notations used in this section are firstly given as follows.

In binary classification, the numbers of samples in positive class and negative class are
denoted byN+ andN−, respectively, and the number of all samples isN,N = N+ +N−. After
classifying, all samples are divided into four categories by the classifier, and the numbers of
them are represented by TP, FP, TN, and FN [13].

In classification problem, accuracy is the most commonly used measure for assessing
the capability of a classifier. It is defined as the ratio of the size of correctly classified simples
to the size of the overall samples, that is,

Accuracy =
TP + TN

N
. (3.4)

It is clear that the common classification methods only expect maximizing accuracy of
classifier. However, for the classification problem of the VSD, we cannot obtain enough high
Accuracy by accuracy-maximization criterion since there exist too many inconsistent samples
in the data set of the VSD problem.

So, we propose a support-degree-maximization criterion to obtain a classifier which
can separate out a “good region,” which contains as many negative samples as possible
and almost no positive samples. In practical production, we can control production process
parameters into the “good region” to eliminate the VSD.

Therefore, we define the Support degree and the Confidence degree as follows:

Support =
TN
N

,

Confidence =
TN

TN + FN
.

(3.5)

Support represents the ratio of the size of correctly classified negative simples to the size of the
overall samples, and Confidence measures the ratio of the size of correctly classified negative
samples to the size of the overall classified as negative sample. In practical applications,
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Confidence and Support are preset as a value near 100% and an acceptable value (e.g., 45%),
respectively.

(b) Cost-sensitive loss function: to maximize Support, using a common loss function,
we can construct a cost-sensitive loss function which gives a small penalty ρ to the false
negative samples and a large penalty 1 − ρ to the false positive samples, 0 ≤ ρ ≤ 0.5. Assume
that L(yf) is a loss function such as logistic loss, exponential loss, SVMHinge loss, and square
Hinge loss, then the cost-sensitive loss function can be constructed as follows:

̂L
(

yifi, ρ
)

=

⎧

⎨

⎩

ρL
(

yifi
)

if yi = −1,
(

1 − ρ
)

L
(

yifi
)

if yi = +1.
(3.6)

For simplicity, expression (3.6) can also be written as

̂L
(

yifi, ρ
)

=
1
2
((

1 + yi

)(

1 − ρ
)

+
(

1 − yi

)

ρ
)

L
(

yifi
)

. (3.7)

(c) Linear classification discriminant function: in order to facilitate distinguishing the
factors with little influence on the VSD, the linear function is employed as the classification
discriminant function

f
(

x, β
)

=
p
∑

i=1

βixi, (3.8)

where p is the dimensionality of x and βi is the parameter to be determined. The sign of βi
represents that xi positively or negatively influences the VSD, and |βi| represents the influence
extent of xi to the VSD, i = 1, 2, . . . , p.

(d) Penalty term: in [10], Xu et al. pointed out that L1/2 regularizer is a good
representative of Lp (0 < p < 1). Because when 1/2 ≤ p < 1, the L1/2 regularizer always
yields the best sparse solution, and when 0 < p < 1/2, the sparse property of Lp regularizer
is similar to that of the L1/2 regularizer. Therefore, in order to determine the variables with
greater influence on the VSD under existing production control state, the penalty term in
regularization frame is adopted as follows:

∥

∥β
∥

∥

1/2
1/2 =

p
∑

i=1

∣

∣βi
∣

∣

1/2
. (3.9)

Based on the above discussion (a)∼(d), the regularization model for the VSD problem
can be formulated as

FS = argmin
β∈Rp

(

1
N

N
∑

i=1

̂L
(

yifi, ρ
)

+ λ‖β‖1/21/2

)

, (3.10)

where λ ≥ 0 is the regularization parameter, ̂L, f and ‖β‖1/21/2 are defined as formulas (3.7),
(3.8), and (3.9), respectively.
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By integrating the reweighted iteration strategy, an effective and efficient algorithm for
the optimization problem (3.10) can be designed, as introduced in the following subsection.

3.3. Reweighted Iteration Algorithm for the Proposed Model

As mentioned in [10], L1/2 regularizer can yield more sparse solution than L1 regularizer.
Nevertheless, L1/2 regularization is more difficult to be solved than L1 regularization because
the former is a nonconvex optimization problem, while the later is convex optimization
problem. For the L1/2 regularization problem (3.10), based on reweighted iteration, algorithm
we propose an effective and efficient algorithm. Its main idea is to transform an L1/2

regularization problem into a series of L1 regularization problems which can be solved
effectively by existing L1 regularization algorithms, like gradient boosting algorithm. The
algorithm is described as follows.

Algorithm 1 (reweighted iteration algorithm for the VSD problem).

Step 1. Initialize β(0) = (1, 1, . . . , 1)T , and set the maximum iteration step K. Set iteration step
t = 0, Support= S0, and Confidence= C0.

Step 2. Apply L1 gradient boosting algorithm to solve

β(t+1) = argmin

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
N

N
∑

i=1

̂L
(

yifi, ρ
)

+ λ
p
∑

i=1

1
√

∣

∣

∣β
(t)
i

∣

∣

∣

∣

∣βi
∣

∣

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (3.11)

and set t = t + 1.

Step 3. Compute Support(t) and Confidence(t) if t > K or (Support(t) ≥ S0 and Confidence(t) ≥
C0) output β(t). Otherwise, go to Step 2.

In the above algorithm, the initial value β(0) is taken as (1, 1, . . . , 1)T , and thus in the
first iteration (t = 0), Step 2 exactly solves an L1 regularization problem. When t ≥ 1, Step 2
needs to solve a reweighted L1 regularization problem, which can be transformed into an L1

regularization via linear transformation. It should be noted that some coefficients of β(t) are

zeros when t ≥ 1. In order to guarantee the feasibility, we replace 1/
√

β
(t)
i with 1/

√

β
(t)
i + ε0

in Step 2, where ε0 is any fixed positive real number. In addition, S0 and C0 can be set as
expected values, for example, S0 = 45%, C0 = 100%. In this algorithm, L1 regularization
problem is solved by ε-gradient boosting algorithm (see detail in the appendix).

4. Solution of the VSD Problem and Its Application

In this section, we carry out numerical experiments on the VSD problem (3.10) using
reweighted iteration algorithm.
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4.1. Experiments and Results

(a) Data preparation: we collected the samples form 50TW600 silicon steel products for 3
months when the rate of VSD products was as high as 12.1%. We used the samples of the first
two months as training set and the those of the third month as testing set. After discarding
the samples with null values, the training set has 3303 samples, including 3195 negative class
samples and 108 positive class ones. The proportion of the negative to the positive class
samples is 29.58 : 1. Obviously, the class distribution of the data set is greatly imbalanced.
Moreover, the 108 positive class samples are almost all inconsistent samples. The testing set
has 1026 samples, including 981 negative class samples and 45 positive class ones.

(b) Data standardization: to avoid the impact of numerical scale on computational
precision, the data of every independent variable is standardized as mean and standard
deviation being 0 and 1, respectively.

(c) Experimental result: we used regularization formation (3.10) and Algorithm 1
for the standardized data set. In this experiment, we preset S0 = 45%, C0 = 100%, K =
20, and ε0 = 0.000001. In order to maximize support degree, ρ is preset as a very small value
0.00001. And we employed logistic loss, SVMHinge loss, exponential loss, and square Hinge
loss function in cost-sensitive loss function, respectively. We obtained the best linear classifier
with the maximal support degree 47.74% when square Hinge loss function was employed.

The obtained linear classifier is

f
(

x′
)

= sign
(

β′ · x′), (4.1)

where β′ = [3.848, 0.0, 1.422, 2.527, 4.482,−1.532,−1.168, 6.693,−1.417, 4.459,−1.704, 4.757,
−0.766,−6.290,−0.640]T , x′ = [T ′

1, T
′
2, T

′
3, V

′
1, V

′
2, V

′
3, C

′
C, C

′
Si, C

′
Mn, C

′
P, C

′
S, C

′
Al, RT

′
0, FT

′
6, CT

′]T . By
inverse standardizing transform, classifier (4.1) obtained from the standardized data can be
transformed into classifier (4.2) in original data

F(x) = sign
(

β · x + b
)

, (4.2)

where β = [0.575, 0.0, 0.205, 35.695, 212.011,−68.283,−2548.028, 213.512,−83.821, 1657.123,
−1796.934, 234.172,−0.115,−0.896,−0.276]T , x = [T1, T2, T3, V1, V2, V3, CC, CSi, CMn, CP, CS,CAl,
RT0, FT6, CT]

T , and b = −601.536. The effect of the classifier F(x) = sign(β · x + b) is shown in
Figure 4. The horizontal axis is β · x + b, and the vertical axis is FT6. The purpose of using FT6
as the vertical axis is to show the classification result on the two-dimensional plane.

The confusion matrix of the best linear classifier is shown in Table 1.
Form Figure 4 and Table 1, it is found that the left of the classifier (the dotted line)

is the optimal region of the silicon steel production. This is because there are no defective
products and a great many quality products in the area.

(d) Result analysis: from the experimental results, we can draw the following
conclusions.

(1) Since the linear classifier (4.1) has high enough support degree (47.74%) and
confidence degree (100%), the classifier can be put into practical application.

(2) In linear classifier (4.2), the absolute values of ̂β′13 and ̂β
′
15 are very small and ̂β′2 is 0.

So the influences of the corresponding factors RT0, CT , and T2 can be ignored under
the existing production status.
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Table 1: Confusion matrix.

Predicted positives Predicted negatives
Real positives 108 0
Real negatives 1 577 1 726
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Figure 4: Experimental results for solving the VSD problem.

(3) From Figure 4, we see that β · x + b < 0 can be regarded as a discrimination rule.
If a group of production control parameters x satisfy the rule, then it is almost
impossible for the VSD problem to arise. However, according to the practical
experience and theoretical analysis, β · x + b cannot be too small. Otherwise, the
electromagnetic properties of silicon steel will be reduced.

(4) Evaluating model: using the testing data set, we verify the model (4.1). When 45
positive class samples are put in model (4.1), it is found that all β · x + b > 0. In
981 negative class samples, 523 samples satisfy β · x + b < 0 and 458 samples have
β · x + b > 0. That is to say, the model (4.1) separates out a “good region” with
enough many quality products of silicon steel production.

4.2. Improved Control Strategy of Silicon Steel Production

During the period that the silicon steel vertical stripes arose frequently, the control strategy
used in the production of silicon steel is shown in Table 2. The hitting target values are the
expected values of corresponding process parameters. Unfortunately, the hitting target values
satisfy β · x + b > 0. Under such a poor product control strategy, the possibility of generating
VSD problem was very high, and the rate of the silicon steel products with VSD problem
reached a higher value 12.1%.

According to the result analysis of the experiments presented in Section 4.1, we suggest
a production control strategy with improved hitting target values

CSi = 1.36, CMn = 0.40, CP = 0.07, CAl = 0.25, and FT6 = 850. In order to preserve the
stability of the silicon steel productions, the hitting target values of the variables T1, T2, T3, V1,
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Table 2: The production control strategy when the VSD problem was very serious.

Control parameters T1 T2 T3 V1 V2 V3 CC CSi

Original hitting target values 1540 1540 1540 0.75 0.75 0.75 0.003 1.38
Control parameters CMn CP CS CAl RT0 FT6 CT

Original hitting target values 0.32 0.09 0.0035 0.27 960 830 655

V2, V3, CC, CS, RT0, and CT are unchanged since they have little influence on VSD problem
of silicon steel surface under the existing production conditions. It is easy to verify that the
improved hitting target values satisfy the rule β · x + b < 0.

When the improved production control strategy is applied to the production of
50TW600 silicon steel, the rate of the silicon steel products with vertical stripes has been
lowered to a level less than 1.8%.

5. Conclusion

In this work, through analyzing the data set of the VSD problem, it is found that such data set
is imbalanced and inconsistent, and common classification methods based on classification
accuracy are not suitable for this specific classification problem. For this reason, a new
classification criterion called support-degree-maximization criterion for the imbalanced and
inconsistent data sets has been proposed. Moreover, to distinguish the factors with little
influence on the VSD, L1/2 regularization form has been established for the VSD problem. By
solving the regularization problem with reweighted iteration gradient boosting algorithm,
the rule of avoiding silicon steel vertical stripes under existing production environment has
been put forward. Furthermore, an improved production control strategy has been suggested
and applied to the silicon steel production line. As a result, the rate of the products with
vertical strip defects is greatly alleviated. Although the VSD problem has decreased greatly,
there still exist some defect products up to about 1.8%, which is caused by the rise and fall of
control variable values. Therefore, it is necessary to enhance hitting rates of the target values
of the influence factors by means of 6σ management approach. This is a work in our future
research.

Appendix

Gradient Boosting Algorithm for L1 Regularization

L1 regularization problem is formulated as follows:

FS = argmin
f∈F

(

1
N

N
∑

i=1

L
(

yif
(

xi, β
))

+ λ‖β‖1
)

, (A.1)

where λ ≥ 0 is the regularization parameter, L is a loss function, ‖β‖1 =
∑p

i=1|βi|, and F = {f :
f(x, β) =

∑p

i=1βihi(x), βi ∈ Rp}, where h1, h2, . . . , hp are a group of basis functions.
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Gradient boosting algorithm [14] is well known as one of the most effective algorithms
for L1 regularization problems. The algorithm beginswith β(0) = (0, 0, . . . , 0)T , that is, F(0)(x) =
0, and after T steps iterations, the following model can then be obtained:

FT (x) =
T
∑

t=1

αthjt(x), (A.2)

where β(T)j =
∑

jt=j
αt. If we have the combination model Ft−1(x) of the first t − 1 steps, then we

want to seek an hjt(x) from {hj(x)}p1 such that empirical risk
∑N

i=1L(yiF) decreases quickly.
Denote β(t)jt

= β
(t−1)
jt

+αt, β
(t)
k = β

(t−1)
k , k /= jt, then Ft(x) = Ft−1(x)+αthjt(x) ·hjt(x) can be obtained

by maximizing first-order descendent quantity of the loss function in the negative gradient
direction, that is,

hjt = argmax
hj∈H

∣

∣

∣

∣

∣

∣

N
∑

i=1

∂L
(

yiF
)

∂β

∣

∣

∣

∣

∣

F=Ft−1

∣

∣

∣

∣

∣

∣

. (A.3)

Obviously, the expression above is equivalent to

hjt = argmax
hj∈H

∣

∣

∣

∣

∣

∣

N
∑

i=1

(

∂L
(

yiF
)

∂F
hj(xi)

)∣

∣

∣

∣

∣

F=Ft−1

∣

∣

∣

∣

∣

∣

. (A.4)

Subsequently, we choose the direction sign (αt) = sign(
∑N

i=1(−((∂L(yiF))/∂F)hj(xi))|F=Ft−1)
as descendent direction, and the descendent quantity along this direction γt = |αt| can be
obtained by solving the following optimization problem:

γt = argmin
γ

N
∑

i=1

L
(

yi

(

Ft−1 + γhjt(xi)
))

. (A.5)

Hastie et al. [15] pointed out that the above linear search method is too greedy that the
algorithm would lose its stability. For this reason, a “learning slowly” skill was proposed
by assigning a descendent step size γt = ε, ε ∈ (0, 1), which is called ε-Boosting algorithm.

Summarizing the analysis above, the normal framework of gradient boosting
algorithm for L1 regularization can be described as follows.

Algorithm 2 (gradient boosting algorithm).

Step 1. Initialize the coefficients of basis functions.
Set iteration number t = 0, and the coefficients of basis functions β(0)j = 0, j = 1, 2, . . .,

p, p is the number of basis functions, and descendent step size γt = ε.

Step 2. Calculate the current fitting value.
Set t = t + 1, and calculate the current fitting value F(t)

i =
∑p

j=1β
(t−1)
j hj(xi), i = 1, . . . ,N.
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Step 3. Select a basis function.
Calculate the negative gradient of the loss function at each sample wi =

−∂L(yiF)/∂F|F=F(t)
i
, i = 1, . . . ,N, and determine jt = argmaxj |

∑N
i=1wihj(xi)|, j ∈ {1, 2, . . . , p}.

Step 4. Adjust the coefficients of basis functions.
Set β(t)jt

= β
(t−1)
jt

+ γt sign(
∑N

i=1wihjt(xi)), β
(t)
k

= β
(t−1)
k

, k /= jt.

Step 5. If t < T , go to Step 2, otherwise output β(t).
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