
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 872347, 17 pages
doi:10.1155/2011/872347

Research Article
Self-Tuning Random Early Detection Algorithm to
Improve Performance of Network Transmission

Jianyong Chen, Cunying Hu, and Zhen Ji

Shenzhen City Key Laboratory of Embedded System Design, College of Computer Science
and Software Engineering, Shenzhen University, Shenzhen 518060, China

Correspondence should be addressed to Jianyong Chen, cjyok2000@hotmail.com

Received 22 August 2010; Accepted 26 September 2010

Academic Editor: Ming Li

Copyright q 2011 Jianyong Chen et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We use a discrete-time dynamical feedback system model of TCP/RED to study the performance
of Random Early Detection (RED) for different values of control parameters. Our analysis shows
that the queue length is able to keep stable at a given target if the maximum probability pmax and
exponential averaging weight w satisfy some conditions. From the mathematical analysis, a new
self-tuning RED is proposed to improve the performance of TCP-RED network. The appropriate
pmax is dynamically obtained according to history information of both pmax and the average queue
size in a period of time. And w is properly chosen according to a linear stability condition of the
average queue length. From simulations with ns-2, it is found that the self-tuning RED is more
robust to stabilize queue length in terms of less deviation from the target and smaller fluctuation
amplitude, compared to adaptive RED, Random Early Marking (REM), and Proportional-Integral
(PI) controller.

1. Introduction

In computer network, congestion control has been a serious problem since the traffic always
appears complex nonlinear phenomena [1–3]. Especially, since multimedia communication
becomes more and more popular [4, 5], lack of effective management of congestion
significantly affects the performance of the network system, such as degradation of link
utilization, more round-trip time, and even makes a network inaccessible. At the same time,
various approaches have been proposed to solve the issue. These schemes can be divided
into two categories. One category strengthens congestion management at the sources while
making few changes to internet [6, 7]. The other one is to adapt Active Queue Management
(AQM) at each router, and eventually control congestion level, such as Random Early
Detection (RED) [8], Random Early Marking (REM) [9, 10], and Adaptive Virtual Queue
(AVQ) [11]. Among them, RED is the most prominent and well-studied AQM scheme. Also,
RED is used in wireless network to increase TCP throughput [12]. Although RED can prevent

2 Mathematical Problems in Engineering

global synchronization, reduce packet loss, and achieve high throughput, its performance of
both QoS and security is suspected by many researcher [13–17]. In particular, it is difficult to
parameterize RED to achieve good performance in various networks.

The main goal of AQM is to keep queue length stable while making a good tradeoff
between high throughput and low delay. As a queue management policy, RED gateway
manages queue by monitoring the average queue size qave. When qave exceeds the preset
lower threshold qmin, the arriving packets are randomly dropped or marked with a certain
probability. In that case, some connections can sense the early congestion, and the window
sizes are changed to avoid serious congestion. Once the average queue size is larger than
the upper threshold qmax, the RED gateway drops/marks every arriving packet to keep
qave below qmax. Although the RED algorithm is an effective mechanism to achieve high
throughput and low delay, some researchers note that RED is very sensitive to traffic load
and control parameters [13–16]. In particular, when qave becomes larger than qmax, lots of
packets are dropped and the throughput of the congested link decreases seriously. Many
modified RED algorithms are proposed to improve its robustness by optimizing either drop
probability function or control parameters.

Among these algorithms, one approach is to modify the packet drop probability func-
tion to improve the performances of RED and its robustness. In [18], Hollot et al. propose a PI
controller (Proportional-Integral controller) to response quickly to the change of TCP/RED
dynamics, and some research also study new adaptive schemes to improve the performance
of PI controller in recent years [19, 20]. Besides that, SPI-RED (Self-tuning PI-RED) and
NPD-RED (autonomous Proportional and Differential RED algorithm) are developed based
on the thought of PI controller in [21, 22]. In [23, 24], the authors analyze a decentralized
network congestion control algorithm and its local stability and propose E-RED to get high
link utilization in which the packet drop rate increases exponentially with qave. In [25], LRED
(Loss Ratio-based RED) is proposed, which takes the packet loss rate and queue length into
account to compute the dropping probability. In [26], some appropriate tools from feedback
control theory are used to design a novel AQM with the delay information of all the links.
Also, some studies attempt to use neural network for early congestion prediction [27, 28].
Although the performances of these modified algorithms are much better than the original
RED with higher throughput and lower queuing delay, they always induce additional
parameters that are needed to be optimized to accommodate different network scenarios.

Another approach does not change the basic idea of RED, but tunes the control
parameters to improve its robustness. Feng et al. have argued that there is no single set of
RED parameters which can work well under various congestion. In [14], original ARED
is proposed, which merely tunes the parameter pmax based on network traffic to keep qave

in the expected range [qmin, qmax]. To get better performance, Floyd et al. present a revised
version, also called Adaptive RED [15], which adopts AIMD mechanism (Additive-Increase-
Multiplicative-Decrease) to changes pmax slowly, ensuring qave in a smaller target range
between qmin and qmax. At the same time, they also provide some insights to set other
control parameters. In [29], SARED (Stabilized ARED) is proposed to increases the effect
of instant queue on average queue size by using a larger queue weight when the queue
size is out of the target area. By this way, SARED reacts much faster to queue changes
which further improves the robustness and throughput. In [30], an improved ARED is
developed to enhance the robustness of RED by adapting more proper range of pmax, and
the weight w is also adjusted according to a linear stability condition. Besides that, Sun et al.
proposed PD-RED (Proportional Derivative controller) to improve the performance of RED
[31, 32]. However, PD-RED does not consider the past history information. It is sensitive to

Mathematical Problems in Engineering 3

the short-lived and non-TCP traffics. In [33, 34], based on TCP channel model and traffic
characteristics, a framework is developed to get the bounds of pmax and the optimal weight,
respectively. In [35], the authors propose an AP-RED (Autoparameterization RED) based
on a fluid-flow model which stabilizes the instantaneous queue size under various networks
by adjusting qmin, qmax, pmax, and w. In [36–38], the authors also attempted to adjust pmax

to achieve better performance in some network conditions. In recent years, other control
parameters except pmax and w are also studied to improve the performance of RED [39].
Simulations demonstrated that these algorithms can maintain the queue length at the target
in specific network scenarios by tuning control parameters.

Although RED is sensitive to control parameters and network parameters, few of the
above reports concern its robustness affected from the control parameters. The setting of
parameters is still a problem in applications. In this paper, we analyze the performance of
RED with different values of control parameters for a given target and network scenario.
Based on the analysis, an improved algorithm, named self-tuning RED, is proposed whose
control parameters pmax is dynamically adjusted and the weight w is properly chosen
according to a linear stability condition [16]. A set of experiments demonstrate that the self-
tuning RED can keep queue length stable at the target value with smaller standard deviation
and less deviation from the target.

The rest of the paper is organized as follows. In Section 2, we describe a network
topology and then introduce the gentle RED algorithm and a discrete-time TCP-RED model.
In Section 3, based on the discrete-time network model, we analyze the impacts of the control
parameters on queue length and discuss the proper values of control parameters in detail
when the queue length stabilizes at a given target. In Section 4, a self-tuning RED algorithm
is described, and the setting of parameters is also discussed. Section 5 presents simulations
results and compares the self-tuning RED with various AQM schemes.

2. Discrete-Time Feedback Model for TCP-RED

In this paper, the network topology used is a dumbbell with a single bottleneck as shown
in Figure 1. There are N connections sharing a single link with the capacity C. It is assumed
that these connections are identical, long-lived TCP Reno connections and have the same
round-trip propagation delay d. The main purpose is to stabilize the nonlinear traffic and
thus improve the throughput [40, 41].

2.1. Random Early Detection

RED is a recommended scheme of AQM to avoid network congestion by the Internet
Engineering Task Force (IETF) [8]. In order to better control network congestion, the RED
gateway always measures its average queue size qave, and drops/marks the arriving packets
with the probability p to notify TCP ends of the incipient congestion when qave exceeds the
expected lower threshold qmin. When qave exceeds the expected upper threshold qmax, RED
gateway drops every arriving packet, so that it can control the average queue size within the
expected range [qmin, qmax], even in the absence of cooperating sources.

Gentle RED is a revised version of RED proposed by Floyd [42]. The main difference
of the two versions lies in the value of the drop probability p when qave varies from qmax to
double qmax. In the case, the original RED sets p to 1, while Gentle RED increases p linearly
from pmax to 1. By doing so, Gentle RED prevents the system from large oscillation due to

4 Mathematical Problems in Engineering

S1

S2

...

Sn

R1 R2
The bottleneck

D1

D2

...

Dn

Figure 1: Structure of the network.

dropping a lot of packets suddenly. In the study, Gentle RED is used, which can be described
by the following piecewise function

p =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 qave ≤ qmin,

1 qave ≥ 2qmax,

qave − qmin

qmax − qmin
pmax qmin < qave < qmax,

2pmax − 1 +
1 − pmax

qmax
qave qmax < qave < 2qmax.

(2.1)

Here, pmax is the drop probability when qave is equal to qmax and is also called the maximum
drop probability. qmax and qmin are the expected upper and lower thresholds of qave,
respectively. At the time of packet arrival, qave is updated with [8]

qave = (1 −w)q′ave +wq. (2.2)

Here, q′ave is average queue size at the previous time. q is instantaneous queue length. w is the
exponential averaging weight which is limited in the range [0, 1].

2.2. Discrete-Time Feedback Model for TCP-RED

To better understand and analyze the nonlinear interaction between RED and TCP, some
research propose different network model to analyze the property of real network [16, 43,
44]. In the paper, a discrete-time dynamical feedback TCP-RED model developed by Ranjan
et al. is used [16]. It is assumed that ECN (Explicit Congestion Notification) mechanism is
implemented at the RED gateway to provide the ends with congestion signals. According to
the model, q can be determined by some network parameters, such as the buffer size B, mean
packet size M, the number of connections N and a constant K within the range [1, (8/3)0.5].
qave can be expressed mathematically as [16]

qave = f
(
q′ave
)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 −w)q′ave, qave ≥ q1,

(1 −w)q′ave +w · B, qave ≤ q2,

(1 −w)q′ave +w ·
(
NK

p
− Cd

M

)

, otherwise.

(2.3)

Mathematical Problems in Engineering 5

2qmaxqmaxq1q2qmin

Average queue size qave

0
p2
p1

pmax

1

Target

D
ro

p
pr

ob
ab

ili
ty
p

Figure 2: Gentle RED algorithm.

Here, q1 = p1(qmax − qmin)/pmax + qmin, where p1 = (NMK/(dC))2 is the smallest drop rate
that leads to an empty queue at next time. q2 = p2(qmax − qmin)/pmax + qmin, where p2 =
(NMK/(dC + BM))2 is the biggest drop probability with full queue B at next time. C is the
capacity of the shared link, and d is round-trip propagation delay. Based on the discrete-time
model, the drop probability of Gentle RED algorithm is shown in Figure 2.

In the discrete-time model, it is noted that qave is updated over time scale of
approximately one RTT (Round-Trip Time) [16, 45], which is much longer than typical
interarrival times of packets in practice. Therefore, w in the model is much larger than
the value in ns-2 simulations. Given that wred is the exponential averaging weight at a
RED gateway, and that n is the number of packets transmitted over the link in one RTT,
w ≈ 1 − (1 − wred)

n ≈ n ·wred in the model.

3. Control Parameters of RED

In the section, we discuss the effect of pmax on the queue length and analyze the value of pmax

when q converges to the given target. Then, the effect of w on performance is also studied.
Finally, according to the linear stability condition, the maximum value of w that keeps q stable
is obtained.

3.1. Maximum Drop Probability pmax

An important objective of AQM is to stabilize the queue length at a given target so that the
network performance can be improved. First, the throughput of network can be improved.
Without stable queue, the queue size may be too short, leading to waste of bandwidth, or
become too long, which means serious congestion and more packets to be dropped. Second,
stable queue size means stable end-to-end delay and better QoS. However, the control
parameter pmax directly impacts the aggressiveness of RED [14]. If a small value of pmax

is used in heavily-congested networks, then early detection is too conservative to provide
sufficient congestion signals. As a result, qave oscillates around qmax. By contrast, a large pmax

in light congestion networks may lead to lots of packets lost, and qave may fluctuate around
qmin. Figure 3 presents the average queue size and queue length with RED when pmax is varied

6 Mathematical Problems in Engineering

10.90.80.70.60.50.40.30.20.10

Maximum drop probability pmax

200

300

400

500

600

700

800

A
ve

ra
ge

qu
eu

e
si

ze
q a

ve

(a)

10.80.60.40.20

Maximum drop probability pmax

0

200

400

600

800

1000

1200

1400

Q
ue

ue
le

ng
th
q

(b)

Figure 3: (a) Average queue size and (b) queue length with respect to the maximum drop probability.

from 0.01 to 1.0. The result is in the agreement with the general results in [14]. In simulations,
the parameters are the same as in [16]: C = 75 Mb/s, K = (3/2)0.5, M = 4, 000 b, d = 0.1 s,
N = 250, qmax = 750 packets, qmin = 250 packets, B = 3750 packets, and w = 0.02.

From Figure 3, we can see that different values of pmax result in both qave and q either
oscillating or stabilizing at the same values. When pmax is set to 0.01, qave is very large and
oscillates around qmax = 750, and q oscillates more seriously. As pmax increases, both qave and
q stabilize at the same value within [qmin, qmax]. We also find that when pmax is larger than
0.95, qave and q fluctuate with the same oscillation center qmin = 250. To sum up the results,
if pmax is set appropriately with other proper control parameters, it is possible to stabilize
qave and q at a desired value within [qmin, qmax]. In other words, if qave is stable, it means that
q is also stable. Therefore, only qave is necessary to be examined. In the following section,
configuration of pmax is studied to get robust value of qave at a given target queue length.

Mathematical Problems in Engineering 7

Suppose that qave stabilizes at the point q∗ave, the point satisfies the equation q∗ave =
f(q∗ave) from (2.3). By substituting (2.1) into (2.3), we have [45]

CM
(
qmax − qmin

)

r1.5

√
pmax +

(
CMqmin + dC2

)(pmax

r

)0.5

−NMKC = 0. (3.1)

Here, r = (qmax − qmin)/(q∗ave − qmin). pmax can be obtained from above equation,

pmax =
r(NMK)2

(
Mq∗ave + dC

)2
. (3.2)

From (3.2), one can see that pmax not only depends on some fixed network parameters,
such as the number of connections N, mean packet size M, and the round-trip propagation
delay d, but also depends on the value of the fixed point q∗ave. In other words, when network
parameters are unchanged, there exists a unique value of pmax to keep qave at the given
expected value. Suppose that the target queue length qtarget is the fixed point, pmax that yields
to qave = qtarget can be configured by (3.2). In that case, r = (qmax − qmin)/(qtarget − qmin).

3.2. The Properties of pmax

In (3.2), there is a constant K, which relies on network scenarios used in practical application
[43], such as TCP version, ACK ways. Therefore, it is necessary to get the value of K before
pmax is configured. In the discrete-time model, given RTT with R and drop probability with p,
the throughput of a TCP Reno connection can be simply expressed as [16]

T
(
p, R
)
=
MK√
pR

. (3.3)

By solving the above equation, the constant K can be obtained. However, the
configuration of each user may be different, and K is different. To capture the whole network
character, we use the mean throughput (the total throughput of the congested link/the
number of connections ratio) to represent the throughput of each connection.

In order to smooth out burst traffic, time is firstly divided into consecutive sampling
period with each of size δt, and then q∼ave is taken as the mean value of qave in δt. It can be
regarded as the fixed point at which the queue length stabilizes in δt. If q∼ave is larger than 0,
the link utilization is 100%. In the case, K can be calculated by

MK
√
p
(
d + q∗aveM/C

) =
C

N
. (3.4)

From the drop probability function (2.1), it is noted that the RED gateway drops every
arriving packet if qave > qmax, while it does not drop any one if qave < qmin. Therefore, qave

cannot be always above qmax or below qmin. When a small pmax is adapted, qave oscillates
around qmax, but a large pmax leads qave oscillating around qmin. Therefore, if other control
parameters are proper except pmax, q∼ave ∈ [qmin, qmax] at most time. Given that p∗max is the

8 Mathematical Problems in Engineering

maximum drop probability used in the last period δt, we have p = p∗max(q
∼
ave − qmin)/(qmax −

qmin) by (2.1), therefore K can be expressed as follows:

K =

√((
q∼ave − qmin

)
/
(
qmax − qmin

))
p∗max

(
dC +Mq∼ave

)

NM
. (3.5)

By substituting q∗ave = qtarget, r = (qmax − qmin)/(qtarget − qmin) and (3.5) into (3.2), we
have

pmax = p∗max
q∼ave − qmin

qtarget − qmin

(
d +Mq∼ave/C

Mqtarget/C + d

)

. (3.6)

From (3.6), it is found that pmax is independent of the load of the network (the
number of connections N). This is a desirable property as a good AQM scheme since the
number of connections accessing a link is out of network manager’s control. In particular,
when one packet needs to go through different sets of bottlenecks, the traffic load may vary
dramatically. However, we can adjust pmax according to (3.6) as long as we monitor the
variation of qave in recent δt and degrade the sensitivity to traffic load to some extent.

In order to simultaneously achieve low average queuing delay and high throughput,
one rule of thumb is to require that the average queuing delay dtarget is only a fraction of
round-trip time R, [15]. Thus, the end-to-end delay is mainly caused by d, and dtarget is also
a fraction of d, that is, dtarget
 d. In order to ensure qave ∈ [qmin, qmax], qtarget is generally set
to (qmin + qmax)/2 in applications, that is, r = 2 [15]. Since r = 2, dtarget = qtarget ∗M/C and
q∼ave ∈ [qmin, qmax], we have

Mq∼ave

C

 2Mqtarget

C

 d. (3.7)

According to (3.6), the maximum drop probability can be approximately rewritten as
follows:

pmax ≈ p∗max
q∼ave − qmin

qtarget − qmin
. (3.8)

As you can see that pmax, to a large extent, is determined by the lower threshold qmin,
the expected queue length qtarget, the prior network state q∼ave and p∗max. Therefore, pmax tends
to be less sensitive to the round-trip propagation delay d and more stable for a large value
of d. In other words, pmax determined by (3.6) is suitable to be used for a wider variety of
scenarios.

3.3. Exponential Averaging Weight w

Based on the above analysis in Section 3.2, it is concluded that if other parameters are
configured properly, the value of pmax given by (3.6) can yield to a stable queue length
of qtarget. Besides pmax, there are also various system parameters (d,M,C) and control
parameters (qmin, qmax, qtarget, w). Since system parameters are fixed once the network

Mathematical Problems in Engineering 9

0.20.190.180.170.160.150.140.130.12

Exponential averaging weight w

300

320

340

360

380

400

420

440

A
ve

ra
ge

qu
eu

e
si

ze
q a

ve

Figure 4: Bifurcation diagram of average queue size with respect to w.

topology is determined, network managers usually adjust control parameters to achieve
stable queue length. The thresholds (qmin, qmax) and qtarget refer to the tradeoffs between
throughput and delay, which are constants in general and should be set in advance. To sum
up, the weight w becomes the only parameters to be adjusted besides pmax. As discussed in
Section 3.1, stabilizing q at a target queue size can be obtained by maintaining qave at the
point. By this means, we study the effect of w on qave in the following section.

The linear stability of a fixed point q∗ave can be achieved, as long as the absolute value
of the associated eigenvalue λ is not larger than 1 [16]

|λ| =
∣
∣
∣
∣
∣
∣

∂f
(
q′ave
)

∂q′ave

∣
∣
∣
∣
∣
q∗ave

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
1 −w wNK

2
√
v
(
q∗ave − qmin

)3/2

∣
∣
∣
∣
∣
. (3.9)

Here, v = pmax/(qmax − qmin) means the increase factor of p. Figure 4 plots the average
queue size for the fixed point q∗ave = 345.1 when w varies from 0.12 to 0.2. In simulations, we
set pmax = 0.1, and other parameters are the same as those described in Section 3.1.

Forw < 0.1578, qave converges to the fixed point q∗ave = 345.1. At the same time, |λ| also
stays below 1 that can be got from (3.9). As w increases, PDB (Period Doubling Bifurcation)
emerges from the fixed point, and then chaos appears with |λ| > 1. It implies that if |λ| > 1,
qave will be unstable. In other words, if qave is on the point, the system oscillates and even
becomes chaotic. In the following section, we discuss the case |λ| < 1

Because all the parameters in (3.9) are positive, λ must be smaller than 1. The linear
stability condition can be rewritten as λ > −1.

λ = 1 −w − wNK

2
√
v
(
q∗ave − qmin

)3/2
> −1. (3.10)

10 Mathematical Problems in Engineering

Now, we consider the case that q ave stabilizes the target queue length qtarget. By
substituting q∗ave = qtarget, r = (qmax − qmin)/(qtarget − qmin) and (3.2) into (3.10), we have

λ = 1 −w −w NK

2
√(

r(NMK)2/
(
Mqtarget + dC

)2
)
· (1/(qmax − qmin

)) · ((qmax − qmin
)
/r
)3

= 1 −w − 1
2
wr

Mqtarget + dC

M
(
qmax − qmin

) > −1.

(3.11)

Solving the above inequality with r = (qmax − qmin)/(qtarget − qmin), we have

w <
2

1 + (1/2)r
(
Mqtarget + dC

)
/M
(
qmax − qmin

) =
4

3 +
(
qmin + dC/M

)
/
(
qtarget − qmin

) .

(3.12)

The inequality (3.12) shows that whether qave is stable at qtarget or not is determined
by control parameters (qmin, qtarget) as well as network system parameters (d,C,M). For
example, it is evident that the maximum value of w is 0.1578 by (3.12) for qtarget = 345.1 in the
above simulation, which is consistent to the result of Figure 4. In applications, the exponential
averaging weight at gateway can be approximately expressed as wred = w/n, as discussed in
Section 2.2.

It is noteworthy that the inequality (3.12) is the linear stability condition of qave rather
than q. If w is set properly (not too small) by (3.12), qave can reflect the current network
congestion level and the variation of q. In the case, stable average queue length at the target
means stable queue length at the point, which is verified in Section 3.1. If w is too small, the
effect of instant queue length on qave can be ignored, and qave cannot accurately represent
the network congestion level. Therefore, the queue length may oscillate even though qave is
stable. The inequality (3.12) provides the upper threshold of w, we still need further study
the case with lower bound of the weight in future.

4. The Self-Tuning RED Algorithm

From the analysis in the previous sections, it is evident that that both pmax and w are key
factors to make qave approach to qtarget. Once the network sceneries (d,C,M), the control
parameters (qmin, qmax) and the expected target queue length qtarget are determined, the
maximum value of w can be obtained by (3.12), while pmax can also be got indirectly by
monitoring the performance of the network in (3.6). Based on the above conclusions, a
new self-tuning RED can be developed to improve the robustness of RED, as shown in
Algorithm 1.

There are two parameters δt and w to be configured in the self-tuning RED. The
inequality (3.12) gives the upper threshold of w, but there is not a theoretical method to
choose a better value. Simulations in Section 5.1 also show that the queue length keeps close
to the target for all the given different values of w once (3.12) is satisfied. Considering that
RED is used in congestion control, it is necessary to respond fast to network congestion,

Mathematical Problems in Engineering 11

set w by the inequality(3.12)
every qave update

Sum = sum + qave;
n = n + 1;
If now > L time + δt
q∼ave = sum/n;
update pmax by formula (3.6)
sum = 0;
n = 0;
L time = now;

Parameters:
now: current time
L time: the last time pmax was calculated
δt: sampling period
sum: the sum of qave in the period of δt
n: the total number of qave sampled during δt

Algorithm 1: Self-tuning RED algorithm.

especially, in heavy congestion. In addition, with a large value of w, the average queue size
is more sensitive to the change of queue length. Therefore, the value of w should be large
enough to response to the variation of the queue length.

δt is related to the accurate estimation of K and q∼ave. If δt is too short, the estimation
of q∗ave may be affected by temporary burst traffic or instability of queue length. However, if
δt is set too long, it will take a long time to respond to network congestion. In our improved
algorithm, it is reasonable to observe qave and pmax for several RTTs. There are two reasons: (1)
the connections need more time than one RTT to react effectively to the current congestion
level, so the system needs at least such long time to become stable; (2) if p∗max is adjusted
slowly and infrequently, the queue may be more stable that has been verified in Adaptive
RED [15]. In the following simulations, we set δt ≈ 10RTTs.

There are some parameters (qmin, qtarget, d, C, andM) in (3.6) and (3.12). In application,
the control parameters (qmin, qtarget) are configured according to the expected queuing delay
and the capacity of the link [15]. The link capacity C and mean packet size M is known
for RED gateway. The round-trip propagation delay d may be difficult to know. However,
d can be replaced by RTT in (3.12), since the linear stability condition is also satisfied. For the
maximum drop probability, d has less effect on it as discussed in Section 3.2. Therefore, we
do not need the accurate value of d, and we can estimate the value of d based on statistics.
In the following section, we randomly generate propagation delay of the links except the
shared one, and adapt approximate value d = 150 ms to simulate. The results show that the
self-tuning RED can performs well with the estimated value.

5. Simulations

In this section, we evaluate the performance of the proposed RED algorithm by a number
of simulations using ns-2 simulator. Other RED variants such as REM, Adaptive RED, and
PI-controller are used to compare with the self-tuning RED. The network topology used in
simulations is a dumbbell topology with a single bottleneck link and many identical, long-
lived TCP Reno flows, as shown in Figure 1. The parameters used are the same as those in

12 Mathematical Problems in Engineering

100806040200

Time (seconds)

800

1000

1200

1400

1600

1800

2000

2200

Q
ue

ue
le

ng
th

(p
ac

ke
ts
)

Figure 5: Instantaneous queue length (N = 200).

[16]: the capacity and delay of the common link are set to 150 Mb/s and 30 ms, respectively.
Other links have a capacity of 30 Mb/s, and the propagation delays are randomly selected
from [10 ms,35 ms]. Given these parameters, the average round-trip propagation delay is
about 150 ms. All sources are ECN-capable, and mean packet size is 500 bytes. The buffer size
B between R1 and R2 is set to 7500 packets (about bandwidth-delay product). The window
size of each TCP connection is 1125 (the bandwidth-delay product of the link). Therefore, the
maximum window size will not restrict the sending rate of packet in all scenarios, and it can
trigger congestion even with small connections.

The basic parameters of adaptive RED and the self-tuning RED are set at qmin = 750
packets, qmax = 2250 packets, and pmax = 0.01. For adaptive RED, the parameters are set
the same as [15]: α = 0.01, β = 0.9, w = 0.000014305 and interval = 2 s. For PI controller,
PI coefficients a and b are 1.822 × 10−5 and 1.816 × 10−5, respectively [18]. For REM, ϕ =
1.001, α = 0.1, γ = 0.001, and the sampling interval is 2 ms. For the self-tuning RED, δt = 2 s
and w = 0.00048814. In the following simulations, the target queue size is 1500 packets. The
simulations run for 100 s, and the results are recorded every 0.1 s.

5.1. Performance under Extreme Conditions

In this experiment, we test the performance of the self-tuning RED for a constant number
of TCP connections under two extreme cases: (1) light congestion with N = 200, (2) heavy
congestion with N = 1000.

In order to clearly present the variation of the instantaneous queue length, the range of
y-axis is reduced to [750, 2250]. At the same time, the range of x-axis is also reduced. Figures
5 and 6 demonstrate the dynamic change of the instantaneous queue length with N = 200
and N = 1000, respectively. From Figures 5 and 6, one can see that in both cases, the queue
length stabilizes near the target of 1500 packets after about 4 s and 10 s, respectively. The mean
value of instantaneous queue length is 1499.4 for N = 200 versus 1500.0 for N = 1000, and
the standard deviations is 44.8 for N = 200 versus 48.3 for N = 1000. It implies that the queue
length can be basically stable at the target with only small steady-state errors. However, it

Mathematical Problems in Engineering 13

100806040200

Time (seconds)

800

1000

1200

1400

1600

1800

2000

2200

Q
ue

ue
le

ng
th

(p
ac

ke
ts
)

Figure 6: Instantaneous queue length (N = 1000).

100806040200

Time (seconds)

800

1000

1200

1400

1600

1800

2000

2200

Q
ue

ue
le

ng
th

(p
ac

ke
ts
)

Figure 7: Instantaneous queue length with changeable number of connections.

seems to take a bit long time to become stable. The reason is that the large window size of
connections leads to slow response. From the two experiments, it can be seen that the time
to keep queue length stable does not increase greatly as the load increases (the number of
connections). In addition, the fluctuation amplitude of queue length is very small under the
above conditions. To some extent, the results show that the self-tuning RED overcomes the
sensitivity to the load and shows good robustness.

5.2. Response with a Variable Number of Connections

In the experiment, the performance of the self-tuning RED is examined when the number
of TCP connections varies. In initialization, the number of connections is set to 500. 100

14 Mathematical Problems in Engineering

Table 1: Comparison of simulation results.

AQM schemes Experiment 1 Experiment 2 Experiment 3

Mean STD Mean STD Mean STD Mean STD

REM 1511.5 136.3945 1503.0 222.6198 1512.9 133.7802 1500.6 138.6165

Adaptive RED 1421.4 41.1214 1393.9 56.2061 1480.1 54.1401 1383.2 47.2175

PI 1498.2 61.1963 1501.8 61.4224 1501.8 57.8878 1490.5 58.8450

IRED 1499.5 39.3947 1499.0 59.9636 1503.1 43.8353 1495.8 46.0050

additional TCP connections join the link at 50.0 s. Figure 7 shows that the instantaneous queue
length becomes relatively stable near the queue target of 1500 packets. After 100 additional
flows starting at 50.0 s, the queue first oscillates with a period of 2 s and then quickly becomes
stable with about 1500 packets. The result is got with large window size. If small window size
is adapted, it may take shorter time to approach robustness. From Figure 7, we can find that
the self-tuning RED achieves a short response time and good robustness with variation of the
number of connections.

5.3. Comparisons with Existing AQM Schemes

To investigate the performance of various AQM schemes in real network, we implement
the following experiments: (1) adding short-lived TCP flows, (2) adding unresponsive UDP
flows, and (3) changing the number of the long-lived TCP flows.

Table 1 gives the average value (mean in Table 1) and the standard deviation (STD in
Table 1) of the instantaneous queue length for the four AQM schemes in every experiment. To
compare the steady-state performance, we calculate the average and the standard deviation
of queue length for second half (50 s).

Experiment 1. Adding short-lived TCP flows. There exist some short-lived flows as burst
traffic in networks, which can affect the performance of an AQM scheme. In the experiments,
the impact of the short-lived flows is investigated for various AQM schemes. In the first,
the initial number of connections is set to 500, and then 500 short-lived TCP flows randomly
arrive in interval [0, 100] s. The duration of the short-lived flows is uniformly distributed in
[1 s, 2 s]. Other parameters are the same as those in the above simulations.

From Table 1, it is evident that the performance of REM scheme is the worst since
the algorithm cannot maintain the queue length at 1500, and its standard deviation is the
largest. With adaptive RED, the fluctuation amplitude of the average queue length is smaller
than those with REM, which shows that Adaptive RED behaves much better than REM in
the experiments. Although adaptive RED has less standard deviation than PI controller, the
deviation from the target is larger than the latter. Thus, adaptive ARED performs worse than
PI controller. It is found that the self-tuning RED has less standard deviation with 39.3947
versus PI controller with 61.1963. Evidently, the self-tuning RED is more stable. To sum up the
results, the self-tuning RED clearly performs better than the other schemes in the experiment.

Experiment 2. Adding unresponsive UDP flows. In this experiment, we study the perfor-
mance of the AQM schemes with the UDP flows. According to the study in [46], long-lived
TCP connections account for 95% of the traffics in Internet. It is necessary to examine the effect
from the UDP flow. In the experiment, 50 UDP flows are added besides 500 long-lived TCP

Mathematical Problems in Engineering 15

connections. These UDP flows start at random time uniformly distributed in [0, 100] s, so the
UDP flows can be regarded as 25 long-lived TCP connections. Each UDP is CBR (Constant
Bit Rate) at the rate of 300 Kb, and the mean packets size is 500 bytes. When the queue is not
empty, the sending rate of each UDP flows is nearly equal to that of TCP. By this means, the
total traffic of the UDP flows account for about 5% of the traffic, which is enough to study its
impact on the performance of the network.

From Table 1, we can find that with Adaptive RED, the queue cannot converge to the
target value of 1500 packets (it does at about 1393), but the standard deviation with 56.2 is
smaller than other algorithms. By comparing the magnitudes of oscillation for the four AQM
schemes, it is found that REM leads to a largest oscillation, which implies its weak robustness.
When the self-tuning RED is compared with PI controller, it can be seen that the two schemes
are successful to get stable queue size with only small fluctuation at the target value. We can
also see that the self-tuning RED has a little better performance than PI controller with less
deviation from the target and smaller fluctuation amplitude. To sum up, the self-tuning RED
is better than other algorithms in terms of robustness when the UDP flows exist.

Experiment 3. Change the number of the TCP connections. In the following experiments, the
self-tuning RED is compared with REM, adaptive RED, and PI controller in cases that the
number of TCP connections varies. In the first simulation, the initial number of connections
is set to 500, and then 100 TCP flows start at a random time in the range [0, 100] s. In the
second simulation, the initial number of connections is set to 600, and 100 of them stop at the
time uniformly distributed over a period of 100 s.

In both cases, the four AQM schemes perform as similarly as in the two above
simulations. Due to large fluctuation, REM performs poorly in terms of robustness. With
adaptive RED, the fluctuation amplitude of the queue size is very small, but it has a smaller
mean queue length. PI controller outperforms Adaptive RED and REM because of less
fluctuation amplitude with about 58 and smaller deviation with 10 packets from the target
value. Since there are no other contenders, the self-tuning RED is compared with PI controller.
In the first experiment, the mean queue length is 1503.1 with the self-tuning RED versus
1510.8 with PI controller. The standard deviation of queue length is 43.8353 with the self-
tuning RED versus 57.8878 with the PI controller. In the second experiment, the mean queue
length is 1495.8 with the self-tuning RED versus 1490.5 with the PI controller. The standard
deviation of queue length is 46.0050 with the self-tuning RED versus 58.8450 with the PI
controller. It is evident that the self-tuning RED is slightly closer to the 1500 target with
smaller fluctuation amplitude, and performs much better than PI controller, adaptive RED,
and REM.

6. Conclusions

In this paper, we study the effect of control parameters on queue length for a given target.
Based on theoretical analysis, a self-tuning RED algorithm is proposed, which can keep queue
length stable at the target value by adjusting the maximum drop probability and setting a
proper exponential averaging weight. A number of simulations show that the self-tuning
RED performs better than various AQM algorithms in term of deviation from the target and
the fluctuation of queue length. In addition, the self-tuning RED does not change the basic
principle of the RED algorithm, and can be simply applied in practice. For future work, it is
necessary to further study the issue under wider network scenarios with various bandwidths
and multiple bottleneck links.

16 Mathematical Problems in Engineering

Acknowledgment

The work was supported by National Natural Science Foundation of China (Grants nos.
60703112, 60873264, and 61070214).

References

[1] E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to
coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID
428903, 13 pages, 2010.

[2] E. G. Bakhoum and C. Toma, “Relativistic short range phenomena and space-time aspects of pulse
measurements,” Mathematical Problems in Engineering, vol. 2008, Article ID 410156, 20 pages, 2008.

[3] M. Li, “Fractal time series—a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article
ID 157264, 26 pages, 2010.

[4] S. Y. Chen, Y. F. Li, and J. Zhang, “Vision processing for realtime 3-D data acquisition based on coded
structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp. 167–176, 2008.

[5] S. Y. Chen, Y. F. Li, Q. Guan, and G. Xiao, “Real-time three-dimensional surface measurement by color
encoded light projection,” Applied Physics Letters, vol. 89, no. 11, Article ID 111108, 2006.

[6] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to end congestion avoidance on a global internet,”
IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465–1480, 1995.

[7] R. J. La and V. Anantharam, “Utility-based rate control in the Internet for elastic traffic,” IEEE/ACM
Transactions on Networking, vol. 10, no. 2, pp. 272–286, 2002.

[8] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM
Transactions on Networking, vol. 1, no. 4, pp. 397–413, 1993.

[9] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “REM: active queue management,” IEEE Network, vol.
15, no. 3, pp. 48–53, 2001.

[10] H. Wang, X. T. Ma, and Z. H. Tian, “A fuzzy self-tuning random exponential marking algorithm based
on enhanced price,” Computer Simulation, vol. 35, no. 8, pp. 128–146, 2009.

[11] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual queue (AVQ) algorithm for
active queue management,” in Proceedings of the Conference on Applications, Technologies, Architectures,
and Protocols for Computers Communications (SIGCOMM ’01), pp. 123–134, San Diego, Calif, USA,
August 2001.

[12] S. B. Lee, K. Hur, J. Park, and D.-S. Eom, “A packet forwarding controller for mobile IP-based
networks with packet buffering,” IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1344–
1350, 2009.

[13] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 9, pp. 1368–1372, 2010.

[14] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring RED gateway,” in Proceedings of
the 18th Annual Joint Conference of the IEEE Computer and Communications Societie (INFOCOM ’99), pp.
1320–1328, March 1999.

[15] S. Floyd, R. Gummadi, and S. Schenker, “Adaptive RED: an algorithm for increasing the robustness
of RED’s active queue management,” 2001, http://www.icir.org/floyd/papers/adaptiveRed.pdf.

[16] P. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities in TCP-RED,” IEEE/ACM Transactions on
Networking, vol. 12, no. 6, pp. 1079–1092, 2004.

[17] C. Zhang, J. Yin, Z. Cai, and W. Chen, “RRED: robust RED algorithm to counter low-rate denial-of-
service attacks,” IEEE Communications Letters, vol. 14, no. 5, pp. 489–491, 2010.

[18] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and design of controllers for AQM routers
supporting TCP flows,” IEEE Transactions on Automatic Control, vol. 47, no. 6, pp. 945–959, 2002.

[19] X.-C. Lu, M.-J. Zhang, and P.-D. Zhu, “Adaptive PI active queue management algorithm,” Journal of
Software, vol. 16, no. 5, pp. 903–910, 2005.

[20] J. Sun, M. Zukerman, and M. Palaniswami, “A stable adaptive PI controller for AQM,” in Proceedings
of the International Symposium on Communications and Information Technologies (ISCIT ’07), pp. 707–712,
Sydney, Australia, October 2007.

[21] N. Xiong, Y. Pan, X. Jia, J. H. Park, and Y. Li, “Design and analysis of a self-tuning feedback controller
for the Internet,” Computer Networks, vol. 53, no. 11, pp. 1784–1797, 2009.

[22] N. Xiong, A. V. Vasilakos, L. T. Yang et al., “A novel self-tuning feedback controller for active queue
management supporting TCP flows,” Information Sciences, vol. 180, no. 11, pp. 2249–2263, 2010.

Mathematical Problems in Engineering 17

[23] S. Liu, T. Başar, and R. Srikant, “Exponential-RED: a stabilizing AQM scheme for low- and high-speed
TCP protocols,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 1068–1081, 2005.

[24] S. Guo, X. Liao, C. Li, and D. Yang, “Stability analysis of a novel exponential-RED model with
heterogeneous delays,” Computer Communications, vol. 30, no. 5, pp. 1058–1074, 2007.

[25] C. Wang, J. Liu, B. Li, K. Sohraby, and Y. T. Hou, “LRED: a robust and responsive AQM algorithm
using packet loss ratio measurement,” IEEE Transactions on Parallel and Distributed Systems, vol. 18,
no. 1, pp. 29–43, 2007.

[26] Y. Ariba, F. Gouaisbaut, and Y. Labit, “Feedback control for router management and TCP/IP network
stability,” IEEE Transactions on Network and Service Management, vol. 6, no. 4, pp. 255–266, 2009.

[27] B. Hariri and N. Sadati, “NN-RED: an AQM mechanism based on neural networks,” Electronics
Letters, vol. 43, no. 19, pp. 1053–1055, 2007.

[28] H. C. Cho, M. S. Fadali, and H. Lee, “Neural network control for TCP network congestion,” in
Proceedings of American Control Conference (ACC ’05), pp. 3480–3485, June 2005.

[29] H. Javam and M. Analoui, “SARED: stabilized ARED,” in Proceedings of the International Conference on
Communication Technology (ICCT ’06), pp. 1–4, November 2006.

[30] J. Chen, C. Hu, and Z. Ji, “An improved ARED algorithm for congestion control of network
transmission,” Mathematical Problems in Engineering, vol. 2010, Article ID 329035, 14 pages, 2010.

[31] J. Sun, K.-T. Ko, G. Chen, S. Chan, and M. Zukerman, “PD-RED: to improve the performance of RED,”
IEEE Communications Letters, vol. 7, no. 8, pp. 406–408, 2003.

[32] T. Wei and S. Y. Zhang, “Fuzzy self-tuning PD-RED algorithm,” Computer Engineering and Applications,
vol. 43, no. 5, pp. 124–126, 2007.

[33] B. Zheng and M. Atiquzzaman, “A framework to determine bounds of maximum loss rate parameter
of RED queue for next generation routers,” Journal of Network and Computer Applications, vol. 31, no. 4,
pp. 429–445, 2008.

[34] B. Zheng and M. Atiquzzaman, “A framework to determine the optimal weight parameter of RED
in next-generation internet routers,” International Journal of Communication Systems, vol. 21, no. 9, pp.
987–1008, 2008.

[35] W. Chen and S.-H. Yang, “The mechanism of adapting RED parameters to TCP traffic,” Computer
Communications, vol. 32, no. 13-14, pp. 1525–1530, 2009.

[36] L. Tan, W. Zhang, G. Peng, and G. Chen, “Stability of TCP/RED systems in AQM routers,” IEEE
Transactions on Automatic Control, vol. 51, no. 8, pp. 1393–1398, 2006.

[37] F. Liu, Z.-H. Guan, and H. O. Wang, “Controlling bifurcations and chaos in TCP-UDP-RED,” Nonlinear
Analysis: Real World Applications, vol. 11, no. 3, pp. 1491–1501, 2010.

[38] S. Woo and K. Kim, “Tight upper bound for stability of TCP/RED systems in AQM routers,” IEEE
Communications Letters, vol. 14, no. 7, pp. 682–684, 2010.

[39] S. Misra, B. J. Oommen, S. Yanamandra, and M. S. Obaidat, “Random early detection for
congestion avoidance in wired networks: a discretized pursuit learning-automata-like solution,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B, vol. 40, no. 1, pp. 66–76, 2010.

[40] C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,”
Telecommunication Systems, vol. 43, no. 3-4, pp. 207–217, 2010.

[41] C. Cattani and A. Kudreyko, “Harmonic wavelet method towards solution of the Fredholm type
integral equations of the second kind,” Applied Mathematics and Computation, vol. 215, no. 12, pp.
4164–4171, 2010.

[42] S. Flyod, “Recommendation on using the “gentle” variant of RED,” 2000, http://www.icir.org/
floyd/red/gentle.html.

[43] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the TCP congestion
avoidance algorithm,” Computer Communication Review, vol. 27, no. 3, pp. 67–82, 1997.

[44] C. Y.-F. Ho, B. W.-K. Ling, and H. H. C. Iu, “Symbolic dynamical model of average queue size of
random early detection algorithm,” International Journal of Bifurcation and Chaos, vol. 20, no. 5, pp.
1415–1437, 2010.

[45] R. J. La, P. Ranjan, and E. H. Abed, “Analysis of adaptive random early detection (Adaptive RED),”
in Proceedings of the 18th International Teletraffic Congress (ITC’03), Berlin, Germany, 2003.

[46] C. Casetti and M. Meo, “New approach to model the stationary behavior of TCP connections,”
in Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM ’00), pp. 367–375, March 2000.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

