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The paper studies the hypothesis testing in generalized linear models with functional coefficient
autoregressive (FCA) processes. The quasi-maximum likelihood (QML) estimators are given,

which extend those estimators of Hu (2010) and Maller (2003). Asymptotic chi-squares
distributions of pseudo likelihood ratio (LR) statistics are investigated.

1. Introduction

Consider the following generalized linear model:
yt=g<x;‘rﬁ>+gtl t=1,2,...,7’l, (11)

where p is d-dimensional unknown parameter, {¢,t = 1,2,...,n} are functional coefficient
autoregressive processes given by

€1 =11, &= fi(@)e1+m, t=2,3,...,n, (1.2)

where {n;,t =1,2,...,n} are independent and identically distributed random variable errors
with zero mean and finite variance o2, 0 is a one-dimensional unknown parameter, and
ft(0) is a real valued function defined on a compact set © which contains the true value 6 as
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an inner point and is a subset of R'. The values of 6 and ¢? are unknown. g(-) is a known
continuous differentiable function.

Model (1.1) includes many special cases, such as an ordinary regression model
(when f;(0) = 0, g(1) = 7; see [1-7]), an ordinary generalized regression model (when
fi(8) = 0; see [8-13]), a linear regression model with constant coefficient autoregressive
processes (when f;(8) = 0, g(T) = 7; see [14-16]), time-dependent and function coefficient
autoregressive processes (when g(7) = 0; see [17]), constant coefficient autoregressive pro-
cesses (when f;(0) = 0, g(7) = 0; see [18-20]), time-dependent or time-varying autoregres-
sive processes (when f;(0) = a;, g(7) = 0; see [21-23]), and a linear regression model with
functional coefficient autoregressive processes (when g(7) = 7; see [24]). Many authors have
discussed some special cases of models (1.1) and (1.2) (see [1-24]). However, few people
investigate the model (1.1) with (1.2). This paper studies the model (1.1) with (1.2). The
organization of this paper is as follows. In Section 2, some estimators are given by the quasi-
maximum likelihood method. In Section 3, the main results are investigated. The proofs of
the main results are presented in Section 4, with the conclusions and some open problems in
Section 5.

2. The Quasi-Maximum Likelihood Estimate

Write the “true” model as

yt:g(‘x{ﬂO)-‘-etl t=1121"'1nl (21)

€1 = rll/ €t = ft(eo)et—l + rlt/ t= 2/ 3/ - n, (22)

where ¢'(7) = (dg(7)/dr) #0, f{(6) = (df:(0)/dO) #0. Define Hi;loft,i(eo) =1, and by (2.2),
we have

t-1

j-1
e=, <Hft—i(90)> Mi-j- (2.3)
i=0

j=0

Thus e; is measurable with respect to the o—field H generated by #1,15,...,1;, and

-1 -1
Ee;=0,  Var(e) = o2 tz (i‘[ ffi(90)>. (2.4)
j i=0

j=0

Assume at first that the 7; are i.i.d. N(0,02), we get the log-likelihood of y»,..., ¥,
conditional on y; given by

C(n-1)Ino® It (a-fi®e1)’  (n-1)In2x

®,=InL, = > = >

(2.5)
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At this stage we drop the normality assumption, but still maximize (2.5) to obtain QML
estimators, denoted by 62, 8,,, 0,,. The estimating equations for unknown parameters in (2.5)
may be written as

0D, n-1 1 & 2
=———+— > (&= fi(O)er1)", (2.6)
002 202 204§
00 ii]ﬂ(e)(ft ~ fi(0)er-1) €11
t - =17
00 o2&

(2.7)

o = e £iOa) - (¢ (0 - @8 (<))

Thus, 62, ﬁn, 0, satisfy the following estimation equations

G, = L i <§t - ft<§n>§t—1>2, (2.8)

I CRVICAERACAERER 9)
326 £i(8.)e) (¢ (B~ f(B)g (iB)w) =0 1o

where
& =y~ g(xIPn)- 2.11)

Remark 2.1. 1f g(xtTﬂ) = xtTﬂ, then the above equations become the same as Hu's (see [24]).
If £;(6) = 6, g(x] ) = x! B, then the above equations become the same as Maller’s (see [15]).
Thus we extend those QML estimators of Hu [24] and Maller [15].

For ease of exposition, we will introduce the following notations, which will be used

later in the paper. Let (d + 1) x 1— vector ¢ = (7, 6)". Define

oD oD, 0D Fogliy
_ 20%n o O%n O%n — _ 2 n
Su(p) =0 5p = © ( 55 o0 ) F.(p) = -0 i (2.12)
By (2.7), we have
X (o, w) u
F.(p) = " , (2.13)

« Z(( 2(0) + f:(6) ﬂ’(@))s}_1 - ;’(e)gtgH)

t=2
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where the * indicates that the elements are filled in by symmetry,

, [ 0*®,
Xu(p,w) = -0 <6ﬂ8ﬂT>'

U =3 (fiO)g (<) + fi@eg (811 2O fi@e1g (L1 6)x ).

t=2
o =128 (8) = 1@ (<L) xa) (5 (<18~ o) (oL ) )|

+%Z (e = fr@zi1) (8" (xf ) xix] = £i(0)g" (x14)x11x] ).
t=2
(2.14)

Because {e;_1} and {7} are mutually independent, we have

X (o) 0 Xa(g0) .
D, = E(Fu(g0)) = 0 Z f2enEs, | < 0 A, 00)>, (2.15)
=2

where

T

Xu(4po) = g(g' <xtTﬂ0>xt ~ fi(60)g’ <x£1ﬁ0>xt—1> (8' (xlfTﬂt))xt - fi(60)g’ (xtT,lﬂo>xt_1> ;

n n t-2 /j-1
A(B0,00) = 3 f(0)Eer, = 5 > fi*(60) > <Hff_i<9>> = O(n).
t=2 =2 i=0 \ i=0
] (2.16)
By (2.8) (2.7) and E; = 0, we have
oo E < a;" . > = téEm(g’(xtT po)x: = f1(80)g' (x] 1 fo)xe-1) =0,
s (2.17)
a§E< a{;q;n > = 3 1(0)E(1er1) = 0.
6=6, t=2

3. Statement of Main Results

In the section pseudo likelihood ratio (LR) statistics for various hypothesis tests of interest
are derived. We consider the following hypothesis:

Hi : g(-), f() are continuous functions, and f'(‘) #0, 0'5 > 0. (3.1)
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When the parameter space is restricted by a hypothesis Hy;,j = 1,2,..., let ﬁjn, éjn, 6].2,1 be the
corresponding QML estimators of 8,6, 02, and let

Ljn = =20, (Bju, 00, 52,) (3.2)
be minus twice the log-likelihood, evaluated at the fitted parameters. Also let

in = _Z(Dn <ﬁnr énl 61%)1

R - (3.3)
djn =Ljn—Ln
be the “deviance” statistic for testing Ho; against H;. From (2.5) and (2.8),
Ly=(n-1)In&%+ (n-1)(1+In2r7) (3.4)
and similarly
Ly =(n-1)InG}, + (n-1)(1+In2x). (3.5)

In order to obtain our results, we give some sufficient conditions as follows.

(A1) X, = 31, x¢x] is positive definite for sufficiently large n and

1
lim maxx; X,'x; =O(n™*), Vae <§,1], lim sup|A|max<X;1/2ZnX;T/2> <1, (3.6)
n—oo

n—ool<t<n

where Z, = (1/2) 31, (xex] | + x;1x]) and |A|
of the eigenvalues of a symmetnc matrix.

max () denotes the maximum in absolute value

(A2) There is a constant & > 0 such that

(3.7)

> <1]_[1f 1<90>>

t=j+1

> <1;Ift ,(9)> @  max

j=1 ==

(A3) f,(0) = dfi(0)/dO#0 and f/'(0) = df/(0)/dO exist and are bounded, and g(-) is
twice continuously differentiable, 0 < m < max,|¢'(u)] < M < o, 0 < m <
max,|g" (1) < M < oo.

Theorem 3.1. Assume (2.1), (2.2) and (A1)—(A3).
(1) Suppose Ho : f+(0) = 0 and g(u) is a continuous function, 0'02 > 0 holds. Then

din 2y, n— 0. (3.8)
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(2) Suppose Hy, : f+(0) =6, g(u) =u, O'g > 0 holds. Then

D 2
doyy — X7, N —> 0.

(3) Suppose Hos : f+(0) =0, g(u) =e*/(1+e"), og > 0 holds. Then

D
dsn —>ﬁ, n — co.

4. Proof of Theorem
To prove Theorem 3.1, we first introduce the following lemmas.

Lemma 4.1. Suppose that (A1)—(A3) hold. Then, for all A >0,

sup ”D;l/an((p)D;T/Z —(I),,” 2, 0, n— oo,
@EN,(A)

where

n 12 2
L F2(6,
@, = diag <Id, —Zt’: {teo( gz)et‘l >

Na(A) = {9 € R* 2 (p = 90) Dl - g0) < A%},

Proof. Similar to proof of Lemma 4.1 in Hu [24], here we omit.

Lemma 4.2. Suppose that (A1)—(A3) hold. Then ¢, — ¢y, 62 — o3 and
Xn (ﬂ*/ ﬂ**/ én) - Xn (‘PO)/

where §*, B** are on the line of By and ﬁn.

(3.9)

(3.10)

(4.1)

(4.2)

(4.3)

(4.4)

Proof. Similar to proof of Theorem 3.1 in Hu [24], we easily prove that ¢, — ¢, and 62 —

o7. Since (4.4) is easily proved, here we omit the proof (4.4).

O

Proof of Theorem 3.1. Note that S,,(¢,) = 0 and F,(¢,) are nonsingular. By Taylor’s expansion,

we have

0= 5u(@n) = Su(90) = Fu(§n) (#n = p0),

(4.5)
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where ¢, = ap, + (1 — a)¢, for some 0 < a < 1. Since ¢, € N, (A), also ¢, € N,(A). By (4.1),
we have

Fu(5,) = D}/Z(cpn + An)D,{/Z. (4.6)

Thus A, is a symmetric matrix with A, Lo. By (4.5) and (4.6), we have
DI/*(Gn -~ g0) = DEE, (§0)Sa(p0) = (@0 + A,) " D728, (g0). (47)
Let S,(¢), Fu(p) denote S,(f)((p),Sﬁle)((p), and F,(f)((p),F,(le)((p), respectively. By (4.7), we have
©,D;/% (B~ Po,6x — 60) = D;'2(S (90), 1" (90) ) + 0 (1). (4.8)

Note that

X% (o) 0
©,D;/ = (St P @0ey) |

VA (60, 00)

(4.9)

By (2.15), (4.2) and (4.8), we get
X3/ (90) (B = o) = X" (0) S’ (o) + 0r (1)

= X;2(g0) (5 (<o) - Fl0)g (o)1) + 0n (1),
t=2

(4.10)

z": ftlz(eo)etz_l <én - 90) = s (o) +op <‘\/ Ay (0o, 00))
i
= i fi(Bo)mer1 + OP< \/ An(90,00))~
i

(4.11)

Note that

er=yi=g(xlp) =g (<8 )x (bo - ) + e (412)
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By (2.1), (2.11) and (4.12), we have

- 0o = (5 (<9 - 08 (™)) (o) (- A0
(4.13)

By (4.13) and (2.10), we have

3% (&= i(Bn)an) = 35 (& (0)an) (¢ (597) - (00) 3 (<L17))

(A (E)a) o A(@)en)
IO EDICRICH

(4.14)

By (4.13), we have

(& (787)xT = £i(0n)g (LB )l (Bo = Bu) = (&= i(Bn)2a) = (e = (B )err).

(4.15)
By (4.15), we have
(G- (L)) (1)
-3 (@ £(0)a)"+ 3 (o A(@n)en)’
(4.16)
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By (4.14) and (4.16), we have

i (gt - ft (én>§t—1>2 = i <€t - ft (én)et—l>2
= t:2 4.17)

((5'(<13 )T = £u(8) g (xLp )<L ) (Bo ) )

n
t=2

By (4.15), we have

~
N
—-
I
N

(4.18)

Thus, by (4.17) and (4.18), we have
5 () A8 (L)) (3 -2))
S (@) )(3 () )3 (<o) (=) =0

(4.19)

Since 7y = e; — fi(0p)et-1, we have

g (e - ft(én>€t—1>2 = > (e + fil)ers - fi (én)et_1>2

M- 1M

7+ 3 (F60) - £i(8:)) et +2(£(00) - £i(0,) Jmer.
t=2
(4.20)

t

I
—_

Thus, by (4.17), (4.20) and mean value theorem, we have

(-1 =Y. (2~ fi(B,)a)’
t=2

n

- S z (60 = £1(8,)) ety +2(fu(00) = £ (81) )meec-

t=1
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—_ :2 ((gl<x;ﬂ*>XI - ft <é\n>gl<lelﬁ**>x£1> (ﬁo a 'B\n>>2
= il M+ <90 - §n>2 g i <§>€t2-1 + 2<90 - én) ;r;ft' <§>ef*171t

((5' (<73 ) T~ £u(8) 8 (<L) (Bo— Bn))

M=~

t=

N

(4.21)
where 0 = abp + (1 - a)én forsome0<a<1.
It is easy to know that
~ T ~
(Bu=Po) Xu(90) (Bn o)
(4.22)

n 2
= <Z;4 X, (o) <8' (xtTﬁ0>xt - fi(60)g’ <x;1ﬂ0>xt—l>> +0,(1).

By Lemma 4.2 and (4.22), we have

(n-1)52 = til n + (80 - én)2 g FH(8)ezy +2(00-6,) ;2; £ (8)eram
(B8 (5 ()5 - 0 (<)) ) onth
- ; i+ (60-0,) t}; £2(6)et, +2(60-6,) ;; £(8)eram
(B ()5 - 0 (<)) ) ont

(4.23)

Hence, by (4.11), we have

A _ 2o fi(Bo)mee VA (6o, 00)
en B 60 - n 12 2 +op n 12 2
Zt:Z ft (90)€t—1 Zt:Z ft (QO)et—l

(4.24)
S £ (Bo)e? S fi2(B0)e?,
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By (4.24), we have

n n

<90 B én>zzft,2<§>ef_l +2<90 -0, ) Zf (5)& 1M

t=2

<Zt o fi(Bo)nier ifz et 1

+0
S f(00)el < ztsz(@weu))

(w S 11(8)ewn+ ont1)

o
S f00)er < oyl sz(eo)et >>

Sia fE O, < St £ wo)etl) f

<Zt o fi(Bo)niei 4

0
p 2f (6o)ef , P< > 2f (60)e;- 1>>

: zn:(ft”(eo) +0(1))epam +op(1)
=2

(fi(80) +0(1))’e2,

M:

Il
N

(4.25)

_ (Z?zft(Qo)met )’ 2(3ts fiGomen)”
Zt 2f (Bo)e Zt 2f (Go)et 1

__(Zi fiB0)mer 1)? +op(1).
S f2(B0)e?

+op(1)

By Lemma 4.2, we have

_ zn: - (Z1, fi(Bo)meer1)’

(n— 1)5'13 = t

t=1 P ft/2(90)e$—1

<Z 1/2<ﬁ B, 0, )(g'(xtTﬁo>Xt—ft(90)8,<xtT1ﬂ0>xt—1>> +op(1)

2

N2 (S, fl(@0)mierr)’
t;"t S f2(Bo)e?,

- (B o (¢ (T 00 (. i)o) )+ or)

t=2
(4.26)
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Now, we prove (3.8). By (4.12), we have
&(1) = yi—g(xIPuu) = & (<1 B, )x1 (Po = Pun) +er (4.27)
Note that
&~ fi0)eir = (g (xB)x] - fulb0)g (xL1p™)xLy) (Fo- )+ (428)
From (4.28), we have
&(1) = 0181 (1) = (& (xTBL, )% — Ouug' (¥ ) ¥y ) (Bo = Bun) + 71 (4.29)

By (2.8) and (2.10), we have

>0 (& (1) = 00 (1)) (8 (57 B )= O0ng’(x1aP )0

M= ﬂ,M=

< <xt ﬂln)xt elng (xt 1.51n>xt 1> <.30 ﬁ1n> <3,<xtTﬁTn>xt - §1n8,<xtT71ﬁ91‘:z>xf-1>

t

* Z M ( '<x{ﬁ{n>xt — 01,8’ (xilﬁIZ)xt_l)

t=2

L
N

= (ﬁo - ﬁln)Txln (ﬁi‘wﬁﬂ/ §1n> + g ul (8' (xtT ﬁh)xt — 018’ <x£1ﬁii>xt—1>-
(4.30)

From (4.30), we obtain that
Pin— Po= X3, <BIn’ﬁI:L’ §1n> tZ;] Ul <8' <xtTl§1n>xt — 018’ (xf,lﬁln)xt-l)- (4.31)

By (4.29), (4.31) and Lemma 4.2, we have

n

(n-13%, = 3 (1) - uéa(D))’

t=2

n

(ﬂo ﬁln)TXm (ﬁ’{n,ﬁﬁr éln) ([50 - ﬁln)

t:l

+2(po~pu)’ Zw( (B )xe = g (xL By ) i)
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n n 2
- Xt (Z Xy (B o O1n) (8 (X1 B ) %t = O1ng’ (Xf_lﬁi‘ii)xm)) +0,(1)

t t=2

n n 2
= 2.1 - <Z X1, (o) <gl <xtTﬂ0>xt - 6og’ <x£1ﬁ0>xt_1>> +0p.
=1

t=2

~

(4.32)

By (3.3)-(3.5), we have

~2 ~2
dip = Lin =Ly = (n 1)1n<%"> - (n- 1)<<%> - 1> +op(1). (4.33)
o2 02

Under the Hyy, and by (4.26), (4.32) and (4.33), we have

(=11, -00) _ (Stamen)”

~ == p(1)
o i Sioer
, (4.34)
n
o Meer-
_ Zamec)” )
0y 2t-2 €
It is easily proven that
n
22Tl N 1), (4.35)

n 2
Oo'\/ Do €4

Thus, by (4.33)—(4.35), we finish the proof of (3.8).
Next we prove (3.9). Under Hp, : f;(0) =0, g(u) =u, and y; = xtTﬁo + e;, we have

€(2) = Y — X! Pon = xL o — xI Pon + €1 = x] <ﬁo - ﬁ2n> +ey (4.36)

Hence

€(2) — OonEr1(2) = xT <,50 - ,an> + et — Oy (xtT,l <,30 - ﬁ2n> + 6t—1>

. A (4.37)
= <xtT - GznxtT_l) (ﬂo - ﬂzn) +1r.
By (2.8), (2.10), we have
0= 3 (82) - O 1) (1~ Baui)
tj ) (4.38)
= Z <xtT - §2nxtT_1> (ﬂo - ﬁh) <xt - ézan) + Z”lt <Xt - éant—1>-

t=2

i
N]
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From (4.38), we obtain,

n

Bon — Po = X, <§2n> Z ul <xt - §2nxt—1>- (4.39)

t=2

Thus, by (4.37), (4.39) and Lemma 4.2, we have

n

(n-132,= Y (4@) - uir@))’

t=2
= i N+ (,50 - ﬁZn)TXZn <§2n> (ﬂo - ﬁZn) + 2(ﬁ0 - ﬁ2n>T i Ul (xt - éant—1>
t=1 t=2

_x - <Zn: Ul <xt - éznxt1>T>X2‘,} (§2n> <i i <xt - §2nxt1>>
t=1 t=2

t=2

n n 2
=D - <Z 1: X502 (00) (¢ — eoxt1>> +0p(1).
t=1

t=2
(4.40)

By (3.3)-(3.5), we have

~2 ~2
oy = Lom— L = (n - 1)1n<‘;i2"> - (n- 1)<<%> - 1> +op(1). (4.41)

Under the Hp,, by (4.26), (4.40), and (4.41), we obtain

(n-1)(62%,-62) _ (St mer)’ +op(1)

=2 2N 2
o5 On Die0 €14

(4.42)
n 2
L e
= —(Z;’Z Zt tzl) +op(1).
Oy 22 €14
Thus, by (4.35), (4.42), (3.9) holds.
Finally, we prove (3.10). Under Hys, we have
R extTﬁ;n exz-ﬁ;n T ~
&03) =y - = x! (Bo = Pon) + e (4.43)

14+edbn <1 + exff’;n)z
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Thus

T 3«
eXi B ~
—xl (Bo - Pon) e

&(3) = 03,611 (3) = o
<1 + e*t ﬁ;n)

~ extT-1ﬁ§:z —~ ~
~ 03— ] (Bo— P ) — Osneia
(1et ﬂ;;>z ( ) (4.44)

exz-ﬂ;n T A eer-lﬂg:z
- | T -6,

e T 2
<1 + exfﬁ§n>2 <1 + exflﬁ;;>2xt—1 <ﬂ0 ﬁ3n> + 1.

By (2.8) and (2.10), we have

LS ~ extrﬁgn ~ exilﬁ;;
0= E <€t(3) — O3n€1 (3)> X — O3 ——————— X
T \ 2 < T e\ 2
1+ ext71ﬂ3n>

_,.
I

N

—_

+

Q
=2
=
»
=

_ L e'xtTﬂ;n T é extT-lﬁ;l T —~
B T3 \2 %t ~O8n T e\ 2 X1 ﬂO B ,6371
t=2 (1 + e*t ﬁ3n> <] + ex:71ﬂ3n>

T3 T 3
et B ~ ext—lﬂ;:l

X —Axt - 93n—A2xt_1 (44.5)
<1 + exLﬁ;:;)

exTﬁ;n ~ exthﬁ;:
+ Z Nt ﬁxt - QSnﬁxt—l
=2 (1 + eXt ﬁ§n> <1 + exr—1ﬂ;:1>

T T G
= <ﬁ0 _ ﬁ3n>TX3n <ﬁ§n’ A;Z, é3n> + g nt ﬁ%xt - éSn <1%}ﬂj;’;;>2.7Ct—1

From (4.45), we obtain

. e e A\ et P, S ebh
Ban— Po = X5, <,53n/ 307 93n> Z Nt ﬁxt — O3, ﬁxt—l . (4.46)
=2 (] + et ﬂ§n> (1 + e’ﬂqﬂﬂ)
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By (4.44), (4.46) and Lemma 4.2, we have

n

(n-1)63,= > <§t(3) — Osnéi (3)>2

t=2
- il n+ <ﬁ0 - ﬁ3n>TX3n <ﬁ§nr By, §3n> <ﬂ0 - [53n>

_\T & e P _ e
+ 2<ﬂ0 - ﬁ3n> Z M| ———3%— O3n f—AZXH
t=2 <1 + extTﬁ:;n> <] + ex:{lﬂ;:l>
n n
= Z le% - Z T’Zth;/Z <ﬁ;nl ;:1/ 9311)
t=1 =2
2
T g+ T xx
5 e~ ﬂ3i . x? ~ §3n exz—lﬂsi . xz,_l
<1 + ex?ﬁ;) (1 + exLﬂ;::)
2
n n - extTﬂo extr,lﬂo
S S0 [ e ) ) o).
t=1 t=2 <1 + exr%) <1 + ex£1ﬂ°>

(4.47)

By (3.3)-(3.5), we know that

~2 ~2
sy = Loy — Ly = (n — 1)ln<0A—32"> - (n- 1)<<‘i—32"> - 1> + op(1). (4.48)
o o

Under the Hys, by (4.26), (4.47) and (4.48), we have

2 2
(n-1)(63, - 6) _ (Zsmer) o
o7 oy il

p(1). (4.49)

Thus, (3.10) follows from (4.48), (4.49), and (4.35). Therefore, we complete the proof of
Theorem 3.1. O

5. Conclusions and Open Problems

In the paper, we consider the generalized linear mode with FCA processes, which includes
many special cases, such as an ordinary regression model, an ordinary generalized regression
model, a linear regression model with constant coefficient autoregressive processes, time-
dependent and function coefficient autoregressive processes, constant coefficient autore-
gressive processes, time-dependent or time-varying autoregressive processes, and a linear
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regression model with functional coefficient autoregressive processes. And then we obtain
the QML estimators for some unknown parameters in the generalized linear mode model and
extend some estimators. At last, we use pseudo LR method to investigate three hypothesis
tests of interest and obtain the asymptotic chi-squares distributions of statistics.

However, several lines of future work remain open.

(1) It is well known that a conventional time series can be regarded as the solution to a
differential equation of integer order with the excitation of white noise in mathematics, and a
fractal time series can be regarded as the solution to a differential equation of fractional order
with a white noise in the domain of stochastic processes (see [25]). In the paper, {&} is a
conventional nonlinear time series. We may investigate some hypothesis tests by pseudo LR
method when the {¢} is a fractal time series (the idea is given by an anonymous reviewer).
In particular, we assume that

p
Zap_iD”fst =1, (5.1)
i=0

where Up, Vp-1,---,00 18 strictly decreasing sequence of nonnegative numbers, a; is a constant
sequence, and D? is the Riemann-Liouville integral operator of order v > 0 given by

v _ 1 ! v-1
D%h(t) = o) fo (t - u)" " h(u)du, (5.2)

where T is the Gamma function, and h(t) is a piecewise continuous on (0, o) and integrable
on any finite subinterval of [0,00) (See [25, 26]). Fractal time series may have a heavy-
tailed probability distribution function and has been applied various fields of sciences and
technologies (see [25, 27-32]). Thus it is very significant to investigate various regression
models with fractal time series errors, including regression model (1.1) with (5.1).

(2) We maybe investigate the others hypothesis tests, for example:

Hos: fi(0) =0,g(u) =u,03 > 0;

Hos: fi(0) =6,g(u) =0,03 >0;

Hoe: fi(0) =0,g(u) =e*/(1+e*),03 > 0;

Hoz: f1(0) = a; and g(u) is a continuous function, 0'3 > 0;
Hos: fi(0) = a;, g(u) = u, o7 > 0;

Hoo: f1(0) = a;, g(u) =e*/(1+e*), 07 > 0.
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