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This paper investigates the ordering decisions and coordinationmechanism for a distributed short-
life-cycle supply chain. The objective is to maximize the whole supply chain’s expected profit
and meanwhile make the supply chain participants achieve a Pareto improvement. We treat lead
time as a controllable variable, thus the demand forecast is dependent on lead time: the shorter
lead time, the better forecast. Moreover, optimal decision-making models for lead time and order
quantity are formulated and compared in the decentralized and centralized cases. Besides, a three-
parameter contract is proposed to coordinate the supply chain and alleviate the double margin
in the decentralized scenario. In addition, based on the analysis of the models, we develop an
algorithmic procedure to find the optimal ordering decisions. Finally, a numerical example is also
presented to illustrate the results.

1. Introduction

Along with the development of new technology, increasingly diversified customers’ demand,
and higher competition, the lifespan of some products are getting shorter and shorter (so
are called short-life-cycle products). Short-life-cycle products, such as toys, sunglasses, high-
technology products, and fashion clothing, which are characterized by short sales season,
high demand variety, and long replenishment lead time. In addition, for short-life-cycle
products, both overstock and understock could result in huge loss, thus reducing demand
uncertainty is the main task in managing this kind of supply chain (see Lowson et al. [1]).

In practice, QR (quick response) with forecast updates is a method for reducing
demand uncertainty (see, e.g., Tersine and Hummingbird [2], Rohr and Correa [3], and Perry
et al. [4]). Its idea is to cut ordering lead time and enable orders from retailers to be placed
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close to the start of the selling season. Through the postponement, information is gathered to
update the demand forecast (see Iyer and Bergen [5]).

Concerning forecast updates, the Bayesian approach is a well-known technique to use
new information to revise the demand forecast. The procedure of forecast updates using
Bayesian approach is as follows. First, a demand distribution is chosen from a family of
distributions whose parameters are partly or both stochastic with given prior distributions.
Second, if new information becomes available, Bayesian formula is used to calculate posterior
distributions of the parameters. Last, the posterior distributions of the parameters are used
to update demand distribution.

When lead time can be shortened by extra investment (when it is controllable), there
are two problems in ordering decision making. The first question is when to order and how
much to order from the stand point of a buyer. This question involves two tradeoffs: longer
versus shorter lead time, more versus less ordering quantity. A shorter lead time leads to
lower demand uncertainty, more crashing cost, and vice versa. On the other hand, the more
ordering quantity results in less cost of understock, more cost of overstock, and vice versa.
The second question is how to motivate the supply chain participants to cooperate and
achieve a win-win situation with contract from the stand point of the supply chain. This
is because decisions made from the perspective of the whole supply chain may not always
make both supply chain participants better off.

Lead time is an important factor that affects the operational cost, service level and fore-
cast uncertainty in a short-life-cycle-product supply chain. However, most of the literatures
on short-life-cycle products focused on how much to order (decision on ordering quantity)
and neglected the decision on when to order (decision on lead time). Because of the complex-
ity of the decision based on both the lead time and ordering quantity, the optimal ordering
policy for short-life-cycle products with controllable lead time has not been fully studied.

The purpose of this paper is to take lead time decision making into account in a
distribution supply chain, which consists of one retailer and one manufacturer. The supply
chain operates a single short-life-cycle product. Optimal ordering policies with lead time
decision in two scenarios are considered. In the decentralized decision-making scenario, the
retailer makes decisions on lead time and ordering quantity to maximize his own profit. In
the centralized decision scenario, decisions on lead time and ordering quantity are made to
maximize the whole supply chain’s profit. In addition, a supply chain contract is developed
to coordinate the supply chain, and the conditions that the supply chain contract works are
investigated.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
related literatures. Section 3 gives some notations and basic assumptions of the research topic.
Then, in Section 4, a decentralized decision-making model to maximize the retailer’s profit
and a centralized decision-making model to maximize the system-wide supply chain’s profit
are formulated. Furthermore, we discuss the existence and attributes of the optimal solutions,
and efficient algorithms to search the optimal solutions are developed. In Section 5, a three-
parameter supply contract is proposed, and the conditions needed for successful coordination
are investigated. The numerical analysis is carried out in Section 6. The paper is concluded in
Section 7.

2. The Literature Review

There are three categories of literature related to our research. The first is on QR policy
with forecast updates, the second is on inventory management with controllable lead
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time, and the third is on supply coordination with contracts. We briefly review them,
respectively.

2.1. The Literatures on QR with Forecast Updates

This kind of the literature utilizes the Bayesian theorem to update forecast for short-life-cycle
products, which is the same as our work. However, the literature focuses on the concept
of lead time reduction other than decision on lead time. In addition, the cost of lead time
reduction and the relationship between lead time and forecast error have not been clearly
considered. In this section, we review some of the works especially related to our study.

Among them, Iyer and Bergen [5] investigate the effects of QR on supply chain
participants. They observe that cutting lead time is always beneficial to the retailer while
harmful to the vendor when the service level is more than 0.5. However, only ordering
quantity decision is involved in their works, and there is no tradeoff between the benefits and
the cost of lead time reduction in their model. Otherwise, if the cost of lead time reduction is
considered, their conclusion will change.

Wu [6] extends Iyer and Bergen’s [5] forecast updates mode from a single stage to
multiple stages and proposes a flexible contract to coordinate the supply chain. Similarly,
lead time decision is not included in Wu’s [6]work. From the numerical examples in [6], it is
shown that more stages of forecast updates leads to more profits of the whole supply chain
participants. It is obvious that this is not the truth if the cost of forecast updates or the cost of
lead time reduction is considered.

Similarly, without concerning crashing cost, Choi [7] extend Iyer and Bergen’s [5]
work to a scenario that new information can be used to update both the unknown mean and
unknown variance for the short-life-cycle product’s demand. Choi [7] conclude that the QR
policy is always beneficial to the retailer and not necessarily beneficial to the supplier when
the service level is more than 0.5 (this conclusion is similar to that of Iyer and Bergen [5]).
Here, we can say that if the cost of lead time reduction is considered, we can get a different
conclusion. Further, Choi et al. [8] takes dual updates and costs uncertainty and differences
into account in his work, but there is no explicit relationship between the forecast error and
lead time. Meanwhile, lead time decision is not taken into account in their models.

Fisher and Raman [9], Gurnani and Tang [10], Donohue [11], Sethi et al. [12], Choi
and Li [13], Choi [14], Chen et al. [15], and Chen et al. [16] study the optimal ordering policy
with two ordering opportunities. The unit cost at the second stage may be higher than that at
the first stage (see, Fisher and Raman [9], Donohue [11]) or may be uncertain (see, Gurnani
and Tang [10], Sethi et al. [12], Choi and Li [13], Choi [14]Chen et al. [15]). In these works,
the retailer makes decisions on the two sequent ordering quantities by evaluating the trade-
off between a more accurate forecast and a potentially higher unit cost at the second stage.
There is no explicit relationship between the forecast error and lead time. Meanwhile, lead
time decision is not taken into account in their models.

Similarly, Sethi et al. [17–19] extend ordering policy from two periods to multiple
periods. In each period, decisions on how much to order using some given delivery modes
are made. However, lead time decisions and the relationship between lead time and forecast
error are not involved in their works.

The research of the paper is very similar to that of Choi et al. [20], which investigates a
retailer’s optimal single ordering policy with multiple delivery modes. But our model differs
from theirs in two major aspects. Firstly, in our paper, lead time is a decision variable. Both
the forecast error of expected demand and the crashing cost are functions of the lead time.
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The decision making on lead time is to make tradeoff between the crashing cost and benefits
of forecast improvement. However, lead time decision isn’t involved in their model. Secondly,
a three-parameter risk-sharing supply contract is proposed to coordinate the decentralized
supply chain, and the conditions of channel coordination are derived in our paper, while
their work is only related to the optimal ordering decision from the standpoint of the retailer.

This research explicitly takes the relationship between lead time and the forecast
error, the relationship between lead time and crashing cost, into account, simultaneously
addressing the two problems mentioned in Section 1 in a distribution supply chain.

2.2. The Literatures on Variable or Controllable Lead Time

The literature falling into this category mainly focus on ordering quantity, lead time,
service level, and so forth. The treatment of lead time as a deterministic decision variable
within inventory models began with Liao and Shyu [21]. They introduced the concept of
crashing cost to stochastic inventory models, in which lead time can be decomposed into n
components, and each has an independent crashing cost for reduced lead time. Sequentially,
many researchers have developed various analytical inventory models to extend Liao and
Shyu’s [21] model (see, e.g., Ben-Daya and Raouf [22], Ben-Daya and Hariga [23], Ouyang
et al. [24–27], Moon and Choi [28], Moon and Cha [29], Hariga and Ben-Daya [30], Hariga
[31], Pan and Yang [32], C. Chang and S. Chang [33], Chang et al. [34, 35], Chu et al. [36],
Lee et al. [37], Lin [38], Wu et al. [39], and Jha and Shankera [40]).

This paper is similar to the above-mentioned literatures with the concept that lead
time is a decision variable and can be reduced at an added crashing cost. However, there
are three differences between this paper and the above-mentioned studies. Firstly, the above-
mentioned studies dealt with multiperiod inventory problems for durable goods; this paper
dealt with single-period ordering problem for short-life-cycle products, whose demands
have high uncertainty. Secondly, neither the relationship between lead time and the forecast
error nor forecast updates are taken into account in the above-mentioned studies. Thirdly,
the above-mentioned literature investigated an optimal decision from a stand point of the
single supply chain participant or from a standpoint of the whole supply chain, and the
coordination was not considered.

2.3. The Literatures on Supply Chain Coordination with Contract

Due to the conflicts of interests and the distributed nature of the decision structure in supply
chain, there exists double marginalization (Spengler [41]) that may lead to low efficiency
in supply chain. Among various kinds of supply chain coordination, the coordination by
contract received much attention. Hennet and Arda [42] evaluate the efficiency of different
types of contracts between the industrial partners of a supply chain. Cachon [43] makes
a comprehensive review of supply chain contracts. In the literature, various contracts are
developed to coordinate the supply chain, such as buyback contract (Padmanabhan and
Png [44]), quantity flexibility contract (Tsay [45]), revenue-sharing contract (Cachon and
Lariviere [46]), and wholesale price only contract (Lariviere and Porteus [47]).

Each kind of contract has its limitations and strengths as Arshinder et al. [48] point out
that the study of supply chain coordination is still in its infancy, and a little effort has been
reported in the literature to develop a holistic view of coordination.

In fact, to develop a contract needs to orient the specific problem and the potential
risk. In our work, the retailer’s decisions onlead time and ordering quantity can bring
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crashing cost, overstock loss, or understock loss. Neither single contract above mentioned
can coordinate the two risks. Therefore, we develop a three-parameter supply contract to
coordinate these risks simultaneously. Further, the contract can flexibly allocate the profit of
the supply chain according to the participants’ value-added capabilities, and it is easy for
practitioners to adopt in practice.

3. Notations and Assumptions

We will begin the modeling process by presenting the following notations and assumptions.

3.1. Notations

The notations employed in the paper are as follows:

p: unit retail price of the retailer,

v: unit residual value of the unsold product of the retailer,

c: unit product cost of the manufacturer,

n: numbers of mutually independent lead-time components,

oj : crashing cost when one unit time is shorten for the jth (1 ≤ j ≤ n) lead-time
component,

aj : minimum time of the jth (1 ≤ j ≤ n) lead-time component,

bj : regular time for the jth (1 ≤ j ≤ n) lead-time component,

w0: unit wholesale price which the manufacturer provided to the retailer, p > w0 >
c > v,

q: ordering quantity from the retailer (decision variable for the retailer),

t : lead time (decision variable for the retailer); it is the time from the retailer placing
an order to receiving goods and using this goods to meet the end consumers’
demand. It can be changed by adding an extra investment. The longest lead time
is Tn, and the shortest is T0,

X: market demand; it is a stochastic variable, mean ofX is also a stochastic variable,

fX(·): probability distribution function (pdf) of the stochastic variable X,

fX|Y (·): conditional pdf of the stochastic variable X given Y,

Φ(·): cumulative distribution function (cdf) of standard normal distribution,

ϕ(·): pdf of standard normal distribution,

X+: maximum value of X and 0, that is; X+ = max{X, 0},
E(·): mathematical expectation of a stochastic variable.

3.2. Assumptions

The assumptions employed in this paper are stated as follows.
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Figure 1: Process of demand forecast updates.

(1) Assumption about the Supply Chain and Its Participants

A single-buyer-single-vendor supply chain that manufactures and sells a single short-life-
cycle product. The retailer and the manufacturer are both risk neutral. Viewing the wholesale
price as a given parameter, the retailer makes decisions on when to order and how many
to order. This paper assumes that the retailer only has one ordering opportunity in the entire
selling season, which is based on long replenishment lead time and other situations (see, Choi
et al. [20]).

(2) Assumption about the Lead Time

For the sake of simplicity, we assume that the selling season begins at time zero, see Figure 1.
Therefore, “−t” refers to t time units ahead. The minimum time of the jth (1 ≤ j ≤ n)
component of lead time is aj ; regular time is bj ; crashing cost per unit time is oj .

To facilitate our discussion, n mutually independent components of lead time are
realigned according to the unit crash costs in a descending order, denoted by o1 ≥ o2 ≥ · · · ≥
on. The component of the smallest per unit crashing costs should be prioritized when lead
time is reduced; the rest may be deduced by analogy.

The maximum lead time, all whose components are equal to regular time, is denoted
by

Tn =
n∑

j=1

bj . (3.1)

The minimum lead time, all whose components are equal to the minimum time, is
denoted by

T0 =
n∑

j=1

aj . (3.2)

If the components from 1 to i all have the regular lead time, the others (from i+ 1 to n)
have a minimum time, then the lead time is

Ti =
n∑

j=i+1

aj +
i∑

j=1

bj , i = 1, 2, . . . , n. (3.3)
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It is easy to know that

Ti =
n∑

j=1

bj −
n∑

j=i+1

(
bj − aj

)
, i = 1, 2, . . . , n. (3.4)

Given lead time t(T0 ≤ t ≤ Tn), the total crashing cost is

R(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o1(T1 − t) +
n∑

j=2

oj
(
bj − aj

)
, T0 ≤ t < T1

o2(T2 − t) +
n∑

j=3

oj
(
bj − aj

)
, T1 ≤ t < T2

...

oi(Ti − t) +
n∑

j=i+1

oj
(
bj − aj

)
, Ti−1 ≤ t < Ti

...

on(Tn−1 − t), Tn−1 ≤ t ≤ Tn.

(3.5)

(3) Assumption about the Information Updates

In this paper, we extend the demand uncertainty structure in Iyer and Bergen [5]. Demand
uncertainty has two levels, and it is related to lead time t. The first source of uncertainty
concerns the expected demand during the selling season; Θ is a stochastic variable and has
pdf: fΘ(θ) ∼ N(μ, τ2). This is called the prior pdf of the expected demand. Given the value
of the expected demand, Θ = θ, the demand for product during the selling season is also a
stochastic variable, and the forecast error is denoted by s(t). The demandX during the selling
season has pdf: fX|Θ(x | θ) ∼ N(θ, s2(t)). Thus, the pdf for X is

fX(x) =
∫

θ

fX|θ(x | θ)fθ(θ)dθ ∼ N
(
μ, s2(t) + τ2

)
. (3.6)

In the traditional system, the order is placed at time Tn, and there are no information
updates. Thus, at the time Tn, the pdf for demand X is

∫

θ

fX|θ(x | θ)fθ(θ)dθ ∼ N
(
μ, s2(T0) + τ2

)
. (3.7)

In a QR system, an order is placed at time t, the demand information of related or
similar products is observed, and the information is converted into a value, denoted by
xe, for the demand for the concerned product. This xe can be used to generate a posterior
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Figure 2: Relationship between the lead time and the forecast error of the expected demand (see Lowson
et al. [1]).

distribution for expected demand. Utilizing Bayesian theorem to revise the forecast, we can
get that

fΘ(θ | xe) =
fX|Θ(xe | θ)fΘ(θ)∫

Θ fX|Θ(xe | θ)fΘ(θ)dθ
∼ N

(
s2(t)μ + τ2xe

s2(t) + τ2
,

(
1

s2(t)
+

1
τ2

)−1)
. (3.8)

Thus, the pdf for X can be further updated as follows:

fX(x | xe) =
∫

Θ
fX|Θ(x | θ)fΘ(θ | xe)dθ ∼ N

(
s2(t)μ + τ2xe

s2(t) + τ2
, s2(t) +

(
1

s2(t)
+

1
τ2

)−1)
.

(3.9)

This update can be shown in Figure 1.

(4) Assumption about the Forecast Error of the Expected Demand

The essential benefit from QR for fashion products is that the information gathered regarding
the sales of related items can be used to reduce forecast error of the expected demand. The
magnitude of this reduction in forecast error can be substantial (see, Iyer and Burger [5]).
As pointed out by Blackburn [49], there is a fundamental principle of forecasting: the shorter
the lead time, the better the forecast. According to Lowson et al. [1] and Blackburn [49], in
fashion or seasonal apparel industrial, if lead time is cut down from 12 months to 6 months,
the forecast error decreases from ±40 percent to ±19 percent. In addition, the forecast error
grows more than linearly as the time to forecast increase, forming a familiar shape known
to forecasters as “trumpet of doom.” It can be seen from Figure 2 that there is a direct
relationship between lead time (i.e., time ahead of a sales season) and demand forecast error.
If the order decision is made at the start of the season, that is, the lead time approaches zero,
the forecast error decreases down to ±10 percent.
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Let s and t denote the forecast error of the expected demand and lead time,
respectively. We can fit the given observation data in Figure 2 to get the relationship between
s and t. In Appendix 7, it is shown that the nonlinear relationship between s and t can be
written as

s = αeβt. (3.10)

Here, parameters α (> 0) and β (> 0) may be estimated using the given data.

4. Mathematical Models, Analysis, and Algorithms

In this section, a decentralized decision-making scenario to maximize the retailer’s profit
and an integrated decision-making scenario to maximize the system-wide supply chain’s
profit are formulated. Furthermore, we discuss the existence and attributes of the optimal
solutions to the above-mentioned models and develop the efficient algorithms to find the
optimal solutions.

4.1. Mathematical Models

Under the assumptions in Section 3, if the retailer places his order at time t (T0 ≤ t ≤ Tn),
the pdf of demand forecasted can be written as (3.9). Once given the demand distribution at
time t (T0 ≤ t ≤ Tn), we can formulate the profits of the retailer, the manufacturer, and the
whole supply chain.

If the market demand and ordering quantity are X and q, respectively, we can get that
the sales of the retailer will be min(q,X). Accordingly, the sales income will be pmin(q,X) in
the entire selling season. The unsold for the retailer after the selling season will be (q −X)+,
and the residual value of unsold goods is v(q −X)+. Thus, given lead time t (T0 ≤ t ≤ Tn), the
expected profit of the retailer is

Πr

(
q, t
)
=
∫

xe

[
pE
(
min
(
q,X | xe

))
+ vE

(
q −X| xe

)+ −w0q − R(t)
]
fxe(xe)dxe. (4.1)

Simplifying (4.1) by the integral operation, we can get the expected profit of the supply
chain participants as follows.

The expected profit of the retailer is

Πr

(
q, t
)
= pE

(
min
(
q,X
))

+ vE
(
q −X

)+ −w0q − R(t). (4.2)

The expected profit of the manufacturer is

Πm = (w0 − c)q. (4.3)

The expected profit of the whole supply chain is

Πl

(
q, t
)
= Πr

(
q, t
)
+ Πm = pE

(
min
(
q,X
))

+ vE
(
q −X

)+ − cq − R(t), (4.4)



10 Mathematical Problems in Engineering

where q, t satisfies the constraints that

q > 0, T0 ≤ t ≤ Tn. (4.5)

Thus, the decision-making model from the view of the retailer is as follows.
Model (I):

max
q,t

Πr

(
q, t
)
= pE

(
min
(
q,X
))

+ vE
(
q −X

)+ −w0q − R(t).

s.t. q > 0, T0 ≤ t ≤ Tn.

(4.6)

The optimal solution of Model (I) is denoted by (qD, tD).
In order to illustrate the effects of different decision-making scenarios on the profits

of the supply chain participants and the whole supply chain, we assume that there would
exist a virtual center whose decision objective is to maximize the profit of the whole supply
chain channel. We call this situation as a centralized decision-making scenario and denote it
as model (II).

Model (II):

max
q,t

Πl

(
q, t
)
= pE

(
min
(
q,X
))

+ vE
(
q −X

)+ − cq − R(t),

s.t. q > 0, T0 ≤ t ≤ Tn.

(4.7)

The optimal solution to the model (II) is written as (qI, tI).

4.2. Model Analysis

In order to solve the model (I) and model (II), some analysis needs to be done firstly. Since
the two models are similar, we only analyze model (I). As far as model (II) is concerned, it
may be deduced by analogy. For Model (I), we have the following conclusions.

Theorem 4.1. Denote the standard variance of demand after updates as σ(t), then both σ(t) and
dσ(t)/dt are increasing functions of lead time t.

Proof. For the sake of simplicity, σ(t) and s(t) are denoted by σ and s, respectively. According
to (3.9), the variance of demand after updates at a given lead time t (T0 ≤ t ≤ Tn) can be
expressed as

σ2 = s2 +
s2τ

2

s2 + τ2
. (4.8)

For the sake of simplicity, denote

u =
τ2

s2 + τ2
. (4.9)
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It is obvious that 0 < u < 1. Substituting (4.9) into (4.8), we can get

σ2 = s2(1 + u). (4.10)

Taking the first derivative of u with respect to t and simplifying it through (3.10), we can
obtain

du

dt
= −2βu(1 − u). (4.11)

Taking the first derivative of σ2 with respect to t and simplifying it through (4.9), we can
obtain

dσ

dt
=

βs2

σ

(
1 + u2

)
> 0. (4.12)

Taking the second derivative of σ with respect to t and simplifying it through (4.9), we can
obtain

d2σ

dt2
=

β2s4

σ3

(
1 + 2u − 4u2 + 2u3 + 3u4

)
. (4.13)

Simplifying (4.13) by factorization technique, we can get

d2σ

dt2
=

β2s4

σ3

[
1 + 2u(1 − u)2 + 3u4)

]
> 0. (4.14)

It is clearly seen that both σ(t) and dσ(t)/dt are increasing functions of lead time t from (4.12)
and (4.14).

Theorem 4.2. For fixed t,Πr(q, t) is a strictly concave function of q, and its maximal value occurs at
q = μ+σΦ−1(p−w0)/(p−v). For q = μ+σΦ−1(p−w0)/(p−v), d/dt(Πr(q, t)|q=μ+σΦ−1(p−w0)/(p−v))
is a strictly decreasing function of t.

Proof. Two identical equations used are presented as follows.

min
(
q,X
)
= X − (X − q

)+
,

(
q −X

)+ =
(
q −X

)
+
(
X − q

)+
.

(4.15)

Insert (4.15) into (4.2), we can get

Πr

(
q, t
)
= pE

(
X − (X − q

)+) + vE
((

q −X
)
+
(
X − q

)+) −w0q − R(t). (4.16)
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Further,

E
(
X − (X − q

)+) = E(X) − E
(
X − q

)+ = μ − E
(
X − q

)+
,

E
((

q −X
)
+
(
X − q

)+) = q − E(X) + E
(
X − q

)+ = q − μ + E
(
X − q

)+
.

(4.17)

Insert (4.17) into (4.2), we can get

Πr

(
q, t
)
=
(
p − v

)
μ − (w0 − v)q − (p − v

)
E
(
X − q

)+
. (4.18)

Further, by integral operation, we can get

E
(
X − q

)+ =
∫∞

q

(
x − q

)
f(x)dx = σ

(
ϕ

(
q − μ

σ

)
−
(
q − μ

σ

)(
1 −Φ

(
q − μ

σ

)))
. (4.19)

Insert (4.19) into (4.18), and, by some algebraic operation, we can get

Πr

(
q, t
)
=
(
p −w0

)
q − (p − v

)[(
q − μ

)
Φ
(
q − μ

σ

)
+ σϕ

(
q − μ

σ

)]
− R(t). (4.20)

Taking the first partial derivatives of Πr(q, t) with respect to q and t; respectively, via (4.20),
we can obtain

∂Πr

(
q, t
)

∂q
=
(
p −w0

) − (p − v
)
Φ
(
q − μ

σ

)
, (4.21)

∂Πr

(
q, t
)

∂t
= −(p − v

)
ϕ

(
q − μ

σ

)
∂σ

∂t
− ∂R

∂t
. (4.22)

Taking the second partial derivative of Πr(q, t) with respect to q and t, we can obtain

∂2Πr

(
q, t
)

∂q2
= −(p − v

)
ϕ

(
q − μ

σ

)
< 0. (4.23)

Setting the RHS of (4.21) to zero, we can get

q = μ + σΦ−1
(
p −w0

p − v

)
. (4.24)

It is clearly seen from (4.23) that, for fixed t, Πr(q, t) is a strictly concave function of q.
Therefore, for fixed t, the maximal value of Πr(q, t) occurs at q = μ + σΦ−1(p − w0)/(p − v).
Given p, w0, v, Φ−1(p −w0)/(p − v) is a constant.

Denote k = Φ−1(p −w0)/(p − v), then (4.24) can be written as follows:

q = μ + kσ. (4.25)
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Substituting (4.25) into (4.22), we can get

d

dt

(
Πr

(
q, t
)|q=μ+kσ)

)
= −(p − v

)
ϕ(k)

dσ

dt
− dR

dt
. (4.26)

From (4.23), we can see that there is no variable q in the expression of d/
dt(Πr(q, t)|q=μ+kσ)). For convenience, we denote g(t) = d/dt(Πr(q, t)|q=μ+kσ)).

Taking the partial derivative of g(t) with respect to t through (4.26), we can obtain

dg(t)
dt

= −(p − v
)
ϕ(k)

d2σ

dt2
. (4.27)

According to Theorem 4.1, it is easy to know that dg(t)/dt < 0. Therefore, g(t) is a strictly
decreasing function of t.

Theorem 4.3. The optimal solution to model (I) is in existence and unique.

Proof. For fixed q in (4.21), take the partial derivative of ∂Πr(q, t)/∂q; with respect to t, we
can obtain

∂2Πr

(
q, t
)

∂q∂t
=

p − v

σ

q − μ

σ
ϕ

(
q − μ

σ

)
∂σ

∂t
. (4.28)

Therefore, the Hessian Matrix of Πr(q, t) is as follows.

H =

⎡
⎢⎢⎢⎢⎣

−(p − v
)
ϕ

(
q − μ

σ

)
p − v

σ

q − μ

σ
ϕ

(
q − μ

σ

)
∂σ

∂t

p − v

σ

q − μ

σ
ϕ

(
q − μ

σ

)
∂σ

∂t
−(p − v

)
ϕ

(
q − μ

σ

)[(
q − μ

)2

σ3

(
∂σ

∂t

)2

+
∂2σ

∂t2

]

⎤
⎥⎥⎥⎥⎦
. (4.29)

Then, we proceed by evaluating the principal minor determinants ofH.
The first-order principal minor determinant of H is

H11 = −(p − v
)
ϕ

(
q − μ

σ

)
< 0. (4.30)

The second-order principal minor determinant of H is

H22 =

∣∣∣∣∣∣∣∣∣∣

−(p − v
)
ϕ

(
q − μ

σ

)
p − v

σ

q − μ

σ
ϕ

(
q − μ

σ

)
∂σ

∂t

p − v

σ

q − μ

σ
ϕ

(
q − μ

σ

)
∂σ

∂t
−(p − v

)
ϕ

(
q − μ

σ

)[(
q − μ

)2

σ3

(
∂σ

∂t

)2

+
∂2σ

∂t2

]

∣∣∣∣∣∣∣∣∣∣

=

(
p − v

)2

σ
ϕ2
(
q − μ

σ

)
∂2σ

∂t2
> 0.

(4.31)
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Thus,H is a negative definite matrix. It is clearly seen thatΠr(q, t) is a strictly concave
function of q and t. Thus, the maximum value of Πr(q, t) is in existence and unique.

Since Model (I) is similar to Model (II), we analyze the Model (I) only. From
Theorem 4.2, if (qD, tD) is the optimal solution to Model (I), then the condition, qD =
μ + σ(tD)Φ−1(p − w0)/(p − v), must be satisfied. Therefore, how to get the optimal tD to
the Model (I) is a key step in solving the Model (I). For Model (I), we have the following
conclusion.

Theorem 4.4. The optimal tD to the Model (I) is the only one of the following four cases.

The optimal tD to the Model (I) is the only one of the following four cases.

Case 1. tD is T0.

Case 2. tD is Tn.

Case 3. tD is the only one of the T1, T2, . . . , Tn−1.

Case 4. tD is the only one solution to the equation g(t) = 0 in a certain interval (Ti−1, Ti), 2 ≤
i ≤ n − 1.

Proof. If g(t)|t=T0 ≤ 0, then, from Theorem 4.2, we can get that, for t ∈ [T0, Tn], g(t) ≤ 0. In this
case, the optimal tD to the Model (I) is T0, and this is Case 1.

If g(t)|t=Tn ≥ 0, then, from Theorem 4.2, we can get that for t ∈ [T0, Tn], g(t) ≥ 0. In this
case, the optimal tD to the Model (I) is Tn, and this is the Case 2.

Since R(t) is defined in the interval [Ti−1, Ti), i = 1, 2, . . . , n − 1, and g(t) is a
continuous function of t in the interval [Ti−1, Ti), i = 1, 2, . . . , n, but not a continuous function
of t in the interval [T0, Tn], we denote g(t)|t=T−

i
= lim

t→ T−
i

g(t), i = 1, 2, . . . n − 1. Then from

Theorem 4.2, it is easy to know that g(t)|t=T−
i
> g(t)|t=Ti .

If g(t)|t=Tn < 0 and g(t)|t=T0 > 0, then from the Theorem 4.2, we know that there will
exist a unique i(1 ≤ i ≤ n), which satisfies that

g(t)|t=T−
i
≥ 0, g(t)|t=Ti ≤ 0 (4.32)

or

g(t)|t=Ti−1 > 0, g(t)|t=T−
i
< 0. (4.33)

If g(t)|t=Tn < 0 and g(t)|t=T0 > 0 and condition (4.32) is met, then from Theorem 4.2 we
know that, for t ∈ [T0, Ti), g(t) > 0 and, for t ∈ [Ti, Tn], g(t) ≤ 0. Hence, the optimal tD to the
Model (I) is Ti, and this is Case 3.

If g(t)|t=Tn < 0 and g(t)|t=T0 > 0 and condition (4.33) is met, then from Theorem 4.2
we know that there exists a unique solution (denoted by tD) to equation g(t) = 0. From
Theorem 4.2, we know that, for t ∈ [T0, tD), g(t) > 0 and for t ∈ (tD, Tn], g(t) < 0. Hence, the
optimal t value of the Model (I) is tD, and this is Case 4.
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4.3. Algorithms

According to Theorem 4.4, we develop an algorithm for solving model (I). As far as model
(II) is concerned, it may be deduced by analogy.

Step 1. Compute the values of g(t)|t=T0 and g(t)|t=Tn , and compare them with zero,
respectively. Go to Step 2.

Step 2. If g(t)|t=T0 ≤ 0, then this is Case 1 in Theorem 4.4. Therefore, the optimal tD is T0. Turn
to Step 5.

If g(t)|t=Tn ≥ 0, then this is Case 2 in the Theorem 4.4. Therefore, the optimal tD is Tn.
Turn to Step 5.

If g(t)|t=Tn < 0 and g(t)|t=T0 > 0, then turn to Step 3.

Step 3. For i (1 ≤ i ≤ n−1), check the signals of g(t)|t=T−
i
and g(t)|t= Ti

one by one. For certain i,
if a non-positive number first appears between them, stop the check.

If a non-positive number occurs at g(t)|t= Ti
firstly, this is Case 3, and the optimal tD is

Ti. Go to Step 5.
If a non-positive number occurs at g(t)|t=T−

i
firstly, this is Case 4, turn to Step 4.

Step 4. A Golden section method or two-section method can be used to search the optimal
solution to the equation g(t) = 0 in the interval ( Ti−1, T i). Let tD denote the optimal solution,
go to Step 5.

Step 5. Compute the optimal qD to model (I) through (4.24), and end the algorithm.
The algorithm for solving model (II) is similar to that of the model (I) as mentioned

above, so we skip it here.

5. Supply Chain Coordination

In a distributed supply chain, since the supply chain participants are independent entities;
thus, decisions are made to maximize the decision maker’s own profit. To some extent, the
double marginalization (e.g., Spengler [41])will take place, and this will cut down the profit
of the whole supply chain. In order to improve supply chain efficiency, the supply chain
participants can collaborate through a contract to get a win-win situation. The contract aligns
the two self-interested parties, so their decentralized actions maximize the whole supply
chain (Chen et al. [15]).

In apparel industries, the manufacturer usually uses buy-back contract to enable
retailers to enlarge ordering quantity (such as Padmanabhan and Png [44]). In addition, since
the crashing cost is existence, there is inconsistency for the optimal decision on the lead time
from the retailer with that from the supply chain system. Hence, the manufacturer should
share some of the crashing costs in order to motivate the retailer to obey the optimal decision
on lead time from the supply chain channel.

In order to coordinate the supply chain, a three-parameter contract which combines
buy-back and risk-sharing contract is developed in this paper.

Let (b,w, λ) denote the three-parameter contract. Under such a contract, the
manufacturer sells products at unit price of w to the retailer at the start of the season and
agrees to purchase b ratio of left over units at the end of the selling season. 1 − b ratio of left
over units at the end of the selling season is salvaged by the retailer. Furthermore, λ ratio
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of crashing cost is charged on the retailer, and 1 − λ ratio of crashing cost is charged on the
manufacturer.

In this scenario, the expected profit of the retailer is

ΠC
r

(
q, t
)
= pE

(
min
(
q, x
))

+ (1 − b)vE
(
q − x

)+ + bwE
(
q − x

)+ −wq − λR(t). (5.1)

The expected profit of the manufacturer is

ΠC
m = (w − c)q + b(v −w)E

(
q − x

)+ − (1 − λ)R(t). (5.2)

The expected profit of the whole supply chain is

ΠC
l

(
q, t
)
= Π

l

(
q, t
)
= pE

(
min
(
q, x
))

+ vE
(
q − x

)+ − cq − R(t). (5.3)

where q, t satisfies the constrains that q > 0, T0 ≤ t ≤ Tn.
Under the cooperative circumstances with the three-parameter contract, in order to

get a win-win situation, the optimal decision from the respective of the retailer (denoted by
Model (III)) should be described as follows

Model (III):

max
q,t

ΠC
r

(
q, t
)
= pE

(
min
(
q, x
))

+ (1 − b)vE
(
q − x

)+ + bwE
(
q − x

)+ −wq − λR(t),

s.t. ΠC
r

(
q, t
) ≥ Πr

(
qD, tD

)
,

(5.4)

ΠC
m

(
q, t
) ≥ Πm

(
qD, tD

)
,

q > 0, T0 ≤ t ≤ Tn.

(5.5)

Equations (5.4) and (5.5) are to assure that the profits of supply chain participants
under coordination are no less than those under no coordination. Equations (5.4) and (5.5)
also are called the incentive compatibility (IC) constraints.

The optimal solution to the Model (III) is denoted by (qC, tC).
For the three-parameter contract (b,w, λ), we have the following conclusion.

Theorem 5.1. If the three-parameter contract (b,w, λ) meet the following conditions (5.6) to (5.8),
then the supply chain will realize the supply chain coordination.

(1) b =

(
p − v

)
(w − c)

(
p − c

)
(w − v)

, (5.6)

(2) λ =

(
p −w

)
(
p − c

) , (5.7)

(3) c +
(
p − c

)Πm

(
qD, tD

)

Πl

(
qI, tI

) ≤ w ≤ p − (p − c
)Πr

(
qD, tD

)

Πl

(
qI, tI

) . (5.8)
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Proof. It is obvious that 0 < λ < 1 and 0 < b < 1.
Since min(q, x) = q − (q − x)+, we get

E
(
min
(
q, x
))

= E
(
q − (q − x

))
= q − E

(
q − x

)+
. (5.9)

Substituting (5.9) into (5.1) and (5.3), we get

ΠC
r

(
q, t
)
=
(
p −w

)
q +
(
b(w − v) − (p − v

))
E
(
q − x

)+ − λR(t), (5.10)

ΠC
l (q, t) = Π

l

(
q, t
)
=
(
p − c

)
q +
(
p − v

)
E
(
q − x

)+ − R(t). (5.11)

Substituting (5.6) and (5.7) into (5.10) and simplifying it, we can get

ΠC
r

(
q, t
)
= λ
((

p − c
)
q +
(
p − v

)
E
(
q − x

)+ − R(t)
)
= λΠC

l

(
q, t
)
. (5.12)

Substituting (5.6) and (5.7) into (5.2) and simplifying it, we have

ΠC
m = (1 − λ)ΠC

l

(
q, t
)
. (5.13)

Because λ is a constant, given parameters p, w, c from (5.12), it is obvious that the
optimal decision from the whole supply chain is the same as the optimal decision from the
retailer. Here, we know that

(
qC, tC

)
=
(
qI, tI

)
. (5.14)

Substituting (5.12) and (5.13) into (5.4) and (5.5); respectively, we can get

λΠl

(
qC, tC

)
≥ Πr

(
qD, tD

)
,

(1 − λ)Πl

(
qC, tC

)
≥ Πm

(
qD, tD

)
.

(5.15)

Substituting (5.7) into (5.15) and using (5.14), we can get (5.8).
For a contract to be implementable, it is necessary that the contract can arbitrarily

allocate the supply-chain profit between the retailer and supplier (see, e.g., Chen et al. [15],
Cachon [43]). As for this question, we have the following conclusion.

Theorem 5.2. The profit of the whole supply chain system is divided into two parts by the three-
parameter contract (b,w, λ), and each part of the profit embodies the supply chain participants’ value-
added capacities. The three-parameter contract can arbitrarily allocate the profit of the supply chain
between the manufacturer and the retailer by tuning the value of w in a feasible range determined by
the condition (5.8).
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Table 1: Lead time data.

Component element of
lead time (i)

Regular time bi (day) Minimum time ai (day) Crash costs oi ($/day)

1 50 30 1 ∗ δ
2 40 24 2 ∗ δ
3 40 20 4 ∗ δ
4 40 26 6 ∗ δ
5 30 20 10 ∗ δ

Proof. Substituting (5.7) into (5.12) and (5.13), we can get

Πr

(
qC, tC

)
=

p −w

p − c
Πl

(
qI, tI

)
,

Πm

(
qC, tC

)
=

w − c

p − c
Πl

(
qI, tI

)
.

(5.16)

Here, p − c is the profit for each product sold in the supply chain, and it can represent
the value-added capacity of the supply chain; w − c and p − w represent the value-added
capacity of the manufacturer and the retailer, respectively.

If the wholesale price changes from w to w + Δw in a feasible range determined by
the condition (5.8), then the profit of the manufacturer increases (Δw/p − c)Πl(qI, tI), and
the profit of the retailer decreases (Δw/p − c)Πl(qI, tI). Thus, the three-parameter contract
(b,w, λ) can flexibly allocate the profits among the supply chain.

6. Numerical Analysis

To illustrate the above models and algorithms, we consider a supply chain: the retail price
p = 20 $/unit, the wholesale price w0 = 10 $/unit, the marginal production cost c = 5 $/unit,
the residual value of products unsold at the end of the selling season v = 3 $/unit. Lead time
consists of n = 5 components is shown in Table 1. Here δ is an adjustable coefficient which
represents a certain crashing cost. In arbitrary lead time t (T0 ≤ t ≤ Tn), we use function
s(t) = αeβt(α = 140, β = 0.0035) to formulate the relationship between the forecast error of
expected demand’s distribution and the lead time. The parameters of demand distribution
are μ = 2000 units, τ = 200 units.

Using the algorithms introduced in Section 4.3, we can solve the Model (I) and Model
(II). For some different values of δ, such as 0.1, 0.5, 1, 2, 5, 6, 8, and 10, these solutions
and correspondent profits of the supply chain participants and the whole supply chain are
illustrated in Table 2.

As shown in Table 2, the optimal ordering quantity and lead time under the centralized
decision-making scenario are different from that under decentralized decision-making
scenario. From the respective of the whole supply chain, if a unit of a product is sold, it
can bring p − c = 15 $ profit to the supply chain; and if a unit of product is overstocked, it can
lead to c − v = 2 $ loss against the supply chain. Comparatively, from the respective of the
retailer, if a unit of a product is sold, it can bring in p −w0 = 10 $ profit for the retailer and if
a unit of product is overstocked, it can lead tow0 − v = 7 $ loss against the retailer.
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Table 2: The optimal solution to Model (I) and (II) with different values of δ.

δ

Decentralized decision-making model Centralized decision-making model

Δl
Model (I) Model (II)

Optimal solution Profit allocation Optimal solution Profit allocation
tD qD Πr(qD, tD) Πm Πl(qD, tD) tC qC Πr(qI , tI) Πm Πl(qI , tI)

0.10 120.00 2057.6 18260 10288 28548 120.00 2306.4 17570 11532 29103 555
0.50 122.58 2058.0 18134 10290 28424 144.00 2328.5 17363 11643 29006 582
1.00 144.00 2061.7 18037 10309 28345 164.00 2348.2 17223 11741 28964 619
2.00 164.00 2065.4 17955 10327 28282 180.00 2364.7 17106 11824 28929 647
5.00 180.00 2068.5 17867 10343 28210 200.00 2386.6 16975 11933 28908 698
6.00 185.15 2069.6 17847 10348 28195 200.00 2386.6 16975 11933 28908 713
8.00 200.00 2072.6 17845 10363 28208 200.00 2386.6 16975 11933 28908 700
10.00 200.00 2072.6 17845 10363 28208 200.00 2386.6 16975 11933 28908 700

It is obvious that the risk for the retailer to order more is much higher than that for the
supply chain. Therefore, the retailer’s decision on order quantities tends to be conservative.

As far as lead time is concerned, the retailer can benefit from the demand forecast
updates by reducing the lead time while it can bring more crashing cost to the whole supply
chain. Thus, the decentralized decision from the retailer cannot be consistent with that of the
centralized decision from the supply chain. Column 1 of Table 2, Δl, represents the difference
of profits between the two decision-making scenarios. We can see that the decentralized
decision making results in a suboptimal solution to the whole supply chain.

Hence, in order to coordinate the supply chain, risk should be distributed and
shared among supply chain partners. This idea is embodied in the three-parameters contract
proposed in Section 5. It makes the manufacturer and the retailer share the risk of the
overstock and the crashing cost in order to maximize the profit of the whole supply chain
and get a win-win situation. The parameters in the contract are developed in Table 3.

For fixed δ, using (5.8) and the data in Table 2, we can obtain the range of w. For
example, in order to get supply chain coordination, thew must range from 10.3025 to 10.5884
in the case of δ = 0.1.

For fixed δ = 0.1, letw vary in the range of 10.3025 to 10.5884, then we can calculate the
other two parameters in the contract with different w. Here, we can see that it is the value of
w that determines the supply chain’s profit allocation. To determine the value of w depends
on the supply chain participants’ ability to bargain.

In Table 3, ΠC
r , Π

C
m, and ΠC

l
denote the profits of supply chain participants and the

whole supply chain system with coordination Δr and Δm denote the profit increments of the
supply chain participants with coordination and Δr/Δl and Δm/Δl denote the ratios of the
profit increments shared among the supply chain.

From Table 3, we can see that the three-parameter contract is effective and flexible to
coordinate the supply chain.

7. Conclusions and Future Research

In this paper, we investigate two questions for a short-life-cycle-product supply chain, in
which the forecast error of expected demand is a log-linear function of lead time, and crashing
cost is a stepwise linear function of the lead time. Under this assumption and accounting
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Table 3: Contract and supply chain coordination.

Contract parameters Retailer Manufacturer Supply chain
w b λ ΠC

r Δr Δr/Δl ΠC
m Δm Δm/Δl ΠC

l
Δl

δ = 0.1, (qC, tC) = ( qI , tI) = (2306.4, 120), 10.3025 ≤ w ≤ 10.5884
10.3025 0.8229 0.6465 18815 555 100% 10288 0 0% 29103 555
10.4 0.827 0.64 18626 366 66% 10477 189 34% 29103 555
10.5 0.8311 0.6333 18432 172 31% 10671 383 69% 29103 555
10.5884 0.8346 0.6274 18260 0 0% 10843 555 100% 29103 555

δ = 0.5, (qC, tC) = ( qI , tI) = (2328.5, 144), 10.3213 ≤ w ≤ 10.6223
10.3213 0.8237 0.6452 18716 582 100% 10290 0 0% 29006 582
10.4 0.827 0.64 18564 430 74% 10442 152 26% 29006 582
10.5 0.8311 0.6333 18370 237 41% 10636 345 59% 29006 582
10.6 0.8351 0.6267 18177 43 7% 10829 539 93% 29006 582
10.6223 0.836 0.6252 18134 0 0% 10872 582 100% 29006 582

δ = 1, (qC, tC) = ( qI , tI) = (2348.2, 164), 10.3387 ≤ w ≤ 10.6591
10.4 0.827 0.64 18537 500 81% 10427 118 19% 28964 619
10.5 0.8311 0.6333 18344 307 50% 10620 311 50% 28964 619
10.6 0.8351 0.6267 18151 114 18% 10813 505 82% 28964 619

δ = 2, (qC, tC) = ( qI , tI) = (2364.7, 180), 10.3387 ≤ w ≤ 10.6591
10.4 0.827 0.64 18515 559 86% 10414 87 14% 28929 647
10.5 0.8311 0.6333 18322 366 57% 10607 280 43% 28929 647
10.6 0.8351 0.6267 18129 174 27% 10800 473 73% 28929 647

δ = 5, (qC, tC) = ( qI , tI) = (2386.6, 200), 10.7290 ≤ w ≤ 10.3667
10.4 0.827 0.64 18501 634 91% 10407 64 9% 28908 698
10.5 0.8311 0.6333 18308 441 63% 10600 257 37% 28908 698
10.6 0.8351 0.6267 18116 249 36% 10792 450 64% 28908 698

δ = 6, (qC, tC) = ( qI , tI) = (2386.6, 200), 10.369 ≤ w ≤ 10.7392
10.4 0.827 0.64 18501 654 92% 10407 59 8% 28908 713
10.5 0.8311 0.6333 18308 461 65% 10600 252 35% 28908 713
10.6 0.8351 0.6267 18116 268 38% 10792 445 62% 28908 713
10.7 0.839 0.62 17923 76 11% 10985 637 89% 28908 713

δ = 8, (qC, tC) = ( qI , tI) = (2386.6, 200), 10.3773 ≤ w ≤ 10.7403
10.4 0.827 0.64 18501 656 94% 10407 44 6% 28908 700
10.5 0.8311 0.6333 18308 463 66% 10600 236 34% 28908 700
10.6 0.8351 0.6267 18116 270 39% 10792 429 61% 28908 700
10.7 0.839 0.62 17923 78 11% 10985 622 89% 28908 700

δ = 10, (qC, tC) = ( qI , tI) = (2386.6, 200), 10.3773 ≤ w ≤ 10.7403
10.4 0.827 0.64 18501 656 94% 10407 44 6% 28908 700
10.5 0.8311 0.6333 18308 463 66% 10600 236 34% 28908 700
10.6 0.8351 0.6267 18116 270 39% 10792 429 61% 28908 700
10.7 0.839 0.62 17923 78 11% 10985 622 89% 28908 700

for the considerations performed for the single-buyer-single-vendor supply chain, we model
decisions on lead time and ordering quantity in a decentralized decision-making scenario
and a centralized decision-making scenario, respectively. Then, the attributes and existence
of the optimal solutions to the models are analyzed. Based on the analysis, the algorithms to
solve the models are developed. To validate the algorithms and models, a numerical example
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Table 4: Values of t, s(t) and y.

t (month) 12 9 6 3 0
s(t)% 40 23 19 15 10
y = ln s(t) 3.6889 3.1355 2.9444 2.7081 2.3026

is presented. The numerical result shows that the algorithms are effective. Furthermore, in
order to alleviate the double margin in the decentralized decision-making scenario, a three-
parameter supply chain contract is proposed to coordinate the supply chain. Through the
three-parameter contract, the whole supply chain’s profit is divided into two parts. Each of
them represents the single supply chain participant’s value-added capacities. The contract
can arbitrarily allocate the supply chain profit between the manufacturer and the retailer by
tuning the value of parameters. For this reason, it is easy for practitioners to adopt in practical.

In this study, only single product and single ordering are considered. Moreover,
multiple-product supply chain is universal in practice and, with shorter lead time, more
than one order can be placed. Therefore, it would be interesting to study multiple products’
scenario or multiple-order policies scenario in the future research.

Appendix

Fitting a Log-Linear Relationship between s(t) and t

As shown in Figure 2, corresponding to t = 0, 3, 6, 9, 12 (month), the forecast error of expected
demand is s(t) = 10, 15, 19, 23, 40 (% percentage of expected demand), respectively. Let y =
ln s(t), then the values of y (together with t and s(t)) are shown in Table 4.

Computing the coefficient between y and t (using the CORRCOEF function in the
Statistics tool box for Matlab), we can get the following.

The coefficient matrix of y and t is R =
[
1.0000 0.9839
0.9839 1.0000

]
, and the P -value matrix is P =[

1.0000 0.0025
0.0025 1.0000

]
.

The result (0.0025 	 0.05) shows that there exists a significant linear correlation
between y = ln s(t) and t at a given confidence level of 95%. This means that t and ln s(t) can
be written as

ln s(t) = a + bt. (A.1)

That is, s(t) is log-linear function of t.
Hence, denoting α = ea and β = b, s(t) may be written as

s(t) = αeβt. (A.2)
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