
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 856015, 14 pages
doi:10.1155/2011/856015

Research Article
On the Stabilization of the Inverted-Cart Pendulum
Using the Saturation Function Approach
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A simple stabilizing controller for the cart-pendulum system is designed in this paper. Our
control strategy describes the underactuated system as a chain of integrators with a high-order
smooth nonlinear perturbation and assumes initialization of the system in the upper half plane.
The design procedure involves two sequentially associated control actions: one linear and one
bounded quasilinear. The first control action brings the nonactuated coordinate near to the upright
position and keeps it inside of a well-characterized small vicinity, whereas the second control
action asymptotically brings the whole state of the system to the origin. The corresponding closed-
loop stability analysis uses standard linear stability arguments as well as the traditional Lyapunov
method and the LaSalle’s theorem. Our proposed control law ensures global stability of the
system in the upper half plane. We illustrate the effectiveness of the proposed control strategy
via numerical simulations.

1. Introduction

Because of its control-related challenging features, the well-known cart-pendulum system
has been extensively studied in recent times by the control community (see, for instance
[1] and the references therein). This control benchmark consists of a free vertical rotating
pendulum with a pivot point mounted on a cart horizontally moved by a horizontal force
(which corresponds to the system input). The control problem comprises to swinging up
the pendulum from its stable hanging position, in order to bring and maintain it to its
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unstable upright position. What makes this simple mechanical system an interesting control
benchmark is the fact that the pendulum angular acceleration cannot be controlled, that is, the
cart-pendulum system is a two degrees-of-freedom mechanical underactuated system. Hence,
many common stabilizing control techniques developed for fullyactuated systems cannot
be directly applied to this system. It must be pointed out that the cart-pendulum system
is not input-output (statically or dynamically) feedback linearizable (see for instance [2]).
Moreover, the cart-pendulum system loses controllability and other control-related geometric
properties when the pendulum moves through the horizontal plane (see [1, 3]). Since the
system is locally controllable around the unstable equilibrium point, closed-loop stabilization
by linear pole placement can be used (see, for instance, [4]).

Stabilizing the cart-pendulum system involves two main aspects: (i) swinging up the
pendulum from the stable hanging position to the unstable upright vertical position (see,
for instance, [5–12]) and (ii) stabilizing the system around its unstable equilibrium point.
For this second aspect it is commonly assumed that the free endpoint of the pendulum is
initially located above the horizontal plane or lies inside a well-characterized open vicinity
of zero (the vicinity defines the closed-loop stability domain). We focus our attention on the
former problem. Let us now review some remarkable works on this aspect. In [13] a nonlinear
controller, based on the backstepping procedure, is used to solve the stabilization problem
in the unstable equilibrium point; the proposed controller ensures full state convergence.
A controller based on nested saturation functions is proposed in [14]. A similar work is
discussed in [15], where a chain of integrators is considered as a model for the cart-pendulum
system. In [9] a stabilization technique using switching and saturation functions (in addition
to the Lyapunov method) is introduced. A control strategy based on controlled Lagrangians
is presented in [16], and a proposal using similar tools is exposed in [17]. A feedback control
scheme based onmatching conditions is described in [18], while a simple matching condition
is used in [19] to solve the cart-pendulum regulation problem. A very interesting nonlinear
control strategy based on energy shaping techniques combined with input-to-state stability
methods is presented in [20]. A solution which exploits power-based passivity properties
of the cart-pendulum system is proposed in [21]. A nonlinear controller based on both the
fixed point backstepping procedure and saturation functions is proposed in [22]. This list
of published works is by no means exhaustive. Let us conclude it by mentioning the work
published in [23], where the challenging nature of the cart-pendulum problem is underscored
to the nonlinear control community.

In this work we consider the Inverted Pendulummodel introduced in [22], to propose
a simple control strategy, which combines a linear action with a quasilinear action. This
strategy is justified by using the traditional Lyapunov method and applying the theorem
of LaSalle. We point out that the proposed controller here differs from the obtained in
[15, 22]. Because, contrary to these works, we do not need to use sophisticated nonlinear
tools to carry out the stability analysis. For instance, we do not use the fixed point control
scheme, nor the modified backstepping procedure. Also, our control law has a simple
structure than the ones proposed in these two works. Roughly speaking, the linear control
action confines, both, the angular position and the angular velocity in a small compact
set, which defines the closed-loop stability domain (completely characterized by the cart-
pendulum parameters and the controller parameters). The bounded quasilinear control
action guarantees, then, full state convergence. We must emphasize that our solution avoids
the necessity of solving partial differential equations, nonlinear differential equations, or fixed
point control equations.
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Figure 1: Cart-pendulum system.

The paper is organized as follows. Section 2 is concerned with modeling issues as well
as the problem statement. We present our proposal in Section 3, which we illustrate with a
simulated control scheme. We conclude with some final remarks in Section 4.

2. Problem Statement

2.1. The Cart-Pendulum Model

Consider the cart-pendulum system (see Figure 1), described by the following set of normal-
ized differential equations (see for instance [4]):

cos θq̈ + θ̈ − sin θ = 0,

(1 + δ)q̈ + cos θθ̈ − θ̇2 sin θ = f,
(2.1)

where q is the normalized displacement of the cart; θ is the actual angle that the pendulum
forms with the vertical; f is the horizontal normalized force applied to the cart (i.e., the
system input), and δ > 0 is a real constant that depends directly on both, the cart and the pen-
dulum masses. In the nonforced case corresponding to f = 0 and θ ∈ (−π/2, π/2) the above
system has only one unstable equilibrium point given by x = (θ = 0, θ̇ = 0, q = q, q̇ = 0),
with q being constant. Some simple algebra allows us to derive a new control variable u:

q̈ =
1

δ + sin2θ

(
f + θ̇2 sin θ − cos θ sin θ

)
� u. (2.2)

Thus, system (2.1) can be written in a very simple way as

θ̈ = sin θ − cos θu,

q̈ = u.
(2.3)
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Now, we proceed to express system (2.3) as if it were a four-order chain of integrators plus
an additional nonlinear perturbation. For this end we define the new coordinates:

z1 = q + 2 tanh−1
(
tan

θ

2

)
, z3 = tan θ,

z2 = q̇ + θ̇ sec θ, z4 = θ̇ sec2 θ.

(2.4)

Then, system (2.3) can be written as

ż1 = z2,

ż2 = z3 + α(z3)z24,

ż3 = z4,

ż4 = v,

(2.5)

where the term α(z3) is given by

α(z3) =
z3(

1 + z23
)3/2 (2.6)

and v is now the new control variable defined as

v � sec2 θ(−u cos θ + sin θ) + 2θ̇2 sec2 θ tan θ. (2.7)

Notice that the above set of transformations are well defined for all −π/2 < θ < π/2.
That is, the pendulum moves inside the upper half plane. On the other hand, it is easy to
verify that function |α(z)| ≤ κ = 2/31.5.

Remark 2.1. We emphasize that model (2.5) was proposed and resolved using the stability
analysis tool known as the fixed point controller in combination with a version of the
backstepping procedure, by Olfati-Saber [22]. On the other hand, it is our opinion that the
main contribution of our control strategy is that we solved the stability problem using the
Lyapunov method combined with the theorem of LaSalle.

We can now formulate our control problem.

Problem Formulation

Given the cart-pendulum system described as in (2.5), we want to bring the pendulum to the
upright position and, simultaneously, bring the cart to the origin or any other fixed desired
position.

We introduce the following useful definitions, used in forthcoming developments.
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Definition 2.2. Let x ∈ R. The classical linear saturation function is defined as

σm(x) =

⎧
⎪⎨
⎪⎩
x if |x| ≤ m,

m
x

|x| if |x| > m,
(2.8)

where constant m is strictly positive.

Definition 2.3. By a sigmoidal function sm(x), we mean a smooth function that is bounded,
strictly increasing with the property that sm(0) = 0; xsm(x) ≥ 0 and |sm(x)| ≤ m, for all x ∈ R.

We now proceed to propose our control strategy.

3. Regulation of the Cart-Pendulum System

3.1. Linear Transformation

Inspired by what is presented in [24], we first introduce the following linear transformation:

x �

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 3 3 1

0 1 2 1

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎥⎥⎥⎦
, (3.1)

which leads to, when applied to (2.5),

ẋ1 = x2 + x3 + x4 + 3α(z3)x2
4 + v;

ẋ2 = x3 + x4 + α(z3)x2
4 + v;

ẋ3 = x4 + v;

ẋ4 = v.

(3.2)

In the following section we split the new control input v into two control actions. One part
of this control, namely, v1, brings both the state x3 and the state x4 to a small compact set
defining the closed-loop stability domain and, consequently, renders the nonlinear terms of
system (3.2) to an arbitrarily small vicinity of zero. Simultaneously to the linear control action,
a bounded quasilinear control action, namely, v2, stabilizes the missing states x1 and x2.

3.2. Stabilization of the States x3 and x4

In order to guarantee that the states x3 and x4 are bounded, we split v as

v =
v1︷ ︸︸ ︷

−x3 − x4 + v2, (3.3)
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where |v2| ≤ ε, with ε > 0. Thus, after substituting (3.3) into (3.2), we have that

ẋ1 = x2 + 3α(z3)x2
4 + v2;

ẋ2 = α(z3)x2
4 + v2;

ẋ3 = −x3 + v2;

ẋ4 = −x3 − x4 + v2.

(3.4)

We emphasize that, if |v2| ≤ ε, with ε small enough, then the states x3 and x4 converge

toward the vicinity B(x34) ≤ δε (for simplicity B(x34) =
√
x2
3 + x2

4.), where the bound δε
can be made small by minimizing ε and, consequently, all the nonlinear terms in (3.4) can
be arbitrarily approximated to zero. This results in the dominance of the linear dynamics
over their, respectively, nonlinear dynamics. That is, signal v2 is then selected as a bounding
function, where ε is given latter in our discussion and δ is a small positive constant fixed as
needed.

In order to analyze the boundedness of both the state x3 and the state x4, we consider
the definite positive function given by

V1(x4, x3) =
1
2
(x3 − x4)2 +

1
2
x2
4. (3.5)

Differentiating (3.5) and taking into account (3.4) we have that

V̇1(x4, x3) = −2x2
4 + x4v2. (3.6)

Now, given the assumption |v2| ≤ ε we have that V̇1 is in fact bounded as follows:

V̇1(x4, x3) ≤ −|x4|(−ε + 2|x4|). (3.7)

(Evidently, when v2 ≈ 0, the subsystem (3.4) converges asymptotically to zero, because its
time derivative, given by (3.6), is equal to −2x2

4, semidefinite negative and, applying the
theorem of LaSalle, we have that, both variables, x3 and x4, converge to zero.) Note that if
|x4| > ε/2 + δ, with δ > 0 an arbitrarily small number, then, from (3.7), we have that V̇1 < 0.
Consequently, there exists a finite time T1 after which we have

|x4(t)| ≤ ε

2
+ δ; ∀ t > T1, (3.8)

that is x4 is bounded. Evenmore, because V1(x4, x3) is a nonincreasing function, provided that
|v2| ≤ ε, then the state x3 is also bounded. However, in order to compute the corresponding
bound of x3, we propose a positive function, W(x3) = x2

3/2, whose time derivative along the
of the dynamics of the state x3, in (3.4), satisfies

Ẇ(x3) = −x2
3 + x3v2 ≤ −|x3|(|x3| − ε). (3.9)
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It implies that there exists a finite time T2 > T1 such that

|x3(t)| ≤ ε + δ; ∀ t > T2. (3.10)

Remark 3.1. Summarizing, after some period of time t > T2, we have that variables, x3 and x4,
are bounded. Besides, it holds that

V̇1(x4, x3) < −3
2
x2
4 +

v2
2

2
. (3.11)

3.3. Stabilization of Both the State x2 and the State x1

In order to stabilize the missing state variables we propose the bounding control action v2 as
follows:

v2 = −σm(x2) − kiσm(x1), (3.12)

with the control parameter ki being characterized by 0 < ki < 1. Observe that in order to
simplify the corresponding bounded analysis, we used the linear saturation function σm(x1).
However, this function can be substituted by any other nonlinear saturation function. On the
other hand, we have that

|v2| ≤ ε � m(ki + 1). (3.13)

Then, after substituting the above controller into the second equation of (3.4) we get

ẋ2 = −σm(x2) − kiσm(x1) + α(z3)x2
4. (3.14)

We introduce now the following positive definite function:

V2 =
∫x2

0
σm(s)ds (3.15)

in order to verify the boundedness of the state x2. Differentiating V2 and using (3.14)we have
that

V̇2 = σm(x2)
(
−σm(x2) − kiσm(x1) − α(z3)x2

4

)
. (3.16)

Selecting m > kim + κ0ε
2/4 we can assure that V̇2 < 0, if |x2| > (ki + κ0ε

2/4m) + δ. Therefore,
there is a finite time T3 > T2 > 0 such that

|x2(t)| ≤ km2 � ki +
κ0ε

2

4m
+ δ; ∀ t > T3. (3.17)
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We emphasize that the restrictionm > δ + kim + κ0ε
2/4 can be always satisfied. Indeed, from

the definition of ε given in (3.13) we evidently have

1 > ki +
κ0m

4
(1 + ki)

2 +
δ

m
(3.18)

(just to illustrate how this inequality holds take, for instance, ki = 2/3, m = 1, and δ = 10−3,
for a given κ0 = 0.39). Finally, once the state x2 is confined to move inside the region defined
by km2 , the linear saturation function no longer acts over this state; that is, σm(x2) = x2.
Therefore, v2 turns out to be

v2 = −x2 − kiσm(x1). (3.19)

In the same way, after t > T3, we can claim that the model in (3.4) leads to

ẋ1 = −kiσm(x1) + 3α(z3)x2
4,

ẋ2 = −x2 − kiσm(x1) + α(z3)x2
4,

ẋ3 = −x3 − σm(x2) − kiσm(x1),

ẋ4 = −x4 − x3 − σm(x2) − kiσm(x1).

(3.20)

Now, in instead of showing that the state x1 is bounded, we show in what follows that, after a
finite period of time t > T3, all the states asymptotically converge to zero. Let us first introduce
the following useful lemma.

Lemma 3.2. Consider the first two equations in (3.20) and the following positive definite function:

Vm(x2, x1) =
∫x2

0
σm(s)ds + ki

∫x1

0
σm(s)ds. (3.21)

After a finite period of time t > T3, the following inequality holds:

V̇m(x2, x1) ≤ Kmx
2
4 −

1
2

(
x2
2 + k2

i σ
2
m(x1)

)
− 1
2
v2
2 , (3.22)

where Km � mκ0(3ki + 1) + δ.

The proof of this Lemma is given in Appendix A.

3.4. Asymptotic Convergence to the Origin of the Whole State

From the above discussion we conclude that, after the finite time t > T3 > 0, the states x1,
x2, and x3 are bounded in some compact set, which defines the closed-loop stability domain.
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To guarantee that all the states asymptotically converge to zero we propose the following
candidate Lyapunov function:

VT (x) = V1(x4, x3) + Vm(x4, x3), (3.23)

where V1 and Vm were previously defined in (3.5) and (3.21), respectively. Since functions
V1(∗) and Vm(∗) are strictly positive definite function, with their respective arguments, we
can claim that VT (x) qualifies as a candidate Lyapunov function. So, in case that t > T3 we
have that the time derivative of VT satisfies the following inequality (see Lemma 3.2 and
Remark 3.1):

V̇T (x) ≤ −
(
3
2
−Km

)
x2
4 −

1
2

(
x2
2 + k2

i s
2
m(x1)

)
. (3.24)

Selecting Km < 3/2 we have that V̇T (x) ≤ 0 (e.g., ki = 2/3 and m = 1, for a given κ0 = 0.39.)
From Lyapunov’s direct method we ensure the stability of the whole state in the Lyapunov
sense. In order to prove now asymptotic stability, we use the well-known LaSalle’s theorem
[25]. In the region defined as

S =
{
x ∈ R

4 : V̇T (x) = 0
}

(3.25)

we have that x4(t) = 0, x2(t) = 0, and x1(t) = 0. Thus, in the set S, we also have v2 = 0.
Now, from the four chained integrators model (3.4)we have x3(t) = 0, in the set S. Therefore,
the largest invariant set M ⊂ S is given by x = 0. Thus, according to LaSalle’s theorem all
the trajectories of system (3.20) asymptotically converge towards to the largest invariant set
M = {x = 0}.

We summarize our previous discussion with the next proposition, which corresponds
to our main result.

Proposition 3.3. Consider the closed-loop cart-pendulum system as described by model (2.5) with:

v = −z3 − 2z4 − σm(z2 + 2z3 + z4) − kiσm(z1 + 3z2 + 3z3 + z4). (3.26)

Then the closed-loop system is globally asymptotically stable and locally exponentially stable, provided
that the parametersm and ki satisfy the inequalities

1 > ki +
κ0m

4
(ki + 1)2 +

δ

m
, mκ0(3ki + 1) + δ <

3
2
. (3.27)

Remark 3.4. In order to simplify as much as possible the previous stability analysis we used
the proposed v2, which is formed using a linear saturation function. However, nonlinear
saturation functions can also be used, as we showed in Appendix B.
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Figure 2:Comparison between the closed-loop responses when the damping force is presented. The dotted
lines correspond to the system response when the damping force perturbation is present, while the solid
lines represent the case when this force is absent.

3.5. An Illustrative Example

In order to show the effectiveness of the proposed nonlinear control strategy we developed
an experiment that allows us to compare the behavior of the strategy, in the presence and the
absence of a damping force. The damping force was added to the left-hand side of the first
equation in (2.1), as 0.6θ̇. We chose the controller parameter values to be m = 1, ki = 0.666.
As far as the initial conditions are concerned we take (θ, θ̇, q, q̇) = (1.15 [rad], 0, 1, 0.25).
Figure 2 shows the results coming out from the numerical simulations. As can be seen
we have, as expected, a quite effective performance for the controller. Even when the
sustained damping force is present, the closed-loop response is still quite well. Observe that
in order to compensate the damping force effect the cart has to make larger displacements.
This numerical result is of importance, because, contrarily to our strategy, many others
developments for the same porpoises are very sensitive to the presence of an unmatched
damping force in the nonactuated coordinate.

4. Concluding Remarks

In this paper a new control strategy is proposed in order to solve the well-known cart-
pendulum regulation problem, assuming that the pendulum is initialized in the upper half
plane. The control strategy used a control-oriented model of the considered system (a model
consisted of a nonlinearly perturbed chain of four integrators), previously introduced in [22].
The model choice lets us design a simple stabilizer consisted of two parts. The first part
characterizes a linear controller, devoted to bring the nonactuated coordinate (i.e., both the
angular position and the angular velocity) near to the unstable vertical position and keep it
inside of a small vicinity which defines the closed-loop stability domain. The other part is a
bounded controller which, in conjunction with the linear part, ensures that the closed-loop
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whole state asymptotically converges to the origin. The combined control law ensures then
the regulation of the system. Our stability analysis was carried out using standard arguments
from linear systems theory in conjunction with the traditional Lyapunov method and the
famous LaSalle’s theorem. We strongly believe that many other nonlinear underactuated
dynamical systems can be stabilized using our simple control approach. We must point out
that a main advantage of this work is that we did not need to solve PDE, nonlinear differential
equations, and nested saturation functions. Finally, the numerical experiments carried out
with an academic example illustrated how effective is our control strategy when an unknown
damping force is present.

Appendices

A. Proof of Lemma 3.2

Proof. We must remark that the time derivative of Vm (3.21) around the trajectories defined
by the first two equations of (3.20) is given by

V̇m =

	0(x)︷ ︸︸ ︷
α(z3)x2

4(3kiσm(x1) + σm(x2)) +

	1(x,v2)︷ ︸︸ ︷
kiσm(x1)x2 − v2

2 . (A.1)

Then after t > T3 we must have v2 = −x2 − kiσm(x1). Therefore, 	1(x, v2) can be expressed as

	1(x, v2) = −1
2

(
x2
2 + k2

i σ
2
m(x1)

)
− 1
2
v2
2 , (A.2)

and evidently 	0(x) can be bounded by

|	0(x)| ≤ Kmx
2
4 � mκ0(3ki + 1)x2

4. (A.3)

Substituting (A.2) and (A.3) into (A.1), we get inequality (3.22), which concludes this proof.

B. Proof of Remark 3.4

Proof. For simplicity we use as nonlinear saturation function the following: m tanh(x). That
is, v is formed as:

v =

v1︷ ︸︸ ︷
(−x3 − x4) +

v2︷ ︸︸ ︷
(−m tanh(x2) − kim tanh(x1)) . (B.1)

Selecting v1 and the bound for v2 as discussed in Section 3 and taking into account
expressions (3.3) and (3.13), we guarantee that there exists a time t > T2, such that

|x4(t)| < ε

2
+ δ =

m(ki + 1)
2

+ δ; ∀ t > T2 > T1. (B.2)
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Therefore, the first and the second equations of (3.20) become

ẋ1 = x2 −m tanh(x2) − kim tanh(x1) + 3α(z3)x2
4,

ẋ2 = −m tanh(x2) − kim tanh(x1) + α(z3)x2
4.

(B.3)

To analyze the boundedness of x2, we use the positive definite function E2 = x2
2/2, whose

time derivative can be bounded as

Ė2 = −mx2 tanh(x2) − kimx2 tanh(x1) + x2α(z3)x2
4

≤ −m|x2|
(
|tanh(x2)| − ki − κ0m(ki + 1)2

4

)
.

(B.4)

Hence, selecting m and ki, such that

δ + ki +
κ0m(ki + 1)2

4
� ηmki < 1, (B.5)

therefore, there is a time t > T3 such that

|x2| < tanh−1(ηmki

)
� xmki , ∀ t > T3. (B.6)

Indeed, it follows because, if tanh(x2) > ηmki , then Ė2 < 0. Notice that the state x2 can be
confined to move inside of a compact set relying on the bound xmki . Note that this bound can
be manipulated, almost, as desired. Then we can select, for instance, xmki < 1.9 to make

|x − tanh(x)| < |tanh(x)|; ∀ |x| < 1.9 (B.7)

hold. Simple geometric arguments can be applied to prove this inequality. Until nowwe have
only provided sufficient conditions to guarantee that x2, x3, and x4 are bounded (with the
corresponding bounds being freely fixed). Now we are in conditions to proof that the whole
state asymptotically converges to the origin.

We first choose a positive function (similar to the one used in Lemma 3.2) defined as

Em(x2, x1) =
∫x2

0
sm(s)ds + ki

∫x1

0
sm(s)ds. (B.8)

Differentiating the above equation with respect to (B.3), we have, after using simple algebra
as in Lemma 3.2, the following inequality:

Ėm(x2, x1) ≤ Kmx
2
4 +

	(x)︷ ︸︸ ︷
ki tanh(x1)x2 − 1

2
(tanh(x2) + ki tanh(x1))

2 − 1
2
v2
2 . (B.9)
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Notice that 	(x) can be expressed as

	(w) = −1
2
tanh2(x2) −

k2
i

2
tanh2(x1) + ki tanh(x1)(x2 − tanh(x2)). (B.10)

Now, under the assumption t > T3, selecting xmki < 1.9, and taking into account (B.7) in the
above expression, we have

	(w) ≤ −1
2
tanh2(x2) −

k2
i

2
tanh2(x1) + ki|tanh(x1)||tanh(x2)|

≤ −1
2
(|tanh(x2)| + ki|tanh(x1)|)2.

(B.11)

Thus, Ėm can be bounded as

Ėm(x2, x1) ≤ Kmx
2
4 −

1
2
(|tanh(x2)| + ki|tanh(x1)|)2 − 1

2
v2
2 . (B.12)

We built now the candidate Lyapunov function ET = Em + V1, with V1 defined as in (3.5).
Then, using some simple algebra and Remark 3.1 it is easy to show that ĖT can be bounded
as

ĖT (x) ≤ −
(
3
2
−Km

)
x2
4 −

1
2
(|tanh(x2)| + ki|tanh(x1)|)2. (B.13)

Selecting Km < 3/2 (as in Proposition 3.3), we have that Ė is semidefinite negative. Hence
all the states are bounded. Finally, invoking the LaSalle’s theorem and following standard
arguments, we can show that the whole state of the closed-loop system asymptotically
converges to the origin. This concludes the proof.
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