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This paper characterizes the spectrum of a fourth-order Steklov eigenvalue problem by using the
spectral theory of completely continuous operator. The conforming finite element approximation
for this problem is analyzed, and the error estimate is given. Finally, the bounds for Steklov
eigenvalues on the square domain are provided by Bogner-Fox-Schmit element and Morley
element.

1. Introduction

Steklov eigenvalue problems, in which the eigenvalue parameter appears in the boundary
condition, have several deep applications both in maths and physics. For instance, they are
found in the study of surface waves (see [1]), the analysis of stability of mechanical oscillators
immersed in a viscous fluid (see [2]), and the study of the vibration modes of a structure
in contact with an incompressible fluid (see, e.g., [3]), and the first eigenvalue also plays a
crucial role in the positivity preserving property for the biharmonic operator Δ2 under the
boundary conditions u = Δu − λuν = 0 on ∂Ω (see [4]) and so forth.

Thus, numerical methods for approximate Steklov eigenvalues become a concerned
problem by mathematics and engineering community. Many scholars have investigated the
finite element methods for second-order Steklov eigenvalue problem and achieved many
results; for example, see [5–12] and so on.

However, for fourth-order Steklov eigenvalue problems the existing references are
mostly qualitative analysis: [13] studied the bound for the first eigenvalue on the square
and proved that the first eigenvalue is simple and its eigenfunction does not change sign,
[14] discussed the smallest nonzero Steklov eigenvalue by the method of a posteriori-
a priori inequalities, [15, 16] studied the spectrum of a fourth-order Steklov eigenvalue
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problem on a bounded domain in R
n and gave the explicit form of the spectrum in the

case where the domain is a ball, and [17] provided bounds for the first non-zero Steklov
eigenvalues when Ω is isometric to an n-dimensional Euclidean ball. More recently, [18]
proved the existence of an optimal convex shape among domains of given measure, and
[19] by a new method established Weyl-type asymptotic formula for the counting function
of the biharmonic Steklov eigenvalues. But as for the finite element methods for fourth-order
Steklov eigenvalue problem, to the best of our knowledge, there are no reports.

This paper discusses conforming finite element approximations for a fourth-order
Steklov eigenvalue problem, and the main work is as follows.

(1)We define the operator T : H2(Ω) ∩H1
0(Ω) → H2(Ω) ∩H1

0(Ω) and prove that T is
completely continuous thus characterize the spectrum of a fourth-order Steklov eigenvalue
problem by the spectrum of T . Note that [16] analyzed the spectrum of this problem by
introducing an orthogonal decomposition, H2(Ω)∩H1

0(Ω) = W
⊕

H2
0(Ω), and conducted the

research on the space W . Compared with the argument used in [16], our approach is more
direct and lays the foundation for further discussion of the finite element approximation.

(2) We study for the first time conforming finite element approximations for a fourth-
order Steklov eigenvalue problem by using the spectral approximation theory (e.g., see
[20, 21]) and prove a priori error estimates of finite element eigenvalues and eigenfunctions.
Hence, in principle, we can compute approximate eigenvalues and eigenfunctions of a fourth-
order Steklov eigenvalue problem on any bounded domain by finite element methods. As an
example, we compute the approximate eigenvalues by the conforming Bogner-Fox-Schmit
element, and numerical results indicate that the numerical eigenvalues of Bogner-Fox-Schmit
element approximate the exact eigenvalues from above. We also compute the nonconforming
Morley element eigenvalues, and the numerical results show that the Morley element
eigenvalues approximate the exact eigenvalues from below. Thus, we provide bounds for
the exact Steklov eigenvalues on a square, which are more precise than those given in [16].

The rest of this paper is organized as follows. In the next section, the spectrum
of the fourth-order Steklov eigenvalue problem is characterized by using the spectral
theory of completely continuous operator. In Section 3, the error estimate of conforming
finite element approximation for the fourth-order Steklov eigenvalue problem is proved.
Numerical experiments of the Bogner-Fox-Schmit element andMorley element are presented
in Section 4 to give bounds for Steklov eigenvalues on the square.

Let Ws,q(Ω) denote the usual Sobolev space with real-order s with norm ‖ · ‖s,q. For
simplicity, we writeHs(Ω) forWs,2(Ω)with norm ‖ · ‖s andHs(∂Ω) forWs,2(∂Ω)with norm
‖ · ‖s,∂Ω. H0(Ω) = L2(Ω), H0(∂Ω) = L2(∂Ω). Throughout this paper, C denotes a generic
positive constant independent of h, which may not be the same at each occurrence.

2. The Spectrum of the Fourth-Order Steklov Eigenvalue Problem

We consider the fourth-order Steklov eigenvalue problem

Δ2u = 0, in Ω, (2.1)

u = 0, on ∂Ω, (2.2)

Δu = λuν, on ∂Ω, (2.3)
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where Ω ⊂ R
n(n ≥ 2) is a bounded domain and ∂Ω is smooth, or Ω ⊂ R

2 is a convex domain,
uν denotes the outer normal derivative of u on ∂Ω.

Denote V = H2(Ω) ∩H1
0(Ω).

The weak form of (2.1)–(2.3) is given by the following. Find λ ∈ R, 0/=u ∈ V , such that

a(u, v) = λb(u, v), ∀v ∈ V, (2.4)

where

a(u, v) =
∫

Ω
ΔuΔvdx, b(u, v) =

∫

∂Ω
uνvνds. (2.5)

Lemma 2.1. Assume that Ω is a Lipschitz bounded domain which satisfies the uniform outer ball
condition. Then the space V becomes a Hilbert space when endowed with the scalar product
a(u, v) =

∫
Ω ΔuΔvdx, ∀u, v ∈ V, and ‖u‖a =

√
a(u, u) is equivalent to the norm ‖ · ‖2 induced

byH2(Ω).

Proof. See Lemma 1 and its proof in [15].

It is obvious that the condition of Lemma 2.1 holds for Ω ⊂ R
n with ∂Ω ∈ C

2 or a
convex domain Ω ⊂ R

2.
The source problem associated with (2.4) is as follows. Find u ∈ V , such that

a(u, v) = b
(
f, v

)
, ∀v ∈ V. (2.6)

It follows fromLemma 2.1 that a(·, ·) is a symmetric, continuous, andV -elliptic bilinear
form on V . By Schwarz inequality and trace theorem we have

∣
∣b
(
f, v

)∣
∣ =

∣
∣
∣
∣

∫

∂Ω
fνvνds

∣
∣
∣
∣ ≤

∥
∥fν

∥
∥
0,∂Ω‖vν‖0,∂Ω ≤ ∥

∥fν
∥
∥
0,∂Ω‖v‖2, ∀v ∈ V . (2.7)

Hence, from Lax-Milgram Theorem we know that (2.6) has one and only one solution.
Therefore, according to the source problem (2.6)we define the operator T : V → V by

a
(
Tf, v

)
= b

(
f, v

)
, ∀v ∈ V. (2.8)

From [20], we know that (2.4) has the equivalent operator form:

Tu =
1
λ
u. (2.9)

Lemma 2.2. The operator T : V → V is self-adjoint and completely continuous.

Proof. By the definition of T , for any u, v ∈ V , there holds

a(Tu, v) = b(u, v) = b(v, u) = a(Tv, u) = a(u, Tv), (2.10)

that is, T is self-adjoint with respect to a(·, ·).
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Next we will prove that T is completely continuous. By Schwarz inequality and trace
theorem, for any f ∈ V we have

a
(
Tf, Tf

)
= b

(
f, Tf

) ≤ ∥
∥fν

∥
∥
0,∂Ω

∥
∥(Tf)ν

∥
∥
0,∂Ω ≤ C

∥
∥fν

∥
∥
0,∂Ω

∥
∥Tf

∥
∥
2; (2.11)

it follows from the fact that a(·, ·) is V -elliptic that

∥
∥Tf

∥
∥
2 ≤ C

∥
∥fν

∥
∥
0,∂Ω. (2.12)

Let {fm} be a bounded sequence in ‖ ·‖2; then by trace theoremwe have {(fm)ν} is a bounded
sequence in ‖ · ‖1/2,∂Ω. And, by compact embedding H1/2(∂Ω) ⊂ L2(∂Ω), we know that there
is a subsequence {(fml)ν} that is a Cauchy sequence in ‖ · ‖0,∂Ω. From (2.12)we conclude that
{Tfml} is a Cauchy sequence in ‖ · ‖2, which implies that T is completely continuous.

Let (λ, u) be an eigenpair of (2.4); then ‖u‖a /= 0. Since a(u, u) = λb(u, u), we see that
‖uν‖0,∂Ω /= 0, λ /= 0. And, by trace theorem we have

‖uν‖0,∂Ω ≤ C‖u‖2 ≤ C‖u‖a; (2.13)

thus,

λ =
a(u, u)
b(u, u)

=
‖u‖2a

‖uν‖20,∂Ω
≥ 1

C2
> 0. (2.14)

Therefore, from the spectral theory of completely continuous operator we know that
all eigenvalues of T are real and have finite algebraic multiplicity. We arrange the eigenvalues
of T by increasing order:

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ↗ +∞. (2.15)

The eigenfunctions corresponding to two arbitrary different eigenvalues of T must
be orthogonal. And there must exist a standard orthogonal basis with respect to ‖ · ‖a
in eigenspace corresponding to the same eigenvalue. Hence, we can construct a complete
orthonormal system of V by using the eigenfunctions of T corresponding to {λj}:

u1, u2, u3, . . . . (2.16)

Remark 2.3. Reference [16] first discussed the property of the spectrum and obtained the
above results by compact embedding H1/2(∂Ω) ⊂ L2(∂Ω). But [16] conducted the study in
such a space W : H2(Ω) ∩H1

0(Ω) = W
⊕

H2
0(Ω), while we define the operator T on the space

V = H2(Ω) ∩ H1
0(Ω) directly. Our method is convenient for constructing conforming finite

element space Vh ⊂ V and analyzing the finite element error estimates.
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3. Finite Element Method and Its Error Estimates

Let Vh ⊂ V be a conforming finite element space; for example, Vh is the finite element space
associated with one of the Argyris element, Bell element, and Bogner-Fox-Schmit element
(see [22]).

The conforming finite element approximation of (2.4) is given by the following. Find
λh ∈ R, 0/=uh ∈ Vh, such that

a(uh, v) = λhb(uh, v), ∀v ∈ Vh. (3.1)

The source problem associated with (3.1) is as follows. Find uh ∈ Vh, such that

a(uh, v) = b
(
f, v

)
, ∀v ∈ Vh. (3.2)

Likewise, from Lax-Milgram theorem we know that (3.2) has a unique solution.
Thus, we can define the operator Th : V → Vh by

a
(
Thf, v

)
= b

(
f, v

)
, ∀v ∈ Vh. (3.3)

From [20], we know that (3.1) has the equivalent operator form:

Thuh =
1
λh

uh. (3.4)

Let Ph : V → Vh be Ritz projection operator; then

a(u − Phu, v) = 0, ∀v ∈ Vh. (3.5)

Combining (2.8) with (3.3), we deduce that, for any u ∈ V, v ∈ Vh, there holds

a(PhTu − Thu, v) = a(PhTu − Tu, v) + a(Tu − Thu, v) = 0, (3.6)

hence,

‖Thu − PhTu‖a = 0, ∀u ∈ V ; (3.7)

thus we get Th = PhT . It is clear that

Th|Vh : Vh → Vh (3.8)

is a self-adjoint finite rank operator with respect to the inner product a(·, ·), and the
eigenvalues of (3.1) can be arranged as

0 < λ1,h ≤ λ2,h ≤ λ3,h ≤ · · ·λNh,h (Nh = dimVh). (3.9)
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As for the regularity of source problem (2.6) it has been reported in the literatures; for
example, see [4]. Here, we prove the following regular estimates which will be used in the
sequel.

Lemma 3.1. If Ω ⊂ R
n(n ≥ 2) with ∂Ω ∈ C

r (r ≥ 3), fν ∈ Hr−(5/2)(∂Ω), and Tf is the solution of
(2.6), then Tf ∈ Hr(Ω) and

∥
∥Tf

∥
∥
r ≤ Cp

∥
∥fν

∥
∥
r−(5/2),∂Ω. (3.10)

Proof. Let u = Tf , Δu = v; then the boundary value problem (2.6) is transformed to

Δv = 0, in Ω, (3.11)

v = fν, on ∂Ω, (3.12)

Δu = v, in Ω, (3.13)

u = 0, on ∂Ω. (3.14)

Note that (3.11)-(3.12) and (3.13)-(3.14) are two second-order problems. From [23, 24], we
know that, when fν ∈ Hr−(5/2)(∂Ω), there exists a weak solution v ∈ Hr−2(Ω) to (3.11)-(3.12)
and

‖v‖r−2 ≤ Cp

∥
∥fν

∥
∥
r−(5/2),∂Ω. (3.15)

From [25] we have that, when ∂Ω ∈ C
r , there exists a weak solution u ∈ Hr(Ω) to (3.13)-

(3.14) and

‖u‖r ≤ Cp‖v‖r−2. (3.16)

By combining the above two inequalities we obtain Tf ∈ Hr(Ω) and (3.10).

In this paper, Cp denotes the prior constant dependent on the equation and Ω and
independent of the right-hand side of the equation and h. Clearly, constants Cp that appeared
in Lemma 3.1 are not the same.

Lemma 3.2. Let (λ, u) and (λh, uh) be the kth eigenpair of (2.4) and (3.1), respectively. Then,

λh − λ =
‖uh − u‖2a
‖(uh)ν‖20,∂Ω

− λ
‖(uh − u)ν‖20,∂Ω
‖(uh)ν‖20,∂Ω

. (3.17)

Proof . See [20, 26].

Denote

ηh = sup
f∈V,‖f‖a

=1

inf
v∈Vh

∥
∥Tf − v

∥
∥
a. (3.18)
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Theorem 3.3. Suppose that ηh → 0(h → 0); then there holds

‖T − Th‖a −→ 0 (h −→ 0). (3.19)

Proof. By the definition of operator norm we have

‖T − Th‖a = sup
f∈V,‖f‖a

=1

∥
∥(T − Th)f

∥
∥
a = sup

f∈V,‖f‖a
=1

∥
∥Tf − PhTf

∥
∥
a

= sup
f∈V,‖f‖a

=1

inf
v∈Vh

∥
∥Tf − v

∥
∥
a = ηh −→ 0 (h −→ 0).

(3.20)

Remark 3.4. It is satisfied naturally in conforming finite elements that ηh → 0 (h → 0); which
is not a restriction. Since Th is a finite rank operator, it follows from the operator theory that
the limit T of Th must be completely continuous. Thus, we have provided another proof that
T : V → V is completely continuous.

Let M(λ) denote the eigenfunctions space of (2.4) corresponding to the eigenvalue λ.

Theorem 3.5. Suppose that Ω ⊂ R
n(n ≥ 2) is a bounded domain with ∂Ω ∈ C

r(r ≥ 3). Then,
M(λ) ⊂ Hr(Ω).

Proof. Let u ∈ M(λ); then (λ, u) ∈ R × V satisfying (2.4). In (2.4) let λu = f ; then fν =
(λu)ν ∈ H1/2(∂Ω). Therefore, from Lemma 3.1 we know that u ∈ H3(Ω). And u ∈ H3(Ω)
leads to fν = (λu)ν ∈ H1+1/2(∂Ω); again from Lemma 3.1 it follows that u ∈ H4(Ω). By using
Lemma 3.1 repeatedly we deduce u ∈ Hr(Ω). Thus, M(λ) ⊂ Hr(Ω).

Theorem 3.6. Suppose that ∂Ω ∈ C
r(r ≥ 3), and Vh ⊂ V is a piecewise m-degree finite element

space. Let (λh, uh) be the kth conforming finite element eigenpair of (3.1) and λ the kth eigenvalue of
(2.4). Then, there exists u ∈ M(λ) such that

‖u − uh‖a ≤ Cht, (3.21)

|λh − λ| ≤ Ch2t, (3.22)

where t = min{r,m + 1} − 2.

Proof. By the interpolation error estimate ofm-degree finite element and Lemma 3.1, we have

ηh = sup
f∈V,‖f‖a

=1

inf
v∈Vh

∥
∥Tf − v

∥
∥
a ≤ sup

f∈V,‖f‖a
=1

Ch
∥
∥Tf

∥
∥
3

≤ sup
f∈V,‖f‖a

=1

Ch
∥
∥fν

∥
∥
1/2,∂Ω ≤ sup

f∈V,‖f‖a
=1

Ch
∥
∥f

∥
∥
a

≤ Ch −→ 0 (h −→ 0).

(3.23)
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Then, from Theorem 3.3 we know that ‖T − Th‖a → 0 (h → 0). Thus, according to
Theorem 7.4 in [20]we have

‖u − uh‖a ≤ C
∥
∥
∥(T − Th)|M(λ)

∥
∥
∥
a
. (3.24)

From Theorem 3.5 we have M(λ) ⊂ Hr(Ω). Therefore, for any u ∈ M(λ), ‖u‖a = 1, we
deduce that

‖(T − Th)u‖a = ‖Tu − PhTu‖a =
1
λ
‖u − Phu‖a ≤ Cht‖u‖t+2,

∥
∥(T − Th)|M(λ)

∥
∥
a = sup

u∈M(λ),‖u‖a=1
‖(T − Th)u‖a;

(3.25)

combining the above two relations with (3.24), we get the desired result (3.21).
By Lemma 3.2, we get

|λh − λ| ≤ C
‖uh − u‖2a
‖(uh)ν‖20,∂Ω

, (3.26)

which together with (3.21) yields (3.22).

Corollary 3.7. Suppose that ∂Ω ∈ C
6. Let (λh, uh) be the kth eigenpair of the Argyris element. Then,

there exists the kth eigenpair (λ, u) of (2.4) such that

‖u − uh‖a ≤ Ch4,

|λh − λ| ≤ Ch8.
(3.27)

Proof. Since the Argyris element contains the complete polynomials of degree ≤ 5, that is,
m = 5. From the assumption r = 6, we have t = 4. Then, by Theorem 3.6 we get the desired
results.

Corollary 3.8. Suppose that ∂Ω ∈ C
5. Let (λh, uh) be the kth eigenpair of the Bell element. Then,

there exists the kth eigenpair (λ, u) of (2.4) such that

‖u − uh‖a ≤ Ch3,

|λh − λ| ≤ Ch6.
(3.28)

Proof. Since the Bell element contains the complete polynomials of degree ≤ 4, that is, m =
4. From the assumption r = 5, we have t = 3. Then, by Theorem 3.6 we get the desired
results.



Mathematical Problems in Engineering 9

Corollary 3.9. Suppose that ∂Ω ∈ C
4. Let (λh, uh) be the kth eigenpair of Bogner-Fox-Schmit

element. Then, there exists the kth eigenpair (λ, u) of (2.4) such that

‖u − uh‖a ≤ Ch2,

|λh − λ| ≤ Ch4.
(3.29)

Proof. Applying Theorem 3.6 with m = 3 and noting that r = 4 from the assumption and
t = 2, we complete the proof immediately.

Remark 3.10. Next we will discuss, when Ω ⊂ R
2 is convex, the regularities of the boundary

value problem (2.6) and the eigenvalue problem (2.4) and the error estimates of finite element
approximations.

To complete the discussion we need the following regular estimate. Suppose that u ∈
W3,q(Ω) ∩H1

0(Ω); then

‖u‖3,q ≤ Cp‖Δu‖1, (3.30)

where q < 2/(3 − π/ω) while q can be arbitrarily close to 2/(3 − π/ω), and ω is the largest
inner angle of Ω.

Reference [27] gave this estimate (see (1.2.9) in [27]) and used it as a fundamental
result. Although we have not seen the proof of it, we believe that this estimate is correct.

Suppose that Ω ⊂ R
2 is convex, (3.30) holds, and fν ∈ H1/2(∂Ω). Let u = Tf , Δu = v;

then the boundary value problem (2.6) is transformed to (3.11)-(3.12) and (3.13)-(3.14). From
[23, 24], we know that there exists a weak solution v ∈ H1(Ω) to (3.11)-(3.12) and

‖v‖1 ≤ Cp

∥
∥fν

∥
∥
1/2,∂Ω. (3.31)

Reference [28] proved that there exists a weak solution u ∈ W3,q(Ω) to (3.13)-(3.14); and from
(3.30)we get

‖u‖3,q ≤ Cp‖v‖1. (3.32)

By combining the above two inequalities we obtain Tf ∈ W3,q(Ω) and the following regular
estimate:

∥
∥Tf

∥
∥
3,q ≤ Cp

∥
∥fν

∥
∥
1/2,∂Ω. (3.33)

From the fact that the weak solution, to the boundary value problem, Tf ∈ W3,q(Ω), it
is easy to know that M(λ) ⊂ W3,q(Ω), namely, M(λ) ⊂ Hs+2(Ω), where s < (π/ω) − 1 while
s can be arbitrarily close to π/ω − 1.

When Ω is a rectangle, it can be deduced that M(λ) ⊂ Hs+2(Ω), where s < 1 while s
can be arbitrarily close to 1.

Similar to Theorem 3.6 and Corollaries 3.7–3.9, by using (3.33) we can prove the
following error estimates. Let (λh, uh) be the kth eigenpair of the Argyris element, Bell
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z3z4

κ

⇒

⇒

⇒

⇒

Figure 1

element, or Bogner-Schmit element. Then, there exists the kth eigenpair (λ, u) of (2.4) such
that

‖u − uh‖a ≤ Chs,

|λh − λ| ≤ Ch2s.
(3.34)

Remark 3.11. In this section we give a priori estimates of finite element approximations (see
Theorem 3.6, Corollaries 3.7–3.9, and (3.34)). These estimates indicate that when the mesh
size h is small enough we can obtain sufficiently precise approximations of fourth-order
Steklov eigenvalues and eigenfunctions (biharmonic function).

4. Numerical Examples

Consider the eigenvalue problem (2.1)–(2.3), where Ω = (0, π/2) × (0, π/2).
We illustrate the Bogner-Fox-Schmit element by Figure 1.
The degrees of freedom (interpolation conditions) of Bogner-Fox-Schmit element are

function values and gradients (∂/∂x1, ∂/∂x2) and the second derivatives ∂2/∂x1∂x2 at the
four vertices of a rectangle. We adopt a uniform square partition πh with mesh diameter h for
Ω, and the Bogner-Fox-Schmit finite element space defined on πh is

Vh =

{

v ∈ C1(Ω) : v|κ ∈ Q3(κ), ∀κ ∈ πh, v,
∂v

∂x1
,
∂v

∂x2
,

∂2v

∂x1∂x2

are continuous at element vertices, and v vanishes on boundary nodes

}

,

(4.1)

where Q3(κ) is the bicubic polynomial space on an element κ.
It is well known that the Bogner-Fox-Schmit element is a conforming plate element.

We compute the first four eigenvalues of (2.1)–(2.3) by the Bogner-Fox-Schmit element by
using MATLAB and list the numerical results in Table 1.

It can be seen from Table 1 that the eigenvalues of Bogner-Fox-Schmit element decrease
with the decrease of h. This is not an accident. In fact, for conforming finite element
approximations for many eigenvalue problems, the minimum-maximum principle is valid;
therefore it insures that numerical eigenvalues approximate exact eigenvalues from above
(see [20, 26]). Our numerical results coincide with this principle.
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Table 1:Numerical eigenvalues on the square domainΩ = (0, π/2)×(0, π/2) using the Bogner-Fox-Schmit
element.

h λ1,h λ2,h λ3,h λ4,h√
2π
10

2.2127407 4.4166105 4.4166105 6.0842699
√
2π
20

2.2127002 4.4162026 4.4162026 6.0819058
√
2π
40

2.2126976 4.4161741 4.4161741 6.0817349
√
2π
60

2.2126974 4.4161725 4.4161725 6.0817253
√
2π
80

2.2126974 4.4161723 4.4161723 6.0817236

z1 z2

z3

κ

Figure 2

Is it possible to compute the lower bound of the eigenvalues of (2.1)–(2.3)? Reference
[29] proved theoretically that the nonconforming Morley element can produce the lower
bound for the eigenvalues of plate vibration problem, and [30] provided numerical example.
These works inspire us to compute approximate eigenvalues of the fourth-order Steklov
problem (2.1)–(2.3) by using the Morley element. We illustrate the Morley element by
Figure 2.

The degrees of freedom (interpolation conditions) of Morley element are function
values at the three vertices and outer normal derivatives at the three midpoints of the three
edges. We adopt a uniform isosceles right triangulation πh along three directions for Ω (each
triangle is divided into four congruent triangles), and theMorley finite element space defined
on πh is

Vh = {v ∈ L2(Ω) : v|κ ∈ P2(κ), ∀κ ∈ πh, v, vν

are continuous at element vertices and midpoints

of three edges, resp., and v vanishes on boundary nodes
}
,

(4.2)

where P2(κ) is the quadratic polynomial space on an element κ.
The Morley element is a nonconforming plate element. We compute the first four

eigenvalues of (2.1)–(2.3) by the Morley element by using MATLAB, and list the numerical
results in Table 2.

From Table 2 it can be seen that the eigenvalues of Morley element increase with the
decrease in h. We have the reason to conjecture that the eigenvalues by Morley element
approximate the exact ones from below.
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Table 2: Numerical eigenvalues on the square domain Ω = (0, π/2) × (0, π/2) using Morley element.

h λ1,h λ2,h λ3,h λ4,h√
2π
16

2.1526851 3.9593995 4.1045601 5.1088362
√
2π
32

2.1961067 4.2871754 4.3250009 5.7806630
√
2π
64

2.2083493 4.3822829 4.3917069 5.9986854
√
2π

128
2.2115857 4.4075238 4.4098509 6.0600499

√
2π

256
2.2124164 4.4139906 4.4145665 6.0761982

√
2π

512
2.2126268 4.4156245 4.4157676 6.0803290

From Tables 1 and 2 we can provide bounds for the exact eigenvalues:

λ1 ∈ (2.2126268, 2.2126974), λ2 ∈ (4.4156245, 4.4161723),

λ3 ∈ (4.4157676, 4.4161723), λ4 ∈ (6.0803290, 6.0817236).
(4.3)

Remark 4.1. Reference [16] gave bounds for the smallest eigenvalue of (2.1)–(2.3) on Ω =
(0, π/2) × (0, π/2): λ1 ∈ (2.2118, 2.2133). By comparison, the bounds we give here are more
precise; furthermore, we give the upper and lower bounds for the first four eigenvalues, and
it is also confirmed by the numerical experiments that the smallest eigenvalue λ1 is simple
[13].
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