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The purpose of this paper is to derive tests for robust nonnegativity of scalar and matrix poly-
nomials, which are algebraic, recursive, and can be completed in finite number of steps. Pol-
ytopic families of polynomials are considered with various characterizations of parameter
uncertainty including affine, multilinear, and polynomic structures. The zero exclusion condi-
tion for polynomial positivity is also proposed for general parameter dependencies. By refor-
mulating the robust stability problem of complex polynomials as positivity of real
polynomials, we obtain new sufficient conditions for robust stability involving multilinear
structures, which can be tested using only real arithmetic. The obtained results are applied to
robust matrix factorization, strict positive realness, and absolute stability of multivariable
systems involving parameter dependent transfer function matrices.
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I. INTRODUCTION

Nonnegativity of polynomials, being the underlying condition in the gen-
eral problem of spectral factorization, can be traced back to the classical
work of D. Hilbert and N. Wiener. It has appeared since in a wide variety
of engineering problems including passivity of electric circuits [1], abso-
lute stability and hyperstability of control systems [2,3], optimal control
[4], stability of multi-dimensional [5] and repetitive systems [6], and sta-
bility of systems with time-delay [7]. Our objective is to formulate the
robustness problem of nonnegativity and positivity of polynomials, and
offer solutions that can be useful in engineering applications involving
parameter uncertainty.
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Robustness of positivity with respect to plant parameters has been con-
sidered in the classical work on absolute stability by Aizerman and Gant-
macher [8]. The analysis was limited to examples of second and third
order systems, and it was left unclear how the obtained inequalities involv-
ing plant parameters can be generalized for higher order systems. After the
Modified Routh Array [3,9] was proposed for testing positivity of real pol-
ynomials, it became obvious that the analysis could not be generalized,
because the number of inequalities grew at an unacceptable rate with the
dimension of the system [10]. The envelope method [3], which was pro-
posed at the same time to generate the boundaries of the absolute stability
regions in the parameter space for high order systems, was limited to two
or three parameters. Recent versions [11,12] of the envelope method have
resolved the dimensionality problem of the parameter space and offered
new possibilities for deciding the robustness issues.

In the late 1960’s, it was recognized that the problem of robust absolute
stability in the parameter space is one of interpretation [3]. The idea was to
embed a geometric figure in the stability region and maximize its size to
get the best results. The mathematical programming methods were applied
to the optimization problem [13], but no advantage was taken of the
known fact [3] that under affine uncertainty assumptions the stability
region is convex. Recently, the convexity was exploited using the power-
ful ellipsoidal method to solve the nominal absolute stability problem [14]
without addressing the issue of robustness (see also [15]). The potential of
the method of linear matrix inequalities [16] in this context remains unex-
plored.

The seminal work of Kharitonov [17] introduced a new way to look at
the problems of robust stability of linear systems. A hyperrectangle, which
was defined in the coefficient space of a real polynomial, was shown by
Kharitonov to be fully embedded inside the stability region if and only if
four of its vertices corresponded to stable polynomials, regardless of the
order of the system. This elegant result has been generalized and applied to
a wide variety of robust control problems [18,19]. When we apply Khari-
tonov’s approach to positivity of interval polynomials, we find that posi-
tivity of the interval family is equivalent to positivity of a polynomial at a
single vertex of the corresponding hyperrectangle. Furthermore, unlike the
stability case, to verify positivity of a polytope family we need only test
positivity of polynomials at the vertices of the polytope [20]. This result
allows us to estimate absolute stability regions of continuous and discrete
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systems by exploiting the fact [3] that with respect to the numerator coeffi-
cients of the transfer function the stability region is convex. When the pol-
ynomial results are specified to strict positive realness and absolute
stability of interval plants, where a polytope becomes a hyperrectangle, the
results do not compare well with the transfer function approach
[19,21-25]. The reason is that one needs to test only a subset of vertices of
the rectangle —not all of them as in the polynomial method [20]. The
transfer function results, however, are based upon special properties of
scalar rational functions, which cannot be readily extended to multivaria-
ble systems involving matrix transfer functions. The main purpose of this
work is to derive criteria for nonnegativity of uncertain matrix polynomi-
als, and show how the obtained results apply to robust factorization, abso-
lute stability, and positive realness involving multivariable systems and
matrix transfer functions.

The organization of the paper is as follows: In the next section, we
define nonnegativity of scalar polynomials on the imaginary axis.
Section III is devoted to converting imaginary axis nonnegativity to real
axis nonnegativity which can be tested by the algebraic, recursive, and
finite algorithm of the Modified Routh Array. In Section IV, we consider
uncertain scalar polynomials and establish conditions for positivity of
interval, polytope, and multilinear polynomial families. We also use the
Zero Exclusion Condition and show that in all these situations, there are
interesting distinctions between the positivity and stability of uncertain
polynomials. In Section V, the robust stability problem of a complex poly-
nomial with multilinear uncertainty structure is reformulated as problem
of robust positivity of a real polynomial but with polynomic uncertainty.
Examples are provided to indicate when such a reformulation may be use-
ful. Section VI contains the criteria for robust positivity of polynomial
matrices. The main result in this context is the reduction of positivity of a
matrix polynomial to positivity of its determinant. Both the direct matrix
criteria and the scalar tests involving the determinant are derived to con-
clude robust positivity of matrix polynomials. Finally, in Sections VII and
VIII, we apply the obtained positivity criteria to robust factorization, abso-
lute stability, and positive realness of multivariable systems.
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Il. NONNEGATIVITY

Let us consider a polynomial
n
fls) = ; as* (2.1)
=0

where a;, are complex numbers and a,, = 0. To avoid trivialities we assume that
f(s) # ay. Our interest is to study nonnegativity of f{s) on the imaginary axis

I={seC: Res=0} (2.2)
of the complex plane C.
(2.3) DEFINITION A polynomial f{s) is I-nonnegative if
f(s)>0 Vsel (2.4)
A strict version of this definition is

(2.5) DEFINITION A polynomial f{s) is I-positive if

f(s)>0 VseL (2.6)

We use the notation
(s) = f(— =n—1"'sf‘, 2.7
fi(s) = f(=s) /Zo( )"ak (2.7)

for the para-conjugate polynomial of f{s). If
fe(s) = £(s), (2.8)

then we say that f(s) is I-symmetric. This term is justified by the following
theorem, where we provide several characterizations of nonnegativity:
(2.9) THEOREM If f{s) is I-nonnegative, then the following statements are
true:
i.  f(s)is I-symmetric and the coefficients a; are such that

ar = (-Dkag, k=0,1,...,n (2.10)

which is equivalent to

Imag =0, k even
Re a; =0, k odd.

ii. The number 7 of zeros of f{(s) is even and they can be grouped in
para-conjugate pairs

(S1’§1)7(s23§2)3'--)(Sﬂ7§ﬁ)’ (2]2)

where § = —s;, and /i = n/2.

(2.11)
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iii. f{(s) admits at least one factorization of the form

f(s) = h(s)h(s), (2.13)
and A(s) is a polynomial defined by
h(s) =b(s—si,)(s—si,) ... (s—si;)- (2.14)

The numbers 5;, are arbitrarily chosen, one from each pair in (2.12),
and b is a complex number (with arbitrary argument), which depends
on the choice of numbers Siy:

iv. If f(s) has real coefficients, that is, it is a real polynomial, then there

exists at least one factorization (2.13), such that A(s) is a real polyno-
mial as well, and (2.13) becomes

f(s) = h(s)h(-s) . (2.15)

(2.16) REMARK Theorem (2.9) is the “axis” version of the “circle” Prop-
osition 1 in Appendix B of [2]. From this result, it is clear that if a polyno-
mial f{s) is I-nonnegative its zeros have the axis symmetry with respect to
the imaginary axis L; it is I-symmetric. This property will allow us to for-
mulate in the next section a nonnegativity test that requires only real arith-
metic. We should also note that the results can be rephrased in terms of the
nonnegativity with respect to the unit circle along the lines of [27,28].

lll. MODIFIED ROUTH ARRAY

Now we want to present the algorithm for testing I-nonnegativity of a pol-
ynomial f(s) with complex coefficients. This requires that we reformulate
I-nonnegativity in terms of the zeros of f{s).

(3.1) PROPOSITION An I-symmetric polynomial f(s) is I-nonnegative if
and only if it has no zeros on I of odd multiplicity, and f{sg) > O for some
S0 el

In applications we often need the strict version of the stated proposition,
which is

(3.2) PROPOSITION An I-symmetric polynomial f{s) is I-positive if and
only if f{s) has no zeros on I, and f{isy) > O for some sy € 1.
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Let us now use the transformation s — is to get the new polynomial
F(s) . Since the transformation rotates the zeros of f(s) by nt/2, and f(s) is
I-symmetric, the complex (non-real) zeros of f(s) appear in conjugate
pairs; 7(5) is a real polynomial. To see this directly in terms of the coeffi-
cients a; = ay+ iy, of f(s), we first note that condition (2.11) implies that
f(s) has the form

f(s) = o+ iB1s + aps® + iP3s® + ous* +ifss® + ... . (3.3)
After the announced transformation s — is , we get
f(s) ag— P1S— 008 + [33s +oqst — [35s5 -, (3.4)

which is a real polynomial and, thus, real on the real line R. Furthermore,
complex zeros of f(s) appear in conjugate pairs. In other words, f(5)
is R-symmetric, that is, it is a real polynomial. Most importantly, the exist-
ence and multiplicity of zeros of f(s) remain intact after transformation,
when they become the real zeros of (5).

We start with the R, part of the real line R and state the following:

(3.5) DEFINITION A real polynomial f{s) is R,-nonnegative if
f(s) >0 VseR,. (3.6)

The interpretation of R -nonnegativity in terms of zeros of f(s) is obvi-
ous:

(3.7) PROPOSITION A real polynomial f(s) is R,-nonnegative if and only
if it has no positive real zeros of odd multiplicity, and f{sg) > 0 for some
S0 eER "™

(3.8) REMARK Equally obvious are the strict versions of Definition (3.5)
and Proposition (3.7) characterizing the R, -positivity of f{s).

It has been shown on several occasions [3,9] how the array of Routh can
be modified to count the number of positive zeros of a real polynomial,
including their multiplicities. The Modified Routh Array provides a
numerical nonnegativity test, which is algebraic, recursive and finite. We
consider a real polynomial f{s) defined in (2.1), and state the following [9]:

(3.9) THEOREM The number & of positive zeros of a real polynomial f{s)
is
n=n—V(ro,r1,.,72n), (3.10)
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where V is the number of sign variations in the first column of the Modi-
fied Routh Array,

no= Ve CDTan e —aa
no= (Uma ()= Da .. —a (311)
n = a0

and rq, ry,..., ¥, are all different from zero.

If the array (3.11) is regular, that is, all numbers 7; are nonzero, then we
have from Theorem (3.9):

(3.12) THEOREM A real polynomial f(s) is R,-positive if and only if
WV(rg,r15-- T2y) = 1, and ag > 0.

When the array is singular, and a whole row of the array goes to zero,
then f(s) may have real positive zeros of odd multiplicity, which is relevant
for nonnegativity of f(s). To count the multiplicities of positive zeros by
array (3.11), we follow the procedure of Karmarkar [29] and first enumer-
ate the rows of the array by j =1, 2,..., 2n +1, and the row preceding the
identically zero row by j,,, m = 1, 2,..., M — 1. Let us also define

1

”mzi(jm_jm—l)a m:1727"'7M (313)

with jy =1 and jj; = 2n + 1. For the number of sign variations in the first
column of (3.11), between the two consecutive rows j,,_; and j,,, we use
the symbol V,,. Finally, we denote by r,,the number of positive zeros of
f(s) with multiplicity m. Then, we have

TTUn :(nm—Vm)—(nm+1—Vm+1), m=1,2,...,M

3.14
Tmt1 = Mgl — Vint1, ( )

and

(3.15) THEOREM A real polynomial f{s) is R,-nonnegative if and only if
the Modified Routh Array produces m,, = 0 for all odd m = 1,2,..., M, and
f(sp) > 0 for some sy € R,.

(3.16) REMARK To determine R _-positivity or nonnegativity of a
complex R-symmetric polynomial f{s) we apply Theorem (3.9) to f(s) and
use Theorem (3.12) or (3.15) in an obvious way. If we want to test positivity
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(nonnegativity) of f{s) on the whole real line R that is, R-positivity (-non-
negativity), we apply the theorems to both f{s) and f{—s).

(3.17) REMARK The important case in applications [3,30] is when f{s) is
real to start with. Then a; = 0, and from (3.3) we get

f(s)= kin: ays™ (3.18)
=0

which is an even polynomial. The zeros of f{s) have a “rectangle symme-
try,” that is, they are symmetrically distributed with respect to both imagi-
nary axis I and real axis R. To determine R, positivity in this case, all we
need to do is use the transformation s?—> 5 and apply array (3.11) to the
new polynomial f(5). Obviously, if (5) is found to be R, -positive, it is
automatically R-positive as well.

When circle nonnegativity is considered, the Marden-Jury algorithm can
be used to determine the number and multiplicity of the zeros of a real pol-
ynomial on the unit circle [27]. The algorithm can be implemented using
well-known Jury’s table [10].

IV. UNCERTAIN POLYNOMIALS

We start with positivity considerations of a real scalar polynomial
n
f(sap) = zak(p)sk7 (41)
k=0

where p € R¢ is the uncertain parameter vector which belongs to an uncer-
tainty bounding set P. For a fixed po € P, the polynomial fs, po) = f{s) has
numerical coefficients a;.

The uncertain polynomial f{’s, p) and set P form a polynomial family

F={f(.p):peP}. (4.2)
Positivity of family # is expressed by the following:

(4.3) DEFINITION A family 7 is positive if f{s, p) is positive for all p € P.

Testing positivity of #depends crucially on the type of coefficient func-
tions ay(p), as well as the shape of set P. In all cases, it is standard to
assume that a;’s are continuous functions of p, P is a bounded pathwise
connected set, and f{’s, p) has invariant degree, that is, the degree of f{ss, p)
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is n for all p € P. Favorite special cases of P are hyperrectangles and con-
vex polytopes.

Let us start with the special case when the coefficients a; are independ-
ent parameters, that is, p = (ag, ay,..., a,). We also assume that a;’s belong
to given intervals,

ay € [a,,a], k€n (4.4)
where n = {0, 1,..., n}. Then, the uncertainty set is a hyperrectangle
P={p:R" :q; € [a,, @], ken} (4.5)
We define the minorizing polynomial
n
fs)= ; s, (4.6)
=0

and prove:

(4.7) THEOREM An interval family #of polynomials f{(s, p) is R, -positive
if and only if the polynomial f(s) is R,-positive.

Proof The fact f(s) € 7 implies necessity. Since
fls,p) > f(s)>0 VseR, VpeP (4.8)
sufficiency follows. Q.E.D.

The bounding set P of (4.5) is a hyperrectangle in R™! having 2"*! verti-
ces. Theorem (4.7) says that for # to be positive, it is necessary and suffi-
cient that a single polynomial f(s) at a vertex of P be positive. By contrast,
when stability of an interval faﬁlily ¥ is considered, the well-known result of
Kharitonov [17] states that stability of # is equivalent to stability of four
vertices of P.

(4.9) REMARK Theorem (4.7) can be applied to more general cases of coef-
ficients a; being dependent on parameter vector p. Then, a suitable bounding

ar(p) > &, ken (4.10)
by numbers g; can produce the minorizing polynomial f(s). Since the

resulting polynomial f(s) may be outside of the family % its positivity is
generally only sufficient for positivity of 7

A way to generalize Theorem (4.7) and retain necessity is to consider
convex polytopes bounding the uncertain parameters and assume g, (p) to
be affine linear functions of p. This generalization, however, requires test-
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ing positivity of corresponding (fixed) polynomials at all vertices of the
chosen polytope. The affine assumption is

a(p)=bip+c, ken (4.11)
where by € R¢ are constant column vectors, ¢ are scalars, p is a column

vector, and T denotes transpose.

Let us define a convex polytope P in R¢ as the convex hull of a finite set
of points {p!, p...., p*}, that is,

P = conv{p’}, i€v (4.12)
and v = {1, 2,..., v}. Then, # is a polytope of polynomials,
F =conv{f(-,p")}, i€V (4.13)

where vertex polynomials fs, pi) are generators for %

(4.14) THEOREM A polytope family ¥ is R,-positive if and only if all
generators f{s, p') for ¥ are R, -positive.

Proof Necessity is obvious. To prove sufficiency, we note that for any
point p € P, there exist numbers A; =0, i € v, such that

\4 \4
p=3Ap, Y=l (4.15)
i=1 i=1
Then, the corresponding polynomial f{s, p) can be expressed as

f(s,p) —f(svz:hp)

1=

= z b,{z)»,'p +Ck) k
=1

n
A Y (br P+ i)t
k=0

Aif (s, p’)

S

x~
<1
o

(4.16)

1

M<

Il
—_

and R, -positivity of generators f{s, p') implies R,-positivity of ¥. Q.E.D.

A more complex uncertainty structure is the case when a; (p) are multi-
linear functions of p. This case can be reduced to that of affine functions if
we define a vector pU! = (PV> P2sevs P> PjaIreos peo) € R¢ as the vector
p with component pj deleted. Then, each a;(p) can be expressed as

ax(p) = be(P)pj+ ck(pW). (4.17)
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If we fix pUl, then b, and ¢y, are constants, and coefficients a;(p) become
affine functions of the component p;. Therefore, to apply Theorem (4.14)
to the multilinear case, we have to restrict uncertainty bounding set P to a
hyperrectangle,

P={pecR: pclp, P, kel} (4.18)

where 1 = {1,2,...,€}. We denote 26 vertices of P by p', consider the family
of polynomials # = {f( -, p) : p € P}, and prove the following:

(4.19) THEOREM A multilinear family 7 is R, -positive if and only if all
generators f(s, p*) for T are R, -positive.

Proof We note first that for each fixed s € R, the image of the hyperrec-
tangle P under the mapping f(s, ) is a closed and bounded interval
J(s) = [a(s),B(s)]. Since f(s, p) is a multilinear function of p, the minimum
of f(s, p) is attained at an extreme point p' of the hyperrectangle P, (see
Lemma 14.5.5 of [18]). This fact implies that for any fixed s € R,,

min f(s, p) = min f(s, p) = a(s), (4.20)
peP i
and the sufficiency follows. The necessity is obvious. Q.E.D.

(4.21) REMARK Theorem (4.19) is stronger than the corresponding result
in the stability context ([18] Remarks 14.8.2). The reason is that for each
fixed s € R,, the value set f{(s, P) is an interval, and 0 € conv f(s, P)
implies 0 € f(s, P). We will exploit this advantage in the next section,
where we convert stability of complex uncertain polynomials to positivity
of real uncertain polynomials.

(4.22) REMARK Theorem (4.19) can be applied to polynomic uncertainty
structures via the transformation proposed in [31] (see also Lemma 14.3.9
of [18]). The transformation converts uncertainty hyperrectangle P to a
polytope, which prevents the use of the vertex result offered by Theorem
(4.19). To retain the hyperrectangle uncertainty structure, one can use
"overbounding" by a higher dimensional hyperrectangle at the expense of
losing the necessity part of the theorem and, thus, incurring conservative-
ness in the end result. Alternatively, one can stay with the polytopic set
and retain necessity by applying the value set concept capitalizing on the
fact that the value sets are straight line segments on the real line R. In this
context, either the minimization (4.20) is carried out for each s ER,, or
the Zero Exclusion Condition [18, 19] is applied as explained next.
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We show how the Zero Exclusion Condition [18,19] applies to testing
positivity of a family # of polynomials under the standard assumptions: P
is bounded and pathwise connected, a;(p) are continuous, and f{s, p) has
invariant degree. We again rely on the fact that the value set f{s, P) for
each s € R is an interval J(s), and prove the following:

(4.23) THEOREM A family # is R-positive if and only if # has at least
one R-positive member f(s, po) and 0 ¢ fis, P) for all s € R.

Proof To prove the "only if" part, we assume that #is positive, but
0 € fis", P) for some s* € R. Then, fis*, p*) = 0 for some p" e P, which
contradicts positivity of .

To establish the "if" part, we again proceed by contradiction. Let us
assume that f{s", p!) is negative for some s € R and p! € P, but 0 ¢ fis, P)
for all s € R. Since P is pathwise connected, there exists a continuous func-
tion 0: [0, 1] — P such that 6(0) = po and 6(1) = pl. By continuity of O(A),
when A goes from 0 to 1, s", 8(A)) goes from f(s*, %) >0t fis", p!)<0.
Due to continuity of f(s*, (L)) with respect to A, there exists some A" such
that f(s*, (-)(k*)) = (), that is, f(s*, p*) = 0, where p* =6()»*). Therefore,
0 e f{s, P), which is a contradiction. Q.E.D.

All results of this section can be reformulated for robust circle positivity
of uncertain polynomials along the lines of [20]. The relevant circle posi-
tivity test of numerical polynomials has been introduced in [27] (see also
[10], [28], and [32]).

V. ROBUST STABILITY

We consider a complex polynomial
m
k=1

where we assume that by(p) are multilinear functions of pe P, P is a
hyperrectangle, and k(s, p) has invariant degree. We recall [18, 19] that
h(s, p) for a fixed p, is stable if all zeros of h(s, p) lie in the strict left half
of plane C. We introduce the polynomial family

H={h(-,p): p€P}, (5:2)

and state the following
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(5.3) DEFINITION A multilinear family #{is stable if A(s, p) is stable for all
peP.

To establish stability of O we form the I-symmetric polynomial
f(S,P) =h(s7p)h*(s7p)a (54)

which has the polynomic uncertainty structure. The corresponding poly-
nomic family is

F={f(-p):peP}, (5.5)

and we prove the following:

(5.6) THEOREM A multilinear family % is stable if and only if there is a
stable polynomial ﬂs,po) € # and the corresponding polynomic family #
is I-positive.

Proof To prove the “onl! if’*’ part, we assume that ?*{ is stable, but # is
not I-positive. Then, fis, p )= 0 for p € P and s €I implying A(s ,
p ) =0, which is a contradiction. For the “if” part we again proceed by
contradiction and assume that # is not stable, but # is I-positive. Since H
is not stable, there exists an unstable polynomial f{s, p°) € # From the
fact that the coefficients by(p) are continuous in p, it follows that the root
functions s;(p), sy(p)...., S,u(p) of h(s, p) are continuous as well. This
means that at least one root function s;(p) in going from s,-(po) to si(pl)
which is situated in the closed right half plane C,, must reach the imagi-
nary axis I. This implies that # is not positive, which is the contradiction
we want. Q.E.D.

There are several advantages that Theorem (5.6) offers over robust sta-
bility analysis by existing methods [18,19,33]. First, the value sets are
intervals and, therefore, convex. Second, the positivity test of complex
families .# require only real arithmetic. Third, the family # has polynomic
structure with (at most) quadratic terms in p. In deciding positivity of f{w, p),
these facts open up a possibility to use standard nonlinear programming
methods for minimization of f{w, p) over P.

Alternatively, we can use the transformation of Remark (4.22) to get a
vertex test for positivity of #. Unfortunately, the transformation causes the
loss of necessity in Theorem (5.6). We illustrate this fact by the following:

(5.7) EXAMPLE Let us consider stability of the complex polynomial
h(s,p) = * + (p1 — p2 — ip3)s — p1p2 — ip1p3 (5.8)



148 D.D. SILJAK and M.D. SILJAK

and form the real polynomial

f(w,p) = 0* =2p30° + (pT + p3 + p3)0’ — 2pips0+ pi(P3+p3)  (5.9)
using (5.3) and s = iw. If
P={peR :p €[1,1.3], p € [-1.5,-1.2], p3 € [3.2,3.5]} (5.10)

we apply the transformation p? = pip2, p3 = psps, p3 = psps, and
plot the value set f(s, P;) in Figure 1. To plot f(s, P,) we considered
only the vertices of P, obtained from P using the new parameter vector p
€ RO. Since s; =1, s, =—1.5 + i3.2 are zeros of A(s, p) for pY=1p9 =
-1.5, p9 = 3.2, the polynomial (s, pY) is stable, and Figure 1 implies sta-
bility of the corresponding family #.

200

180

160

flw, B,)
8

n
o

-1

3

FIGURE. 1. Positive value sets

When we increase the uncertainty interval of p; to [3.2,4], we obtain
Figure 2, which shows that the corresponding family # is not positive;
the stability test of #{is inconclusive. Yet, zeros of (s, p) are s; = —py, 5y
= p, + ip3, implying stability of # for the enlarged uncertainty set 132;
therefore, the conservativeness of the overbounding approach.
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FIGURE 2 Value sets fail positivity

VI. MATRIX POLYNOMIALS

Let us consider a regular matrix polynomial
N
F(s) :;Aksk, (6.1)
=0

where A; are constant complex m X m matrices, and Ay = 0. We assume
that matrix F(s) is paraconjugate Hermitian, that is, Fx«(s) = F(s), where
Fu(s) = F'(s). For s €1, F(io) is Hermitian in the ordinary sense, since
F'(iw) = F(io).

Our immediate objective is to provide the necessary and sufficient con-
ditions for F(iw) to be positive definite. By C™ we denote the m-dimen-
sional unitary space and recall the standard.

(6.2) DEFINITION A Hermitian matrix polynomial F(s) is I-positive, writ-
ten F(iw) > 0, if

Z'F(im)z > 0 (6.3)
forallz€ C" - {0}, and all w € R.
Positivity of F(iw) can be established by the following [34]:

(6.4) THEOREM A Hermitian matrix polynomial F(iw) is positive if and
only if

F(0) >0, and detF (iw) #0 VYwe R (6.5)
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Proof Since F(iw) is a Hermitian matrix, there exists a unitary matrix
T(iw) such that A(iw)=T*(iw)F(iw)T(iv), where A(iw)=diag{\(iw),
A, (iw),..., A, (iw)}. Now, obviously, (6.3) implies (6.5). Conversely, from
(6.5) we have X](O) > 0 and kj(iw) #0 for all ®w € Rand all j € {1, 2....,
m}. Since k]( iw) are continuous functions of w, we have kj(ico) > 0 for all
o € R, that is, F(in) > 0. Q.E.D.

A useful aspect of this result is the fact that positivity of a matrix poly-
nomial F(iw) is reduced to checking positivity of a single real scalar poly-
nomial which is its determinant. This fact has been exploited in a number
of applications, namely testing positive realness of rational matrices [27],
stability of two-variable polynomials [5,10,32,34], and absolute stability
and optimality of multivariable systems [30]. In each of these cases, all
that is needed to do is to compute the Modified Routh Array (3.11) to test
positivity of det F(iw) and check positivity of a constant symmetric matrix
F(0).

We can use the Modified Routh Array to test nonnegativity of F(iw) at
the price of more elaborate testing. We first assume that F(iw) has rank r,
that is, there is an r-th order principal minor of F(i®w), which is not identi-
cally zero, and all principal minors of order higher than r vanish identi-
cally. We denote by f)(w) this r-th order minor, and by f () the leading
principal minors of order j = 1, 2,..., r — 1, which are generated by f (w).
From [9], we have:

(6.6) THEOREM A Hermitian matrix polynomial F(s) is I-nonnegative,
written F(i®) 2 0, if and only if

f@)>0 YoeR, j=1,2,..,r (6.7)

Our first and foremost interest is to consider I-positivity of a paraconju-
gate Hermitian matrix polynomial F(s,p) containing uncertain parameter
vector p € Re,

N
F(s,p) = ZAk(p)ska (6.8)

k=0
where p belongs to a convex hull P of v points p as in (4.12), and
Ap(p) =0 for all p € P. We assume that the entries of the coefficient matri-
ces Ay(p) are affine linear functions of p. Then, matrix polynomial F(s, p)
and polytope P form a polytope family of matrix polynomials,

M ={F(,p): peP}. (6.9)
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Robust positivity of uncertain matrix polynomials is captured by the fol-
lowing:

(6.10) DEFINITION A polytope family M of matrix polynomials F(s, p) is
I-positive if F(ioy p) >0 forallo ER and all p € P.

Positivity of M in terms of its generators, which can be tested for posi-
tivity by repeated use of Theorem (5.4), is characterized by

(6.11) THEOREM A polytope family M is I-positive if and only if all gen-
erators F(iw, p') for M are positive.

Proof As in the proof of Theorem (4.14), we express p € P as a convex
combination (4.15) and obtain

F(s,p) kEAk 2

= MAk(p')s* (6.12)

which expresses F(s, p) as a convex combination of F(s, P for each
p € P. Therefore, positivity of F(iwy p) for all p € P is equivalent to posi-
tivity of all F(iw, p'). Q.E.D.

An alternative approach to the problem of positivity of the polynomial
family M is to use condition (6.5) directly to consider uncertainty in the
polynomial F(s, p).This effectively reduces the robustness analysis of
matrix polynomial F(s, p) to that of the scalar polynomial f{s, p) = det
F(s, p). The price for this simplification is the fact that affine uncertainty
structure in F(s, p) becomes generally a polynomic structure in f{s, p),
which makes Remark (4.22) relevant; see Example (8.21).

As in the case of Theorem (4.19) for scalar polynomials, we can retain
the extreme point result of Theorem (6.11) even if we deal with F(s, p)
with multilinear uncertainty structure, provided we consider a rectangle P
as the uncertainty bounding set. We recall the notation pUl of (4.17) and
state the obvious fact that if F(s, p) has multilinear structure, it can be
expressed as

F(s,p) = Gj(s,pU)p; + H;(s, p), (6.13)
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where G (s, p[’]) and H; (s pm) are matrix polynomials having multilinear
uncertamty structure as well. When p[’] is fixed, F(s, p) is affine in p;.
Therefore, for any edge of P, which is parallel to p; axis and connects two
vertices p’ and p' of P, we can substitute the convex combination

pj=7\]_7j+( -Mpj, h€l0,1] (6.14)
into (6.13) to get
F(s,Ap'+ (1= M) |
=Gj(s,p)hp, + (1= N)pj] +H(s, pl)

=MGij(s, p[’)p +Hj(s, p)]+(1 = M)[Gj(s, PP+ Hi(s, p)]
—M(SP)+(1 MFj(s, ')

(6.15)

It is obvious that F (s, p) is I-positive along the corresponding edge of P
if and only if the two vertex polynomials Fj(s, Bi) and F(s, Ei) are I-posi-
tive. It is further obvious that this argument can be extended to all facets of
P, as well as its interior in pretty much the same way it was done in prov-
ing the well known Mapping Theorem in [35]. Thus we arrive at

(6.16) THEOREM A multilinear family Mis I-positive if and only if all
generators F(iw, p*) for M are positive.

We immediately note that, while the extreme point result of [35] is only
sufficient for stability of a scalar polynomial, the condition of Theorem
(6.16) is both necessary and sufficient for positivity of a polynomial
matrix. The reason is that the image of the hyperrectangle P under the
mapping F(s, -) is identical to the convex hull of the generators F(s, pi)
corresponding to the vertices p' of P. This is not the case in the stability
investigations in [35] (see also [18, 19]).

VIl. SPECTRAL FACTORIZATION

In a number of areas in system theory, notably in linear prediction and fil-
tering [36] and stability [2], it is required to factor a real paraconjugate
Hermitian matrix polynomial F(s) as

F(s) = H(s)H.(s) (7.1)
so that det H(s) does not have zeros in the open right half of plane C.
There are quite a few algorithms (e.g., [37-40]) with varied numerical reli-
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ability, which are designed to perform the factorization of F(s). Using a
simple example we will show that the spectral factorization problem may
be ill-conditioned, because small changes in the coefficients of F(s) can
destroy an existing solution H(s).

(7.2) EXAMPLE Let us consider a real scalar polynomial

f(s) =s*+ (p1+ p2)s* + p1p2, (7.3)

where p; and p, are positive parameters. If p; = p,, the polynomial f{s) can
be factored as

f(s) = h(s)h(=s) , (7.4)
where

h(s) =s*+p1 . (7.5)
By a slight change of parameters, so that p; = p,, the factorization is
destroyed. To see this, we note that as long as p; = p,, f(s) has a pair of
complex zeros sy o = +iVp; with multiplicity two, which can be split to
produce A(s) in (7.5). When p; = p,, f(s) has two distinct pairs of imagi-

nary zeros, and factorization (7.4) is impossible.
Alternatively, whenever p; and p, are nonpositive, that is, the parameter

vector pEP={p€E R?: p1 =0, pp =0}, the polynomial f{s) is robustly
factorizable. To show this, let s — iw in f{’s) and get the new polynomial

f(@) = 0* = (p1+ p2)o* + p1p2. (7.6)

Now, imaginary zeros of f(s), if any, become real zeros of f(w), and we

see by inspection that f(w) is positive; it has no real zeros for all p EP.

Factorizability of f{(s) is equivalent to positivity of f(w), which now can be
shown to be robust by the criterion stated in the preceding sections.

To consider the robust factorization problem, we recall the well-known
result [38]:

(7.7) THEOREM Let F(s) be a paraconjugate Hermitian matrix polyno-
mial. Then, there exists a real matrix polynomial H(s) such that
F(s) = H(s)H«(s) if and only if F(iw) = 0 for all w € R.

For a robust version of Theorem (7.7), we need.

(7.8) DEFINITION A polytope family 4/ is robustly factorizable if for
each fixed p € P, there exists a matrix polynomial H(s, p) such that F(s, p)
= H(s, p)H«(s, p).
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Then, from Theorems (6.11) and (7.7), we have

(7.9) THEOREM A polytope family 9 is robustly factorizable if all gener-
ators F(ioy p') for M are positive.

Factorizability of % can be tested by a repeated use of Theorem (6.4).
We could extend Theorem (7.9) to include the "only if" part of Theorem
(7.7) by using the nonnegativity results of [37] and Theorem (6.6). The
nonnegativity testing of each generator F(iw, pi), however, would require
extensive computations.

(7.10) EXAMPLE Let us parameterize a numerical matrix polynomial of
reference [39] to get an uncertain matrix polynomial

—s2+ps —pis+p3 0
F(s,p)=| pis+ps —s*+ps —p2s+ps (7.11)
0 p2s+ps —s*+p7

The uncertainty set is a hyperrectangle P defined by
p1 € [0,1], p2 € [-1,1], p3 € [-0.25,0], ps € [-0.25,0.25]

ps €[0.25,0.5], ps € [2,4], p7 € [0.25,0.5]. (7.12)
We want to show that the matrix
*+ps  —ipio+ps 0
F(io,p) = | ipjo+p3 0*+ps —ipow+ps (7.13)
0 ippo+ps  ©*+p7

is positive definite for all p € P. If we use Theorem (6.11) we need to test
27 =128 polynomials for positivity. Instead, we can determine f(a, p)
= det F(ioy p) as

f(o,p) = 0® +(=p} - p3+ ps + ps + p7)o*
+(;P%P7 S P3ps — p3— pi+ pspe + psp7 + pep7)w? (7.14)
—DP3P7— P3Ps + PspepP1

and show that it has no real zeros for all p € P. We notice that f{w, p) has
polynomic uncertainty structure, as opposed to F(iw, p)which has an affine
uncertainty form. Before we attempt the extensive testing of flay p) it is
recommended to test for positivity the coefficient-by-coefficient minoriz-
ing polynomial f(®) on P, which is

f(w) = 0°+0.50* - 0.06250 + 0.0625. (7.15)
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By computing the corresponding Modified Routh Array

-1 0.5 -0.0625 0.0625
-3 1 —0.0625

0.1667 —0.0417 0.0625

0.2501 1.0622 (7.16)
—0.7497 0.0625

1.0830

0.0625

we find three sign variations in the first column of the array and conclude
that ]_‘(m) has no real zeros. Next, we use [41] to conclude that the inter-
val matrix

ps p3 0
AO = D3 Pe6 P4 (7.17)
0 ps p7
is positive definite on P, and we are done.

We should note here that nonexistence of real zeros of f(w) in this case
is only a sufficient condition that worked. If f(®) had failed the test, the
testing would have been inconclusive; there is no member F(s, p) of the
underlying family 4 that corresponds to the polynomial f(w).

Viil. ROBUST ABSOLUTE STABILITY

Let us consider a multivariable Lur’e-Postnikov system

$:. x=Ax+Bu
y=Cx 8.1)

u=-4(ty)
where x € R, u € R, and y € R are state, input, and output of the linear
part of &, which is characterized by the triple (4, B, C) of constant matri-

ces having appropriate dimensions. We make the following assumption
about ¥:

(A) The triple (A, B, C) is a minimal realization of a strictly proper trans-
fer function G(s) = C(sI —A)1B.
(A,) The nonlinear time-varying function ¢(t,y) = [¢1 (Z, 1), 92 (&, Y2)--es
0.t y,)]” belongs to the class of sector-bounded continuous functions

@ ={0: R > R 9" (1,y)[Ky—0(r,)] >0 VyeR}, (82)

where K € R™*"™ s a constant positive definite matrix.
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To establish absolute stability of &, we need the concept of strictly posi-
tive real functions. From [9], we recall:

(8.3) THEOREM A real rational function W(s) = Q(s)/q(s), with a real poly-
nomial m X m matrix Q(s) and a real scalar polynomial g(s) relatively
prime to Q(s), is strictly positive real if and only if

i.  The polynomial g(s) is stable, and

ii. The polynomial matrix

F(io) =] q(io) [ [W(io) + W* (i) (8.4)
is positive.

We recall that absolute stability of & is defined as global asymptotic sta-
bility of the equilibrium x = 0 of ¥ for all ¢ € ®. By using the circle cri-
terion [42,43], absolute stability of & takes place if the function

W(s) =I1+KG(s) (8.5)
is strictly positive real and the following assumption holds:
(A3) W(i) + W (i) > 0.
In terms of part ii. of Theorem (8.3), this means that we require
F(io) =| q(iw) | [2I + KG(i®) + G*(iw)KT] > 0, (8.6)
where g(s) = det (s —A).
The standard problem in absolute stability analysis is to determine the

effect of the matrix K on stability of &. For this purpose, we consider a set
{KI,KZ,...,K”} of matrices with finite elements and define the polytope

P=conv {K'}, (8.7)

where K', i € v, are the generators of P. Using Theorems (6.11) and (8.3),
we can establish the following:

(8.8) THEOREM: Under the assumptions (A1)—(A3), the system & is abso-
lutely stable with respect to the polytope P if

i. The polynomial g(s) is stable, and
ii. All generators F(iw, K), i € v, for the matrix polytope M = {F(-, K):
K € P} are positive.

(8.9) REMARK Obviously, an alternative to this result is provided by The-
orem (6.4). To determine the robust absolute stability of ¥ we can use the
condition
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F(0)> 0 and det{| g(io) |*[2I + KG(io) + G*(im)KT]} #0 Yo € R  (8.10)

instead of (8.6). We also note that (8.6) is equivalent to the scalar fre-
quency condition

det Re[I+KG(im)] #0 Vo e R, (8.11)

which may appear attractive in studying robust absolute stability of multi-
variable systems by frequency techniques proposed in [19,21].

Finally, we want to show how we can determine absolute stability when
the uncertain parameters appear in the linear part of &, that is, when we
have G(s, p) instead of a fixed G(s). For this purpose, the Popov criterion
[42,43] is attractive because we can separate matrix K from transfer func-
tion matrix G(s, p). First, we need to reformulate assumption (4,) as

(A%) The nonlinear function ¢(y) = [¢1(y1), q)2(yz),...,¢r(yr)]T is time invar-
iant and belongs to the class of sector-bounded continuous functions
Cp={¢:R >R :¢"()y-K'9()] 20 WyeR}, (8.12)

where K € R™*™ is a constant positive definite matrix.
We also need the following assumption:

(A4) The parameter vector p € R¢ belongs to an uncertainty bounding set
P.

(8.13) DEFINITION. The system & is robustly absolutely stable if it is
absolutely stable for all p € P.

We recall [43] that & is absolutely stable if W(s) = K~ L4 G(s) is strictly
positive real and W(i®) + W(i») > 0. A parametrized version of this result
is the following:

(8.14) THEOREM Under the assumptions (A{), (A%), (A3) and (Ay), the
system & is robustly absolutely stable if
i. The polynomial g(s, p) is stable for all p € P, and
ii. The polynomial matrix
F(iw, p) =| q(iw, p) |* 2K~ + G(iw, p) + G* (i, p)] (8.15)
is positive for all @ € R and all p € P.
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We first note that to test condition i. we can use a number of effective
methods which are available in the context of robust stability of linear sys-
tems [18,19]. As for condition (8.15), we can rewrite F(ioy p) in terms of
the triple (A, B, C),

F(iw,p) =

det (0] +A%){2K~! — CA(0*I +A%)~'B — [CA(w’I +A%)~'B]"} (8.16)

to point out the possibility that the elements of the system matrices A, B,
and C can be considered as components of the uncertain parameter vector
P, and how each matrix enters in F(iey p). We note that the matrices B and
C appear in F(ioy p) the same way K appears in F(in) of (8.6). Therefore,
Theorem (8.8) can be used when either B or C are uncertain, but not both.
However, when the uncertainty set is a rectangle, both B and C can be
uncertain since their entries appear multilinearly, as illustrated by the fol-
lowing:

(8.17) EXAMPLE Let us consider the system & where
-2 0 1

A= 1 -2 0 , B = diag{bl,bz,b3}, C= diag{cl,cz,C3} (8.18)
0 1 -2

where the interval uncertainty is

by € [-1.1,0.1], by € [-1.2,0.2], b3 € [~0.9,0.3]

c1 €[-0.1,1.1], ¢ € [-0.2,1.2], ¢3 € [-0.3,0.9] (8.19)
The uncertain transfer function is
1 cibi(s+ 2)2 c1bs c1b3(s+2)
Gs,p) = 5=y [ c2bi(s+2)  caba(s+2)? c2b3 (8.20)
(s+2)°— c3by e3ba(s+2)  c3bi(s+2)2

where p = (b1, by, b3, ¢y, ¢y, c3) is the parameter vector. We assume that K
= diag {3,3,3}, and form the matrix polynomial F(iw p) of (8.15). By test-
ing positivity of F(iw, p) at each of the 26 = 64 vertices of the uncertainty
rectangle we conclude from Theorem (6.16) that the system S with multi-
linear uncertainty structure is absolutely stable. Using Theorem (6.4), the
formidable task of testing 64 polynomial matrices for positivity, is reduced
to testing of 64 numerical matrices and scalar polynomials for positivity.

To illustrate our scalar positivity result of Theorem (6.4) in the context
of the Popov criterion, we provide another example.



UNCERTAIN POLYNOMIALS 159

(8.21) EXAMPLE We consider system & of [42] with the block diagram of
Figure 3, with the uncertain transfer function

0 0 G3(s)
G(s,p) = | Guls,p) 0 0 (8.22)
0 G32(s,p) 0

and the bounding matrix K = diag {kq, k5, k3}. We choose

1 p2s+p1 1
= === G =— 8.23
G13(s) s+1’ Ga(s,p) 2425 +2’ () s+3’ (8:23)
and compute floy p) = det F(ioy p) using (8.15) to get
f(w,p) = 8p30® +80p30® + (2p1 + 12p2 + 104p3) 00* (8.24)

+(—26p1 + 28p2 + 320p3)w? + 12p1 + 288p3
where P3 = k;'ky k37! When p; = 1 and
P={peR :pe[-1,2,p€[-51]}, (8.25)

all four generators f(w, p%) and F(0, p), which correspond to four vertices of
P, are positive. In this case, the minorizing polynomial

f(w) = 80® + 80w + 90w* + 128w? + 276 (8.26)

is obviously positive, and testing of the four generators is not necessary.

FIGURE 3 Block diagram
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When we choose
1
S+ pa

G3(s,p) = (8.27)

we obtain

f(w,p) = 8p30®+ (8p3+8p3p2)w® + (2p1 — 6p2+32p3
—2papa +8p3p)w* + (—8p1 +4p2+32p3 — 6p1pa (8.28)
+8p2ps + 32pap3)w? + 4p1pa+32p3p3

which has a polynomic uncertainty structure. Let us assume that p; = 1 as
before, but

P={pecR:p €[-2,2],p2€[-3,3],p4 €[2,4]}. (8.29)

We first verify that F(0,p) is positive at the vertices of P. Then, we form
the minorizing polynomial

f(w) = 80® + 400°® + 18w* — 360 + 56 (8.30)

Since f(w) is positive, we do not need to “expand” P by transformation
of Remark (4.22), nor test any of the vertices of the expanded rectangle P .
Positivity of matrix F(0, p) and polynomial f(w) implies absolute stabil-
ity of &. -

Besides the references mentioned in the Introduction, there are a consid-
erable number of papers with a wealth of results concerning robust abso-
lute stability and positive realness. With some notable exceptions [44], the
results are derived for Single-Input-Single-Output (SISO) systems. Most
of these results are surveyed in the paper [21] and the recent book [19]. It
would be interesting to explore possibilities of using some of these results
in our approach to multivariable systems. New problems in this context are
the robustness analysis of absolute stability [45,46], adaptive control
[47,48], H,, control [49], and parametric stability of nonlinear control sys-
tems [50].

IX. CONCLUSION

Nonnegativity and positivity of complex polynomials with uncertain
parameters can be established by a variety of techniques. Polytopes of both
scalar and matrix polynomials are shown to be positive by testing positiv-
ity of a subset of vertex polynomials. The actual testing involves the Mod-
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ified Routh Array, which can decide positivity of a vertex polynomial by
algebraic, recursive, and finite computations involving only real arithme-
tic. Another technique, which is shown to be especially attractive in the
positivity context, is the Zero Exclusion Condition. Unlike in robust stabil-
ity analysis of linear systems, the value sets in positivity investigations are
intervals that are identical to their convex hulls, which makes the applica-
tions of the condition to positivity testing inherently nonconservative. The
proposed positivity criteria are of particular interest in the robustness anal-
ysis of spectral factorization and absolute stability of multivariable sys-
tems, where the existing scalar positivity tests are not readily applicable.
Future research should explore the ways in which the polytopes and value
sets can grow in a systematic fashion, thus providing improved estimates
of the positivity regions at moderate computation costs.
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