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Nonnegative matrix factorization (NMF) is a popular tool for analyzing the latent structure of non-
negative data. For a positive pairwise similarity matrix, symmetric NMF (SNMF) and weighted
NMF (WNMF) can be used to cluster the data. However, both of them are not very efficient
for the ill-structured pairwise similarity matrix. In this paper, a novel model, called relationship
matrix nonnegative decomposition (RMND), is proposed to discover the latent clustering structure
from the pairwise similarity matrix. The RMND model is derived from the nonlinear NMF
algorithm. RMND decomposes a pairwise similarity matrix into a product of three low rank
nonnegative matrices. The pairwise similarity matrix is represented as a transformation of a
positive semidefinite matrix which pops out the latent clustering structure. We develop a learning
procedure based on multiplicative update rules and steepest descent method to calculate the
nonnegative solution of RMND. Experimental results in four different databases show that the
proposed RMND approach achieves higher clustering accuracy.

1. Introduction

Nonnegative matrix factorization (NMF) [1] has been introduced as an effective technique for
analyzing the latent structure of nonnegative data such as images and documents. A variety
of real-world applications of NMF has been found in many areas such as machine learning,
signal processing [2–4], data clustering [5, 6], and computer vision [7].

Most applications focus on the clustering aspect of NMF [8, 9]. Each sample can be
represented as a linear combination of clustering centroids. Recently, a theoretic analysis
has shown the equivalence between NMF and K-means/spectral clustering [10]. Symmetric
NMF (SNMF) [10] is an extension of NMF. It aims at learning clustering structure from
the kernel matrix or pairwise similarity matrix which is positive semidefinite. When the simi-
larity matrix is not positive semidefinite, SNMF is not able to capture the clustering structure
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contained in the subspace associated with negative eigenvalues. In order to overcome the
limitation, weighted NMF (SNMF) [10] is developed. In theWNMFmodel, the indefiniteness
of the pairwise similarity matrix is passed onto a specific low-rank matrix. WNMF improves
the clustering performance of SNMF. When a portion of data is labeled, it is desirable to
incorporate the class labels information into WNMF in order to improve the clustering
performance. To this end, a semisupervised NMF (SSNMF) [11] is studied by incorporating
the domain knowledge into WNMF to extract more clustering structure information.

In SNMF, WNMF, and SSNMF, the low rank approximation to the pairwise similarity
matrix is used. The goal is to learn the latent clustering structure by minimizing the
reconstruction error. However, since there is no prior knowledge about the data, the kernel
matrix is often obtained based on pairwise Euclidean distance in the high-dimensional space.
It is more sensitive to the unexpected noise. Consequently, it may produce undesirable
performances in clustering tasks by minimizing the objective function from the viewpoint
of reconstruction in the form as SNMF, WNMF, and SSNMF. In this paper, we present
a novel model, called relationship matrix nonnegative decomposition (RMND), for data
clustering tasks. The RMNDmodel is derived from the nonlinear NMF algorithms which take
advantages of kernel functions in the high-dimensional feature space. RMND decomposes
a pairwise similarity matrix into a product of a positive semidefinite matrix, a distribution
matrix of similarity on latent features, and an encoding matrix. The positive semidefinite
matrix pops out the clustering structure and is treated as a more convincing pairwise
similarity matrix by an appropriate transformation. RMND learns the correct relationship
matrix adaptively. Furthermore, according to the positive semidefiniteness, the SNMF
formulation is incorporated in RMND, and then a more tractable representation of pairwise
similarity matrix is obtained. We develop a learning procedure for RMND to discover the
latent clustering structure. Experimental results show that the proposed RMND leads to
significant improvements on clustering performance.

The rest of the paper is organized as follows: in Section 2, we briefly review the SNMF
and WNMF. In Section 3, we present the proposed RMNDmodel and its learning procedure.
Some experimental results on several datasets are shown in Section 4. Finally, conclusions
and final remarks are given in Section 5.

2. Symmetric NMF (SNMF) and Weighted NMF (WNMF)

A pairwise similarity matrix X is a nonnegative matrix, since the pairwise similarities
between different objects cannot be negative. For the kernel case, X = V TV is the standard
inner-product linear kernel matrix, where V is a nonnegative data matrix with size p×n. And
it can be extended to any other kernels. NMF technique is powerful to discover the latent
structure in X. Since X is a symmetric matrix, Ding et al. [10] introduced the SNMFmodel as
follows:

X ≈ AAT, (2.1)

where A is a nonnegative matrix of size n × q whose rows denote the degrees of the samples
related to the q centroids of clusters.

In (2.1), AAT is a positive semidefinite matrix. When the similarity matrix X is
indefinite, X has negative eigenvalues. AAT will not provide a good approximation, since
AAT cannot absorb the subspace associated with negative eigenvalues. For kernel matrices,
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decomposition in (2.1) is feasible. However, a large number of similarity matrices are
nonnegative but not positive semidefinite matrix. Ding et al. [10] introduced another
improved factorization model as

X ≈ ASAT, (2.2)

where S is a nonnegative matrix of size q × q which inherits the indefiniteness of X. The
detailed update rules for A and S can be found in [10].

3. Relationship Matrix Nonnegative Decomposition (RMND)

3.1. Proposed RMND Model

Both SNMF and WNMF are powerful methods for learning the clustering structure from
a pairwise similarity matrix or a kernel matrix. If the data from different latent classes are
well separated, X would be approximately a block diagonal matrix. It is easy to find the
clustering structure by SNMF and WNMF in that case. Thus, AAT and ASAT would be
approximately block diagonal matrices. SNMF and WNMF learn good approximation for
X. This is the simplest case in data clustering. In many real applications, data from different
latent classes often crossly corrupt. Then, X is not a block diagonal matrix although the data
is rearranged appropriately. By minimizing the reconstruction error in (2.1) and (2.2), SNMF
and WNMF would not find favorable clustering structure. The reason is AAT and ASAT

would be approximately block diagonal matrices for good clustering. Consequently, it is
desirable to build a new model for finding correct clustering structure and approximating
X well at the same time.

Recently, NMF has been extended to nonlinear nonnegative component analysis
algorithms (referred as KNMF) by Zafeiriou and Petrou [12]. KNMF is proposed to model
efficiently the nonlinearities that are present in most real-life applications. The idea of KNMF
is to perform NMF in the high-dimensional feature space. Specifically, KNMF is to find a
set of nonnegative weights and nonnegative basis vectors such that the nonlinearly mapped
training vectors can be written as linear combinations of nonlinear mapped nonnegative basis
vectors. Let φ : Rp+ → � be a mapping that projects data vi to a Hilbert space � of arbitrary
dimensionality. KNMF attempts to find a set of q vectors wj ∈ Rp+ and a set of nonnegative
weights hji such that

VΦ ≈WΦH, (3.1)

where VΦ = [φ(v1), . . . , φ(vn)] and WΦ = [φ(w1), . . . , φ(wq)]. The nonlinear mapping is
related to a kernel function with the operation as k(vi, vj) = φ(vi)Tφ(vj). The detailed
algorithms for directly learningW andH can be found in [12].

In this paper, we focus on the convex nonlinear nonnegative component analysis
algorithm (referred as CKNMF) in [12]. Instead of finding both W and H simultaneously,
Zafeiriou and Petrou followed the similar lines as convex-NMF [9] and assumed that



4 Mathematical Problems in Engineering

the centroid φ(wj) is in the space spanned by the columns of VΦ. Formally, φ(wj) can be
written as

φ
(
wj

)
= m1jφ(v1) + · · · +mnjφ(vn) =

n∑

l=1

mljφ(vl), (3.2)

where mlj ≥ 0 and
∑n

l=1mlj = 1. This means that the centroid φ(wj) can be interpreted as a
convex weighted combination of certain data point φ(vl). Using (3.2), approximation (3.1) is
reformulated in the matrix form as

VΦ ≈ VΦMH =⇒ X ≈ XMH, (3.3)

where X is the kernel matrix with the entry xij = k(vi, vj) = φ(vi)Tφ(vj). Equation (3.3)
provides a new decomposition of kernel matrix. Each matrix has the explicit interpretation.
X is the relationship matrix between different objects based on a certain kernel function, each
column of M denotes the relationship distribution on certain latent feature according to the
property of convex combinations, andH is the encoding coefficient matrix. In particular, we
rewrite (3.3) in an entry form as

xij ≈
n∑

r=1

q∑

s=1

xirmrshsj =
q∑

s=1

(XM)ishsj . (3.4)

It can be noted from (3.4) that (XM)is represents the weighted average relationship measure
correlated to object i on the sth latent feature, and then the relationship measure between
object i and j is a linear combination of the weighted average relationship measures on the
latent features.

However, (3.3) or (3.4) is not convincible for clustering tasks, since the kernel matrix
X cannot represent the relationship between different objects faithfully. It is more desirable to
discover the latent relationship adaptively. Consequently, we replace the X in the right hand
side in (3.3) by a latent relationship matrix

X ≈ RMH, (3.5)

where R denotes the correct relationship matrix. From (3.5), the correct relationship matrix R
would be adaptively learned from the kernel matrix X. X is a linear transformation of R. A
relationship matrixR, which pops out the latent clustering structure, is approximately a block
diagonalmatrix under suitable rearrangement on samples. It would be a positive semidefinite
matrix. SNMF model is reasonable to learn a low rank representation of matrix R. Thus, we
derive our new model, referred as relationship matrix nonnegative decomposition (RMND),
as follows:

X ≈ AATMH, (3.6)
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whereA is a nonnegative matrix whose rows denote the degrees of the samples related to the
centroids of clusters. The corresponding optimization problem of RMND is given by

min
A,M,H

D =
1
2

∥∥∥X −AATMH
∥∥∥
2

s.t. A ≥ 0, M ≥ 0, H ≥ 0,
∑

i

mij = 1, ∀j = 1, 2, . . . , q.
(3.7)

The objective function D of RMND in (3.7) is not convex for A, M, and H simultaneously.
Therefore, it is unrealistic to expect an algorithm to find the global minimum of D. As it is
known that AATMH = AATMUU−1H , where U is a diagonal matrix with ujj =

∑
i mij , the

normalization on M can be easily handled afterM is updated. Therefore, we only consider
the nonnegativity constraints on the factors. When A is fixed, let γjk and ψjk be the Lagrange
multiplier for constraints mjk ≥ 0 and hjk ≥ 0, respectively. We define matrix Γ = [γjk] and
Ψ = [ψjk], then the Lagrange multiplier L is

L =
1
2

∥
∥∥X −AATMH

∥
∥∥
2
+ Tr

(
ΓMT

)
+ Tr

(
ΨHT

)
, (3.8)

where ‖ · ‖ denotes the Euclidean norm and Tr(·) is the trace function. The partial derivatives
of Lwith respect toM andH are

∂L
∂M

= AATAATMHHT −AATXHT + Γ,

∂L
∂H

=MTAATAATMH −MTAATX + Ψ.

(3.9)

Using the KKT conditions γjkmjk = 0 and ψjkhjk = 0, we get the following equations:

(
AATAATMHHT

)

jk
mjk −

(
AATXHT

)

jk
mjk = 0,

(
MTAATAATMH

)

jk
hjk −

(
MTAATX

)

jk
hjk = 0.

(3.10)

The above equations lead to the following multiplicative update rules:

mjk ←− mjk

(
AATXHT

)
jk

(
AATAATMHHT

)
jk

,

hjk ←− hjk
(
MTAATX

)
jk

(
MTAATAATMH

)
jk

.

(3.11)

For factor matrix A, the corresponding partial derivatives ofD is

∂D

∂A
= AATMHHTMTA +MHHTMTAATA −XHTMTA −MHXA. (3.12)
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Input: Positive matrix X ∈ Rn×n, and a positive integer q.
Output: Nonnegative factor matrices A ∈ Rn×q,M ∈ Rn×q andH ∈ Rq×n.
Learning Procedure

(S1) Initialize A,M andH to random positive matrices, and normalize each column of A to one.
(S2) Repeat the iterations until convergence:

(1)H ← H ⊗ (MTAATX) � (MTAATAATMH).
(2)M ←M ⊗ (AATXHT ) � (AATAATMHHT ).
(3)M ←MU−1 andH ← UH whereU is a diagonal matrix with ujj =

∑
i mij .

(4) Repeatedly select small positive constant μA until the objective function is decreased.

(i) Ã := A − μA
∂D

∂A
.

(ii) Project each column of Ã to be nonnegative vector with unit L2 norm.
(5) A := Ã.
Above, ⊗ and � denote elementwise multiplication and division, respectively.

Algorithm 1: Relationship matrix nonnegative decomposition (RMND).

Our algorithm essentially takes a step in the direction of the negative gradient and,
subsequently, projects onto the constraint space, making sure that the taken step is small
enough that the objective function D is reduced at every step. The learning procedure for
RMND can be summarized as Algorithm 1.

3.2. Computational Complexity Analysis

In this subsection, we discuss the extra computational cost of our proposed algorithm in
comparison with SNMF and WNMF. We count the arithmetic operations for each algorithm.
Based on the updating rules in [10], it is not hard to count the arithmetic operations of each
iteration in SNMF and WNMF. For GNMF, the steepest descent method is used to update
factor matrix A. We use the bipartition to determine the small positive constant μA. Let
N1 be the maximum iteration number in the steepest descent method. We summary the
computational operation counts for each iteration in Table 1. Suppose that the algorithms
stop afterN2 iterations and the overall cost for both SNMF and WNMF is

O
(
N2qn

2
)
. (3.13)

The overall cost for RMND is

O
(
N2N1qn

2
)
. (3.14)

Then, the overall cost of SNMF, WNMF, and RMND is related to qn2, where n is the
number of samples. Much time is needed for large-scale data clustering tasks. For RMND,
its overall cost is also effected by the maximum iteration number N1 in the steepest
descent method. Nevertheless, RMND will be shown that it is capable of improving the
clustering performance in Section 4. We will develop algorithms for fast convergence and
low computational complexity in the future work.
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Table 1: Computational operation counts for each iteration in SNMF, WNMF, and RMND.

Method Fladd∗ flmlt� fldiv◦ overall

SNMF qn2 + 2q2n + 2qn qn2 + 2q2n + 2qn qn O(qn2)
WNMF 2qn2 + 4q2n + 2qn + 2q3 2qn2 + 4q2n + 2qn + 2q3 + q2 qn + q2 O(qn2)

RMND
(1 + 4N1)qn2 + (10 + 9N1)q2n
+(4 + 4N1)qn + (4 + 3N1)q3

+N1q +N1n2

(1 + 4N1)qn2 + (10 + 9N1)q2n
+(4+3N1)qn+(4+3N1)q3+N1n2

(3 +N1)qn O(N1qn2)

∗
fladd: a floating-point addition. �flmlt: a floating-point multiplication. ◦fldiv: a floating-point division.

4. Numerical Experiments

We evaluate the performance of five different methods, RMND,K-means clustering, spectral
clustering (SpeClus) [13], SNMF, and WNMF, in a task of data clustering. In RMND, once A
is learned, we denote X̂ = ÂÂT , where Â is the modification of A with normalized rows. We
apply K-means clustering on A,H and the factor matrices learned by SNMF and WNMF on
X̂. Finally, the best clustering results of RMND is obtained.

4.1. Datasets

We use five datasets for evaluating the clustering performance of algorithms. The detailed
description for the datasets is listed below.

(1) JAFFE [14] is a face database often used in the literature of face recognition. JAFFE
database contains 213 face images from 10 different persons under varying in facial
expression.

(2) Coil20 is a dataset consisting of 1440 images from 20 classes under varying in rota-
tions (http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php). For
simplicity, the first 10 classes are used in our experiments.

(3) reuters dataset [15] is from the news articles of the Reuters newswire. Reuters-21578
corpus contains 21,578 documents in 135 categories. We use the data preprocessed
by Cai et al. [15]. The documents with multiple category labels are discarded and
the dataset with 8067 documents in the largest 30 categories is derived. Then, we
randomly select at most 5 categories for efficiency.

(4) USPS is a dataset of handwritten digits from 0 to 9 (http://www.zjucadcg.cn/
dengcai/Data/MLData.html). These image data have been preprocessed by Cai
et al. [15]. The USPS dataset used here consists of mixed-sign data. The first 100
samples from each class are used in our experiments.

4.2. Evaluation Metrics for Clustering and Kernel Function

In all these methods, we set q, the dimensionality of feature subspace, to be equal to
the number of classes of datasets. Two performance measures (clustering accuracy and
normalized mutual information) are used to evaluate the clustering performance of
algorithms. If we denote the true label for the ith data to be ci, and the estimated label ĉi,
the clustering accuracy can be computed by

∑n
i=1(δ(ci, ĉi)/n), where δ(x, y) = 1 for x = y

and δ(x, y) = 0 for x/=y. The clustering accuracy achieves maximum value 1 when clustering
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results are perfect. Let T be the set of clusters obtained from the ground truth and T ′ obtained
from our algorithm. The normalized mutual information measure is defined by

NMI =
MI(T, T ′)

max(H(T),H(T ′))
, (4.1)

where MI(T, T ′) is the mutual information between T and T ′, H(T) and H(T ′) denote the
entropies of T and T ′, respectively. The value of NMI varies between 0 and 1. The greater the
normalized mutual information, the better the clustering quality.

In our experiments, we use Gaussian kernel function to calculate the kernel matrix.
And then, we evaluate the clustering performance of different algorithms. For comparison,
the same kernel matrix has been used in our experiments. The Gaussian kernel function used
here is as follows:

g
(
y, z

)
= e−‖y−z‖

2/2t2 , (4.2)

where t is a parameter.X is given by

xij =

⎧
⎨

⎩

e−‖vi−vj‖
2/2t2 , vi ∈Nl

(
vj
)
or vj ∈ Nl(vi),

0, otherwise,
(4.3)

where t is a heat kernel parameter [16] and Nl(vj) denotes a set of l nearest neighbors of
vj . For simplicity, we present a tunable way to set t as a square average distance between
different samples [17]

t =
√

m

2n2
∑

i,j

∥∥vi − vj
∥∥2
, (4.4)

wherem is a scale factor.

4.3. Experimental Results on the JAFFE Dataset

To demonstrate how our method improves the performance of data clustering, we firstly set
the number of nearest neighbors l = n − 1, the scale factor m = 1, where n is the number
of samples. Then, the pairwise similarity matrix X is the weighted adjacency matrix of the
fully connected graph similar to those in spectral clustering. Figure 1 displays the pairwise
similarity matrix obtained from the JAFFE dataset. It can be noted that X is ill structured.
In order to discover the latent clustering structure, we apply RMND, SNMF, and WNMF
algorithms to obtain the decomposition form of X, respectively. The factor matrices are
randomly initialized by the values in the range [0, 1]. Figure 2 shows that objective function
value decreaseswith increasing iteration number. It can be noted that the reconstruction error
of RMND is smaller than those of SNMF and WNMF after 500 iterations. Figures 3, 4, and 5
display the estimated pairwise similarity matrix of SNMF, WNMF, and RMND algorithms,
respectively. The estimated pairwise similarity matrix learned by RMND is more highly
structured. RMND produces better representations of kernel matrix than SNMF and WNMF.
SNMF and WNMF have similar representations of X when the algorithms are convergent.
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Figure 1: The pairwise similarity matrix X obtained from the JAFFE dataset.
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Figure 2:Objective function values as a function of the number of iterations for RMND, SNMF, andWNMF
on the JAFFE dataset.

4.4. Clustering Performance Comparison

Tables 2, 3, and 4 show the experimental results on the Coil20, Reuters, and USPS datasets
with the number of nearest neighbors l = n − 1 and the scale factor m = 1, respectively.
The evaluations are conducted with different numbers of classes, ranging from 4 to 12 for the
Coil20 dataset, 2 to 5 for the Reuters dataset, and 2 to 10 for the USPS dataset. The cluster
number indicates the class number used for experiments. In our experiments, the first k
classes in the database are used. For each given class number k, 20 independent tests are
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Figure 3: Estimated pairwise similarity matrix by applying SNMF to the JAFFE dataset.
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Figure 4: Estimated pairwise similarity matrix by applying WNMF to the JAFFE dataset.

conducted under different initializations. For the Reuters dataset, different randomly chosen
classes are used. And the average performance is calculated over these 20 tests. For each test,
K-means algorithm is applied 5 times with different start points, and the best result in terms
of the objective function of K-means is recorded. From these tables, it can be noticed that
RMND yields the best average clustering results on the three datasets although the clustering
accuracy of RMND is a little smaller than those of other methods for certain cases of class
numbers.
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Figure 5: Estimated pairwise similarity matrix by applying RMND to the JAFFE dataset.

Table 2: Clustering accuracy and normalized mutual information of K-means, spectral clustering
(SpeClus), SNMF, WNMF, and RMND on the Coil20 dataset.

Cluster
number

Clustering accuracy Normalized mutual information

k K-means SpeClus SNMF WNMF RMND K-means SpeClus SNMF WNMF RMND

4 0.6602 0.6736 0.6700 0.6682 0.6811 0.5173 0.5494 0.5245 0.5326 0.5578

6 0.4807 0.4816 0.4670 0.4852 0.5054 0.4572 0.4669 0.4283 0.4342 0.4456

8 0.5128 0.5412 0.4967 0.4702 0.5444 0.5312 0.5632 0.5346 0.4940 0.5634

10 0.5355 0.5594 0.5543 0.5104 0.5532 0.6048 0.6002 0.6080 0.5632 0.6055

avg. 0.5473 0.5640 0.5470 0.5335 0.5710 0.5276 0.5449 0.5135 0.5060 0.5431

Table 3: Clustering accuracy and normalized mutual information of K-means, spectral clustering
(SpeClus), SNMF, WNMF, and RMND on the Reuters dataset.

Cluster
number

Clustering accuracy Normalized mutual information

k K-means SpeClus SNMF WNMF RMND K-means SpeClus SNMF WNMF RMND

2 0.6325 0.7909 0.7665 0.7023 0.8457 0.1621 0.4119 0.3322 0.2584 0.5294

3 0.5536 0.6926 0.6857 0.6538 0.8022 0.2427 0.4999 0.4916 0.4391 0.6242

4 0.5301 0.6216 0.5766 0.5375 0.6634 0.2893 0.5064 0.4138 0.3097 0.5291

5 0.4366 0.5888 0.5635 0.4632 0.5817 0.2325 0.5567 0.4754 0.2950 0.5047

ave. 0.5382 0.6735 0.6506 0.5892 0.7233 0.2328 0.4937 0.4283 0.3246 0.5469

4.5. Clustering Performance Evaluation on Various Pairwise
Similarity Matrix

In graph embedding methods, the pairwise similarity matrix (also referred as affinity matrix)
has been widely used. In this subsection, we test our algorithm under different adjacency
graph constructions to show how the different graph structures will affect the clustering
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Table 4: Clustering accuracy and normalized mutual information of K-means, spectral clustering
(SpeClus), SNMF, WNMF, and RMND on the USPS dataset.

Cluster
number

Clustering accuracy Normalized mutual information

k K-means SpeClus SNMF WNMF RMND K-means SpeClus SNMF WNMF RMND

2 0.9650 0.9650 0.9650 0.9660 0.9900 0.8135 0.8135 0.9650 0.9660 0.9900

3 0.8867 0.8467 0.8700 0.8402 0.8912 0.6917 0.6380 0.6689 0.6656 0.7189

4 0.8015 0.7850 0.8057 0.7934 0.8421 0.6430 0.5904 0.6012 0.6118 0.6634

5 0.8392 0.7700 0.7864 0.7686 0.8354 0.6826 0.6147 0.6252 0.6195 0.6586

6 0.7330 0.7300 0.7206 0.6928 0.7325 0.6140 0.6110 0.5921 0.5633 0.6061

7 0.7194 0.7186 0.7155 0.6787 0.7331 0.6041 0.6063 0.5925 0.5656 0.6116

8 0.7199 0.7302 0.7194 0.7025 0.7463 0.6239 0.6320 0.6232 0.5987 0.6494

9 0.6932 0.7358 0.6937 0.6702 0.7007 0.5902 0.6406 0.5910 0.5640 0.5922

10 0.6343 0.6860 0.6527 0.6216 0.6725 0.5556 0.6023 0.5567 0.5333 0.5605

ave. 0.7769 0.7741 0.7699 0.7482 0.7938 0.6465 0.6388 0.6462 0.6320 0.6723
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Figure 6: Clustering accuracies derived by applying RMND, SNMF, and WNMF on the JAFFE database
versus different number of nearest neighbors.

performance. The number of nearest neighbors used in this paper defines the locality of
graph. In Figures 6 and 7, we show the relationship between the average clustering accuracies
and normalized mutual information versus different numbers of nearest neighbors under 20
independent runs and the scale factor m = 1, respectively. As can be seen, RMND performs
better when the number of nearest neighbors is larger than 60 and the maximum achieved
clustering accuracy is 86.62% when 190 nearest neighbors are used in (4.3). The normalized
mutual information is better after l > 150, and the maximum normalized mutual information
is 0.8429 at l = 210. For SNMF and WNMF, the best clustering accuracies are 84.55% and
82.82%, respectively, and the best normalized mutual information are 0.8373 and 0.8214,
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Figure 7: Normalized mutual information derived by applying RMND, SNMF, and WNMF on the JAFFE
database versus different number of nearest neighbors.
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Figure 8: Clustering accuracies derived by applying RMND, SNMF, and WNMF on the JAFFE database
versus different scale factorm.

respectively. This implies that RMND is more suitable to discover the clustering structure
contained in smoothed pairwise similarity matrix.

Note that the choice of parameters in (4.4) is still an open problem. To this end, we
explore the range of possible values of the scale factor m to determine the heat kernel
parameter. Specifically,m is taken from {0.2, 0.4, . . . , 2.0}. Figures 8 and 9 show the clustering
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Figure 9: Normalized mutual information derived by applying RMND, SNMF, and WNMF on the JAFFE
database versus different scale factorm.

accuracies and normalized mutual information on the JAFFE dataset under different scale
factors. n − 1 nearest neighbors are used in this experiment. Asm increases, the performance
decreases. The reason might be that the difference between different pairwise similarity
is small for larger value of m. The pairwise similarity matrix becomes more and more
ill structured. Nevertheless, RMND leads to better clustering performance compared with
SNMF and WNMF.

5. Conclusions and Future Work

We have presented a novel relationship matrix nonnegative decomposition (RMND) model
for data clustering task. The RMND model is formulated by decomposing a pairwise
similarity into a product of three low-rank nonnegative matrices which have explicit
interpretation. The correct relationship matrix is adaptively learned from the pairwise
similarity matrix by RMND.We develop a learning procedure based onmultiplicative update
rules and steepest descent method to calculate the nonnegative solution of RMND. Extensive
numerical experiments confirm that (1) RMND provides a favorable low-rank representation
of pairwise similarity matrix. (2) By using an appropriate kernel function, the ability of
RMND, SNMF, and WNMF to deal with mixed-signed data makes them useful for many
applications in contrast to original NMF. (3) RMND improves the clustering performance of
SNMF and WNMF.

Further future work includes the following topics. The first is to develop algorithms
for fast convergence and better solution in terms of minimizing the objective function. The
second is to investigate the ability of RMND on different kinds of kernel functions.
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