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Many genetic algorithms (GA) have been applied to solve different NP-complete combinatorial
optimization problems so far. The striking point of using GA refers to selecting a combination of
appropriate patterns in crossover, mutation, and and so forth and fine tuning of some parameters
such as crossover probability, mutation probability, and and so forth. One way to design a robust
GA is to select an optimal pattern and then to search for its parameter values using a tuning
procedure. This paper addresses a methodology to both optimal pattern selection and the tuning
phases by taking advantage of design of experiments and response surface methodology. To show
the performances of the proposed procedure and demonstrate its applications, it is employed to
design a robust GA to solve a project scheduling problem. Through the statistical comparison
analyses between the performances of the proposed method and an existing GA, the effectiveness
of the methodology is shown.

1. Introduction and Literature Survey

The combinatorial optimization involves problems in which their set of feasible solutions is
discrete or can be reduced to a discrete one, and the goal is to find the best possible solution.
In areas such as routing, task allocation, scheduling, and so forth, most of the problems are
modelled in the form of combinatorial optimization problems.

Due to the NP completeness of many combinatorial optimization problems, they are
quite difficult to be solved analytically, and exact search algorithms such as branch and bound
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may degenerate to complete enumeration, and the CPU time needed to solve themmay grow
exponentially in the worst case. To practically solve these problems, one has to be satisfied
with finding good and approximately optimal solutions in reasonable, that is, polynomial
time.

In recent decades, researchers have developed evolutionary algorithms to solve the
combinatorial problems with practical sizes. Evolutionary algorithms (EA) form a class of
search methods that work by incrementally improving the quality of a set of candidate solu-
tions by variation and selection (Eiben and Smith [1]). Genetic algorithms suggested by
Holland [2] is an evolutionary algorithm based on the principles of survival of the fittest and
adaption originated of Darvin’s evolution theorem. According to evolution theorem, new
offspring is generated by joining old generations. An offspring with more fitness to environ-
ment is more able to survive and reproduce. The basic GA idea is as follow: the genetic
pool of a given population potentially contains the solution, or a better solution, to a given
adaptive problem. This solution is not “active” because the genetic combination on which it
relies is split between several subjects. Only the association of different genomes can lead to
the solution. This algorithm increases the fitness of solutions by the simulation of evolution
process. For more details, see Goldberg [3] and Deb [4].

The two major steps in applying any GA to a particular problem are the specification
of the representation and the evaluation (fitness) function (Deb [5]). These two items form
the bridge between the original problem context and the problem-solving framework. The
“chromosomes” encode a group of linked features of the problem, and the “Genes” encode
the activation or deactivation of a feature. When defining a GA one needs to choose its
components, such as variation operators (crossover, mutation, and recombination) that suit
the representation, selection mechanisms for selecting parents and survivors, and an initial
population (Ng and Perera [6]). Each of these components may have parameters, for instance,
the probability of mutation, the problem of crossover, or the population size. The values of
these parameters greatly determine whether the algorithm will find a near-optimum solution
and whether it will find such a solution efficiently.

Evolution in GA is partly made at random, and the other part is based on both the
behaviour of the applied patterns in component of GA and the setting desired values of the
GA parameters. Therefore, the efficiency of a GA extremely relates to the selection of good
patterns and tuning of its parameters. Many researchers have tried to optimize their GAs so
far. In total, setting GA parameters are commonly divided into two cases: parameter control,
and parameter tuning. In case of parameter control the parameter values are changing during
a GA run. This requires initial parameter values and suitable control strategies, which in turn
can be deterministic, adaptive, or self-adaptive (Eiben et al. [7]). For the case of parameter
tuning, much attention has been focused on finding the theoretical relationship among these
parameters. Schwefel [8] developed theoretical models for optimal mutation rates with
respect to convergence and convergence rates in the context of function optimization.

De Jong and Spears [9] presented theoretical and empirical results on interacting roles
of population size and crossover in genetic algorithm. As other approaches in optimization
of GA parameters, Friesleben and Hartfelder [10] proposed a meta-GA approach in which
both GA components and GA parameters are tuned. They demonstrated the importance of
the right choice for the GA operators. Samples et al. [11] showed how parameter sweeps can
be used for robustness and correlation analysis. Preuss and Bartz-Beielstein [12] embedded
sequential parameter optimization in a wider framework of experimental EA design.
However, majority of parameter tuning are based on design of experiment (DOE). Bagchi
and Deb [13] proposed a DOE approach (a factorial design) to calibrate the parameters of
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GA using pilot GA runs of relatively short length. As other implementations of DOE for
parameter calibration, Ruiz and Maroto [14] and Ruiz et al. [15] used DOE to select the best
GA component while previous works just considered DOE for setting parameter values.
In addition, Saremi et al. [16] applied DOE to find the effects of individual parameters
(factors) as well as to reveal any significant interaction among parameters. In the general
field of experimental design, a paradigm shift that emphasizes a low cost of tuning over the
performance of optimal parameter values was due to Taguchi and Wu [17]. For more studies
on optimization of GA, parameters refer to François and Lavergne [18], Czarn et al. [19],
Costa et al. [20, 21], and Lobo et al. [22].

While in the previous researches, there has been less attention in selecting the optimum
or near the optimum pattern for the components of a GA and tuning its parameters simul-
taneously, in this paper, we attempt to introduce a new approach in which at first the effects
of the GA components and parameters as well as their interactions are statistically analyzed.
Then, in the second step, the optimal values of the parameters are discovered. Whereas the
previous works have just assessed the effects of parameters while they were adjusted on
some discrete points, in the present work we, search a continuous interval in order to find the
optimal values of the parameters.

The organization of the rest of the paper is as follows. The description of the proposed
methodology is given in Section 2. Section 3 contains the application of the proposed proce-
dure in a project scheduling problem. The performance evaluation and statistical analyses
of the proposed method applied to a project scheduling problem come in Section 4. Finally,
Section 5 concludes and suggests some future areas of research.

2. The Proposed Methodology

A genetic algorithm is designed as a combination of patterns in encoding, generation, selec-
tion, joining, replacement, and stopping criteria. Although different patterns have been
proposed to encode and to generate initial population, the relationships between the problem
variables and the condition of the search range play an important role in designing the pat-
terns. Nevertheless for other components of a GA, while a desirable combination is usually
unknown, almost all existing patterns can be generally used. Furthermore, it seems that to
design a robust GA, one needs to employ the following three phases:

Phase 1: designing different patterns to create the, algorithm

Phase 2: finding the significant combination of, and the designed patterns

Phase 3: tuning the parameters of the significant combination.
In the next subsections, we first review some of the most commonly used patterns of

the GA components and then demonstrate the existing methods in the last two phases. At the
end of this section, the proposed methodology will be described.

2.1. Phase 1: Designing Different Patterns to Create the Algorithm

In this section, we review some of the most commonly used patterns in GA components.

2.1.1. The Encoding Patterns

In a typical optimization problem, there exists a wide discrete/continuous range of points
named search range, and the goal is to find a point that leads us to the optimal solution.
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An essential characteristic of GAs is the encoding of the variables that describe the problem.
There are many encoding patterns. Some patterns such as binary and gray encode the prob-
lem by a set of ones and zeros, and some others such as random keys, permutation, and real
value encodings use numeric values to represent the chromosomes. For a review of encod-
ing patterns, each with specific characteristic and capability, see (e.g. Jenkins [23], Hajela
[24], Reeves [25]). Among these patterns, the real encoding has been shown to have more
capability for complex problems (Andrzej [26]).

2.1.2. The Selection Patterns

Some of the most prevalent of the chromosomes’ selection patterns proposed so far are based
on the chromosomes’ fitness and are the roulette selection (Michalewicz [27]) and the tourna-
ment selection (Back et al. [28]). Some other patterns do not deal with the chromosomes’
fitness such as random selection in which the chromosomes are randomly selected and
unlike selection in which all chromosomes attend the joining processes. A comparison of
the selection varying schemes has been performed by Goldberg and Deb [29].

2.1.3. The Crossover Patterns

One of the most important components of a GA is the crossover operator. There are two broad
classes of the crossover operation, namely, the point crossovers (Deb [5]) and the uniform
crossover (Syswerda [30]). In a point crossover, the string of the parents’ chromosomes is
randomly cut on one or more points. Then by replacing the existing genes between the cut
points of the parents’ chromosomes, a new child is created. However, in a uniform crossover,
any genes of both parents’ chromosomes have a chance to attend the child’s chromosome.

Traditionally, GAs have relied upon point crossovers. However, there are many
instances in which having a higher number of crossover points is beneficial (Eshelman et al.
[31]). Furthermore, perhaps the most surprising result is the effectiveness of the uniform
crossover. Uniform crossover produces, on average, L/2 crossings on string length L (Spears
and De Jong [32]). In addition to empirical investigations, considerable effort has been
directed towards the theoretical comparisons between different crossover operators (De Jong
and Spears [33]). Nonetheless, these theories are not sufficiently general to predict when to
use crossover, or what form of crossover to use.

2.1.4. The Mutation Patterns

Another important operator of a GA is mutation that acts like an insurance policy against
premature loss of important information (Goldberg [3]). Since the mutation is a structural
change in a set of candidate genes of a chromosome, it is directly related to the designed en-
coding pattern. For example, in a binary encoding, mutation can be defined as changing the
value of a gene from one to zero. However, two common viewpoints exist to perform the
mutations that are not related to the encoding pattern. In the first one, a mutation proba-
bility is assigned to each child. Whenever the mutation is going to be performed, it just
has to decide to mutate all of the candidate genes of a child or none. In the second one,
a mutation probability is assigned to each candidate gene. Then, through each mutation
operation, the algorithm faces a number of decision-making steps that is equal to the number
of the candidate genes. In fact, for each candidate, the algorithm has to assess whether
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the mutation is performed or not. Therefore, it usually occurs that some of the candidates
have been mutated and the rest stay without any change.

2.1.5. The Replacement Patterns

In a GA, the children of the old generation are replaced with the newly generated children. A
variety of methods have been proposed in the literature for this task. In one of these methods
called (M,L), in each generation the M existing chromosomes generate L new children and
then through L-generated children M new children are chosen for the next generation. It is
obvious that in this method Lmust be greater thanM. Otherwise, after some generations the
population size may become zero. In the second method named (M + L), the M existing
chromosomes in each generation create L new children and then through these M + L
available chromosome,M children are chosen. Michalewicz [27] experimentally showed that
the (M,L) method performs better than the (M + L) method in terms of the solution quality.
In another replacement method named Elitism, few of the most fitted children are directly
reproduced to the next generation, and the other members of the new generation are created
based on the genetic operators. This replacement method has the potential of converging
to the global optimal effectively. When this method is used, the number/percentage of
the reproduced children can be considered as one of the GA parameters. Finally, another
replacement strategy is called preselection in which if any child shows better fitness than its
parents, it is replaced with the one with better fitness (Goldberg [3]).

2.1.6. The Stopping Patterns

The stopping criteria are usually of two types. The first one (such as either reaching a prede-
fined number of iteration or a predefined iteration time of running GA) is called the passive
stopping criterion in which the algorithm independently of the obtained results is stopped.
The second one (such as either reaching a unique solution in some sequential generations or
the difference between the average fitness of some sequential generations is low) is called the
sequential criterion in which stopping the GA depends on the quality of the obtained results.
Both of these criteria may be treated as the GA parameters.

In summary, some of the predetermined patterns along with their parameters and
symbols used to describe them are given in Table 1. It should be noted that selecting the
significant combination of the patterns among more designed patterns would lead to more
accurate basis of designing a robust GA. Many of these patterns have the same structure such
that they can be transformed to each other during their designing phase. In this case, the
pattern creation and designing do not need too much times and efforts.

2.2. Phase 2: Finding the Significant Combination of the Designed Patterns

While the performances of a GA (responses) are affected by some controllable factors such
as encoding, selection, crossover, mutation, replacement, and stopping patterns, as well as
uncontrollable factors in which their different combinations would result in different per-
formances, design of experiments can be implemented to study the effects of the input factors
and their interactions on the system performances and delineate which factor(s) has (have)
the most effect(s) on the response(s). Furthermore, when the study involves two or more
factors, factorial designs are generally the most efficient way of delineating the significant
factors (Montgomery [34]).
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Table 1: Common patterns in designing GA components and their parameters.

Component Operators Parameters Symbols

Parent selection

Roulette — A1

Tournament Tour size A2

Random — A3

Unlike — A4

Recombination
One point Crossover probability B1

Two point Crossover probability B2

Uniform Crossover probability B3

Mutation Prob. to any child Mutation probability C1

Prob. to any gene Mutation probability C2

Replacement methods

(M + L) L D1

(M,L) L D2

Elitism Number of chromosomes for reproduction D3

Preselection — D4

Stopping criteria Passive Number of iteration/time E1

Sequential Number of the successive iterations with the
same best solution E2

In designing a robust GA, the effects of different patterns and parameters along with
their interactions can be analyzed using a factorial design such as a full factorial design (a
2k factorial), or a 2k−p fractional factorial design, in which k is the number of factors and p
represents a fraction. If the results of the analysis of variance table of such designs indicate
statistical significance, then a post hoc analysis may be performed to assess the important
factor(s). The least significant difference (LSD) and the Duncan tests are among the tests
that compare all paired factor means and delineate the important factor(s) (Montgomery
[34]). Either of these tests as well as others may be employed to find the important patterns
affecting the efficiency of the designed GA.

2.3. Phase 3: Tuning the Parameters of the Significant Pattern Combination

Response surface methodology (RSM) is a collection of statistical and mathematical tech-
niques useful for modelling and analysis of problems in which responses affected by several
variables, and its goal is to optimize these responses. In most of these problems, the relation
between the response and the factors (independent variables) is not definite, requiring to
first estimate this relationship. To do this, if there exists no curvature in the response surface,
one can employ the first order model; otherwise, a model of higher order (usually a second
order model) should be used. Then, a level combination of the factors should be found such
that the optimal value of the response is reached. To do this, the deepest ascent method
(for maximization problem) or the deepest descent method (for minimization problem) are
employed to move on a path with the most gradient that makes the most increase or decrease
in the objective function. A comprehensive survey of RSM refers to Myers and Montgomery
[35].

In order to tune the parameters of the designed GA, one may use RSM. If the relation
between the algorithm efficiency and the important GA parameters is linear, then depending
on the constraints (time and cost) on the size of experiments either the 2k factorial or 2k−p
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fractional factorial design is used. In case the relation is nonlinear, the central composite
design (CCD) or other desirable designs can be applied to estimate the response function.
The response surfaces for designing a robust GA may be defined as (a) minimization of the
relative deviation percentage (RDP) obtained by employing the algorithm to the optimal
result and (b) minimization of the algorithm runtimes or optimization of another goal set by
the algorithm designers. In case of multiple goals, the multiobjective optimization methods
such as goal programming (GP), fuzzy goal programming (FGP) (Narasimhan [36], Tiwari
et al. [37]), or the other known methods can be applied.

The present methodology can be carried out independent of the selected encoding
pattern. This is due to the fact that the patterns work independent of encoding as they use
the fitness of chromosomes. In other words, regardless of the encoding patterns, we need to
have a method to calculate the fitness of chromosomes. There is also a similar consequence
for the replacement patterns. They all are either completely free of encoding type or in some
situations such as Elitism they are only associated with the fitness. For the most important
part of GA, that is, the crossover pattern, since some characteristics (genes) of patterns are
replaced through the point and the uniform crossovers, the methodology is applicable in
all encoding patterns. The only part of GA that is associated with the encoding system is
mutation. As explained in Section 2.1.4, there are two strategies regulating how the designed
mutation is applied. In this case, since different patterns can be defined through the encoding
type, the present methodology can be still applicable.

In the next section, a project scheduling problem is used to demonstrate the steps
involved in the proposed methodology along with its possible implementation in practice.

3. Application of the Proposed Methodology in
a Project Scheduling Problem

Project scheduling problem is an important branch of combinatorial optimization problem in
which the goal is optimization of one or some objectives subject to constraints on the activities
and the resources. Due to its NP-Hardness structure, researchers have widely considered
metaheuristics, particularly genetic algorithms, in order to solve it. Among these research
works, different chromosome encodings and parameter settings have been introduced so
far. For example, the priority-value based and priority rule-based representations were
developed by Lee and Kim [38] and Özdamar [39], respectively. Hartmann [40] and Alcaraz
and Maroto [41] used permutation-based encoding. Furthermore, Alcaraz and Maroto [41]
compared different selection operators and showed the best is the 2-tournament operator in
which two individual solutions are selected randomly from the current population, and the
best fitted is selected as a parent-solution. Gonçalves et al. [42] presented a genetic algorithm
for the resource constrained multiproject scheduling problem based on random keys for the
chromosome encoding. To adjust the parameters, they investigated four factors: (1) the top
percentage from the previous population chromosomes that are copied to the next generation
(TOP), (2) the bottom percentage of the population chromosomes that are replaced with
randomly generated chromosome (BOT), (3) the crossover probability (CProb), and (4) the
population size. A small pilot study was performed by experimenting the combinations of
these factors.

Resource investment problem with discounted cash flows introduced by Najafi and
Niaki [43] is a branch of project scheduling problems in which the projects aremathematically
formulated so that the resource levels and starting times of activities are the decision



8 Mathematical Problems in Engineering

1

3

4

2
5

0

1

4

1

2

Figure 1: Graph of the example network.

variables. Since the cash flows occur during the project, its goal is maximization of net present
value of the project cash flows. This is anNP-hardmodel and cannot be easily solved.Najafi et
al. [44] developed a model of this problem by minimal and maximal time lags and suggested
a genetic algorithm to solve it. In their GA, a real-valued encoding has been used to represent
the chromosomes. In this regard, each individual chromosome, I = (S1, S2, . . . , Sn), is a vector
consisting n genes where n denotes the number of the project activities. Each position in
the chromosome denotes the corresponding activity number, and the value of gene i states
the starting time of activity i at the precedence feasible schedule of the chromosome. For
example, consider a project whose network is depicted in Figure 1. The values located in the
nodes indicates the activity numbers and the ones associatedwith the arcs connecting activity
i to activity j display the minimum time lag between start to start activity i as predecessor
of activity j. For the network shown in Figure 1, I = (0, 0, 2, 5, 6) is a chromosome showing a
real schedule for starting time of the activities.

Since Andrzej [26] showed that the real encoding has more capability for complex
problems and the algorithm of Najafi et al. [44] has a real-value based representation for
chromosomes, in this research, we decided to implement them as well. Shortly, the tour-
nament selection pattern (A2)was the choice of selecting the parents.Moreover, the crossover
operation has been performed in a combination method involving two operators (one-point
crossover (B1) and uniform crossover (B2)). For mutation operation, assigning a probability
to any chromosome (C1) and for children replacement, the preselectionmethod (D4) has been
selected. In addition, to stop the algorithm a combination of two criteria has been applied, a
predefined number of iteration along with a number of sequence generations with the same
good solution. All of the patterns used in their algorithm have been reached based on a trial
and error method. They tested the algorithm on 180 test problems included 10, 20, and 30
nondummy activities with 1, 3, and 5 resources and compared their GA solutions with the
ones obtained by solving the mathematical models of the problem.

3.1. Phase 1: Designing Different Patterns

Since having more patterns are desired for a robust GA, in addition to the ones devised by
Najafi et al. [44], we designmore pattern combinations in the algorithm efficiency comparison
study. For this purpose, one other selection pattern, the unlike selection (A4), assigning a
probability to any candidate gene for mutation (C2), and the Elitism replacement method
(D3) are also employed. The tournament and the unlike patterns are the two levels of factor
A. Furthermore, both one-point and uniform crossover operators are considered in the study.
While the one-point and the uniform crossover operators were considered as a combined
factor in Najafi et al. [44] method, in this research they are the two levels of factor B. The
probability assignment to both the children and the genes are the two levels of factor C.
The two levels of factor D are the preselection and the Elitism. Factor E has two levels of
the number of iterations (passive stopping criterion) and reaching a good solution in three
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Table 2: The coded factor levels.

Factors
Coded levels

High level (+1) Low level (−1)
A Tournament Unlike
B One-point crossover Uniform crossover

C
A probability to any

child
A probability to any

gene
D Preselection Elitism
E Passive Sequential
F 0.9 0.7
G 0.1 0.05
H 0.1 0.05

consecutive generations (sequential criterion). Finally, factors F, G, and H , each with two
quantitative levels, denote the crossover probability, the mutation probability, and the local
improvement probability, respectively. The levels of factor F, G, and H are {F1 = 0.7, F2 =
0.9}, {G1 = 0.05, G2 = 0.1}, and {H1 = 0.05,H2 = 0.1}, respectively. Table 2 shows the factor
levels under study.

3.2. Phase 2: Finding the Significant Combination

One run of the full factorial design of the 8 aforementioned factors requires 28 = 256 exper-
iments. Due to the time and cost, constraints suppose a design with smaller run numbers is
desired.Whereas all of these factors contain 2 levels, a 2k−p fractional factorial design is a good
option. Even if factors withmore than two levels exist in the experiment, either a higher-order
fractional factorial or a general factorial design may be used. In this study, a 28−4IV fractional
factorial design containing 16 runs with generators E = BCD, F = ACD, G = ABC, and
H = ABD, is used to test the performances of the proposed methodology on the 30 test
problems with known optimal solution.

For the analysis of variance, the relative deviation percentage (RDP) of the proposed
GA solutions to the optimal solutions which is calculated according to (3.1) was used as the
response.

RDP =
Proposed GA Solution −Optimal Solution

Optimal Solution
. (3.1)

Although the probability distribution of the response is not known, since 30 test
problems is used in each of which the summation of the responses are used for different
factor combinations, the central limit theorem implies an approximate normal distribution.
Assuming that more than 2-way interaction effects are not significant, the analysis of variance
of this experiment is given in Table 3. The results of Table 3 show that the main effects, along
with the 2-way interaction effects, are statistically significant.
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Table 3: Analysis of variance for RDP.

Source DF Seq SS Adj SS Adj MS F P

Main effects 8 9.464 9.464 1.18294 17.74 0
2-way interactions 7 2.804 2.804 0.40054 6.01 0
Residual error 464 30.933 30.933 0.06667
Pure error 464 30.933 30.933 0.06667

Total 479 43.2

Table 4: The search ranges for input variables.

Parameters Ranges

Population size n–2n
Crossover probability 0.8–1
Mutation probability 0.025–0.075
Local improvement probability 0.05–0.15

In order to find the specific significant effects, the Duncan’s multiple range test as one
of the ad hoc analysis methods results in the following ranking:

A−1 � A+1; B−1 �� B+1; C−1 � C+1; D−1 � D+1

E+1 �� E−1; F+1 � F−1; G−1 � G+1; H+1 � H−1.
(3.2)

In which “�” shows the better and “��” shows the statistically better, and “−1” and
“+1” of the superscripts denote the low and the high levels of the corresponding factor. Thus,
the factor combination A−1B−1C−1D−1E+1 is known as the significant combination and F+1 =
0.9, G−1 = 0.05, and H+1 = 0.1 are known as the neighbour points of the optimal values of
some important parameters of the GA that needs to be considered to be tuned in the next
phase.

3.3. Phase 3: Tuning the Parameters

The candidate parameters in the tuning process are population size (X1), crossover proba-
bility (X2), mutation probability (X3), and local improvement probability (X4). Table 4 shows
the search ranges of these parameters. The lower and the upper points of the ranges are con-
sidered as the lower and the upper levels of these factors and coded as ±1. Furthermore, n
shows the number activities of the project.

In the tuning phase, a 24 central composite factorial (CCF) design with 4 central
points and 8 axial points of (±1, 0, 0, 0,), (0,±1, 0, 0), (0, 0,±1, 0), and (0, 0, 0,±1) including 28
combinations of the factor levels is employed. Table 5 shows the factor level combinations
along with their corresponding responses.

The first response (Y1) denotes the mean RDP, and the second response (Y2) represents
the mean ratio of the proposed GA CPU-times to the required optimal CPU-times, where the
optimal CPU-time of each problem is defined as the minimum time obtained in 28 executed
levels.
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The results of Table 5 are used to estimate both functions ̂Y1 (accuracy of the solution)
and ̂Y2 (quality of the solution) using SAS software. These estimates are given in (3.3) and
(3.4), respectively,

̂Y1 = − 0.016 + 0.004X1 + 0.001X2 + 0.0001X3 + 0.003X4 − 0.001X2
1 + 0.0004X2

2

− 0.002X2
3 − 0.0004X2

4 − 0.0009X1X2 − 0.0006X1X3 − 0.002X1X4

− 0.0005X2X3 + 0.001X2X4 + 0.0003X3X4,

(3.3)

̂Y2 = 0.4 − 0.23X1 − 0.06X2 − 0.007X3 − 0.07X4 + 0.11X2
1 + 0.009X2

2 − 0.012X2
3

+ 0.013X2
4 + 0.026X1X2 + 0.002X1X3 + 0.03X1X4 − 0.001X2X3

+ 0.005X2X4 − 0.003X3X4.

(3.4)

Tables 6 and 7 contain the analysis of variance results that show significant linear,
quadratic, and interaction effects for both the solution accuracy and quality at 90% confidence
level.

Since the goal is to find the parameters values such that both objective functions are
simultaneously optimized, a bi-objective optimization problem is needed to be solved. The
fuzzy goal-programming (FGP) technique transforms the multiobjective decision-making
problem to a single objective using fuzzy set theory. In FGP, a membership function is defined
for each objective (Yj) based on (3.5), in which Uj is its objective value when it is optimized
alone, and Lj is its worst objective value considering the values of the variable set obtained
in other objectives when they are optimized separately. The goal is to reach µYj = 1. However,
since conflict may happen by the other goals, FGP tries to maximize the achievement degree
of µYj to resolve the conflict

µYj =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 Yj < Lj,

Yj −Uj

Uj − Lj
Lj ≤ Yj ≤ Uj,

1 Yj > Uj .

(3.5)

Suppose ∝j to be the achievement degree of µYj . The single objective function in FGP
is then the maximization of the weighted sum of the achievement degrees (

∑k
j=1 wj∝j) of

the goals (µYj s) subject to the existing constraints and the ones added for the membership
functions (e.g., µYj ≥ ∝j for objective Yj).

To solve this problem, we first obtain the pay-off table of the positive ideal solution
(PIS) as shown in Table 8.
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Table 5: The results of the CCF design.

Input variables Responses

Runs X1 X2 X3 X4 Y1 Y2

(1) 0 0 1 0 −0.02 0.38
(2) 1 0 0 0 −0.02 0.29
(3) 0 −1 0 0 −0.02 0.46
(4) −1 0 0 0 −0.02 0.75
(5) 1 1 −1 1 −0.01 0.23
(6) 1 −1 1 −1 −0.02 0.37
(7) −1 1 1 1 −0.02 0.57
(8) 1 −1 1 1 −0.01 0.28
(9) 0 0 0 −1 −0.02 0.48
(10) 0 1 0 0 −0.01 0.37
(11) −1 −1 1 1 −0.02 0.73
(12) 0 0 0 0 −0.02 0.41
(13) 0 0 0 0 −0.01 0.41
(14) 1 1 1 1 −0.01 0.23
(15) 0 0 0 1 −0.01 0.36
(16) 1 1 1 −1 −0.02 0.3
(17) −1 −1 −1 −1 −0.03 0.96
(18) 1 1 −1 −1 −0.01 0.31
(19) 0 0 0 0 −0.01 0.41
(20) −1 1 −1 1 −0.01 0.61
(21) −1 −1 −1 1 −0.02 0.76
(22) −1 −1 1 −1 −0.03 0.96
(23) 1 −1 −1 −1 −0.01 0.38
(24) −1 1 −1 −1 −0.03 0.78
(25) 1 −1 −1 1 −0.01 0.29
(26) 0 0 −1 0 −0.02 0.41
(27) 0 0 0 0 −0.02 0.42
(28) −1 1 1 −1 −0.03 0.78

The membership functions of these two objectives can be obtained as follows:

µY1 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 Y1 < −0.029,
Y1 + 0.009

−0.009 + 0.029
−0.029 ≤ Y1 ≤ −0.009,

1 Y1 > −0.009,

µY2 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 Y2 < 0.24,

Y2 − 0.97
0.97 + 0.24

0.24 ≤ Y2 ≤ 0.97,

1 Y2 > 0.97.

(3.6)
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Table 6: Analysis of variance for solution accuracy.

Source DF Seq SS Adj SS Adj MS F P

Regression 14 0.000712 0.000712 0.000051 9.28 0
Linear effect 4 0.000551 0.000551 0.000138 25.11 0
Quadratic effect 4 0.000056 0.000056 0.000014 2.54 0.09
Interaction 6 0.000106 0.000106 0.000018 3.21 0.037
Residual error 13 0.000071 0.000071 0.000005
Lack of fit 10 0.000058 0.000058 0.000006 1.32 0.458
Pure error 3 0.000013 0.000013 0.000004
Total 27 0.000783
S = 0.002342 R-Sq = 90.9% R-Sq (adj) = 81.1%

Table 7: Analysis of variance for solution quality.

Source DF Seq SS Adj SS Adj MS F P

Regression 14 1.25963 1.25963 0.089973 720.15 0
Linear effect 4 1.1406 1.1406 0.285149 2282.35 0
Quadratic effect 4 0.09321 0.09321 0.023302 186.51 0
Interaction 6 0.02582 0.02582 0.004304 34.45 0
Residual error 13 0.00162 0.00162 0.000125
Lack of fit 10 0.00156 0.00156 0.000156 7.27 0.065
Pure error 3 0.00006 0.00006 0.000021
Total 27 1.26125
S = 0.01118 R-Sq = 99.9% R-Sq (adj) = 99.7%

Table 8: Payoff table of PIS.

Y1 Y2

Max Y1 −0.009 0.24
Max Y2 −0.029 0.97

Then, the model becomes

max Z =
2
∑

j=1

wj∝j

s.t. µYj ≥ ∝j ; j = 1, 2;

− 1 ≤ Xi ≤ 1; i = 1, . . . , 5;

∝j ∈ [0, 1]; j = 1, 2.

(3.7)

The optimal values obtained by the FGP method with w1 = 0.75 and w2 = 0.25 for Y1

and Y2, respectively, are shown in Table 9.
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Table 9: The optimal values of the parameters.

Parameter Optimum value

Population size 1.56n
Crossover probability 1
Mutation probability 0.048
Local improvement probability 0.15

Table 10: Comparison results.

No. of activities No. of problems A B C D

10 60 0.2% 3 2 −22%
20 60 2.4% 37 30 −13%
30 60 8.2% 102 94 −7%

4. Performance Analyses

To compare the performance of the proposed optimized genetic algorithm, all 180 problems
used in Najafi et al. [44] are applied by the new algorithm as well. Then, statistical tests are
used to compare the results. The results of the comparison experiments on the test problems
are shown in Table 10.

The following notations are used in Table 10.

A: Average relative deviation percentages of the optimized GA solution to the GA of
Najafi et al. [44] solution.

B: Average runtime (in seconds) required to obtain the solutions by GA of Najafi et al.
[44].

C: Average runtime (in seconds) required to obtain the solutions by the optimized GA.

D: Average relative-deviation-percentages of the optimized GA runtime to the GA of
Najafi et al. [44] runtime.

These results of Table 10 show that the optimized GA performs better than the GA of
Najafi et al. [44] solutions (on the average 3.6% better) with less amount of required CPU
time (on the average −14%). Furthermore, two tests of hypothesis are performed to prove the
statistically better performances of the proposed methodology. The results of the tests that
are given in Tables 11 and 12 show that the performances of the proposed optimized GA is
better than those of the GA of Najafi et al. [44].

5. Conclusion

The genetic algorithm is known as one of the most robust and efficacious methods to solve
combinatorial optimization problems and has been widely used in recent researches. Since
different viewpoints suggested to design this algorithm and its parameters greatly affect the
solution quality, in this research a methodology that contains three phases has been proposed
to design an optimal genetic algorithm. The phases are designing different combinations
of common viewpoints to create GA, selection of the significant combinations by design of
experiments, and tuning the parameters using response surface methodology. This method-
ology was then applied to optimize a GA to solve a project scheduling problem. Statistical
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Table 11: Hypotheses test of µ = 0 versus µ > 0 for RDP obtained from solutions of the optimized GA to
the GA of Najafi et al. [44].

Variable N Mean StDev SE mean 95% lower bound T P

RDP Solution 180 0.035769 0.164963 0.012296 0.015439 2.91 0.002

Table 12: Hypotheses test of µ = 0 versus µ < 0 for the RDP obtained from runtimes of the optimized GA
to the GA of Najafi et al. [44].

Variable N Mean StDev SE mean 95% lower bound T P

RDP Runtime 180 −0.1425 0.395694 0.029493 −0.09374 −4.83 0

comparisons of the results obtained by the proposedGAwith the ones from an existing GA to
solve the project scheduling problem verified better performances of the new algorithm with
less amount of required CPU time. The proposed methodology can be employed for other
encoding patterns of GA in addition to other metaheuristic algorithms as future researches.
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