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ABSTRACT. We use perturbation techniques to solve the polynomial equation in Banach
space. Our techniques provide more accurate information on the location of solutions
and yield existence and uniqueness in cases not covered before. An example is given

to Jjustify our method.
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1. INTRODUCTION.
In this paper we use perturbation techniques to find solutions of the abstract

polynomial equation of degree k,
k k-1
= = + e +
X Pk(x) ka Mk_lx + +N&x MO (1.1)

in a Banach space X over the field F of real or complex numbers.

Obviously (1.1) is a natural generalization of the scalar polynomial equation of
the first kind to the more abstract setting of a Banach space.

The case k = 2 has been examined in [1], [7], [8]. Here we investigate the
case k 2 2. The principal new idea in this paper is the introduction of an equation
similar to (1.1),

_ ok k-1
z = Fk(z) = Nkz +Nk_lz 5

The ‘results are then obtained under suitable choices of the N 's, p = 1,2,---,k.

2
+ +N,.z +le+M0. (1.2)

Our method is a generalization of the one's discussed [8], [9] by L. B. Rall,
namely, the method of successive substitutions and Newton's method. It always provides
a more accurate information on the location of the solutions and it also yields exis-
tence and uniqueness results for (1.1) in the cases not covered before. For z =0
and A2 = M2-I our results coincide with theorems in [8], [9], but even then we are
able to provide more accurate information on the location of the solutions. In order
to justify this, in Part 2 of our paper we compare our results with the results in [8],
[9], [10) using as an example a special case of (1.1), namely the famous Chandrasekhar's

equation
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ms}=l+kmsﬂv§%jﬂtM1 (1.3,

for X = C[0,1] and 0 s A = 0.5. Stronger results for an even more general form of
(1.3) have already been obtained ir [3], [6] ana elsewhere. 1In this paper we just use

(1.3) as an example to justify our methoc.

2. BASIC CONCEPTS AND THEOREME.

DEFINITION 1. Denote by L(X,Y) the linear space over the field F of the lin-
ear operators from a linear space X into & linear space Y. For k = 2,3,--- &
linear operator from X into the space L(Xk—l,Y) of (k-1)-linear operators from X
into Y is called k-linear operator from X into Y. For example, if a k-linear

operator Mk from X into Y and k points Xy aXpst e sXy € X are given, then

2= Mg xpe e
will be a point of Y, the convention being that Mk operates on X, the (k-1)-
linear operator kal operates on Xps and so on. The order of operation is impor-
tant. Finally, denote L(X,Y) by L(X) if X = Y.

. NOTATION 1. Given a k-linear operator Mk from X into Y and a permutation
is= (il,i2,'-',ik) of the integers 1,2,-..,k, the notation Mk(i) can be used for
the k-linear operator from X into Y such that

M (E)xyxy e ey M M

for all Xy adpst X € X.

Thus, there are k! k-linear operators Mk(i) associated with a given k-linear
operator Mk'

DEFINITION 2. A k-linear operator Mk from X into Y is said to be symmetric
if

Moo= M (1)

for all i € Rk’ where Rk denotes the set of all permutations of the integers

1,2,-+-,k. The symmetric k-linear operator
Moo= LM (i)
e
is called the mean of Mk'
NOTATION 2. The notation

—
kap = Mk XXe**eX,
p sk, Mk € L(Xk,Y), for the result of applying Mk to x € X p-times will be

used. If p <k, then kap will represent a (k-p)-linear operator from X into

Y. For p =k, note that

xS = xS = (1):5 (2.1)
for all i € R x € X. It follows from (2.1) that the multilinear operators
MQ""’Mk in (1.1) may be assumed to be symmetric without loss of generality, since
each Mi in (1.1) may be replaced by ﬁ;, i=2,3,---,k, without changing the value
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Pk(x}. Uniess thne contrary iz explicitly stated. thne multilinear operators: Hi,
i = 2,53,°+*,k will be assumed to be symmetric.
Assume from now on that X,Y are Banach space:z.
DEFINITION 5. £ linear operator L from X into Y is said to be boundeé i<
el = I§“D1IEMU (2.2)
is finite. The quantity |L|| is called the bound (or norm) of L.

DEFINITION L. For k 2 2, & k-linear operator Mk from X into Y is said
to be bounded if it is a bounded linear operator from X into L(Xk—l.Y), the Banach
space of bounded (k-1)-linear operators from X into Y. The bound (or norm) |Wk"
of Mk is defined by (2.2), with Mk' being considered to be an element of
L(x, LX)

NOTATION 3. The space of bounded k-linear operators from X into Y will be
denoted henceforth by L(Xk,Y). Note that by Definitions (3) and (&) if Mk € L(Xk,Y)

and p < k then

bl = bl IelP.

DEFINITION 5. An abstract polynomial operator Pk from X into Y of degree
k defined by
Pk(x) = kak+Mk_lka:L + oo +M2x2 +M1x +M_,
is said to be bounded if its coefficients Mi’ i=1,2,-**,k are bounded multilinear
operators from X into Y. From now on we assume Pk is bounded.
DEFINITION 6. Let 2z be fixed in X and define the polynomial qk of degree

k on ]R+ by

% = Bzl M T M el

Note that by Descartes rule of signs [5] the equation q(r) = q (r)-r = 0 has two
k

positive solutionms sl ES S, or none.
THEOREM 1. Assume that q(r) has two positive solutions sy < 5, such that
d(r)<1, re€ (sl,se). Then Pk has a unique fixed point in the ball U(z,r) =
’, ’
{x €X||lx-z]| = r}, vhere r € (s],s}) < (s;,5,).

PROOF. Claim 1. Pk maps U(z,r) into U(z,r).

"Pk(x)-z “ = IIPk(x)-Pk(z)+Pk(z)-z " = IIPk(x)—Pk(z)"*— "Pk(z)'z "
< "Ml(x-z oo (x-z xk_l-erxk-z(x—z Y+ - -+Mkzk-l(x-z) I

< UM oy s e -+ I G [ DS ot o D52 e - o4 o S0
+ I (2)z] < ¢

or
a(r) = 0 which is true by hypothesis.

(Note that claim 1 is true even if s; =5, and r € [sl,sz]).

Claim 2. Pk is a contraction operator on ﬁ(z,r). IF X) 5%, € ﬁ(z,r), then as

in c¢laim 1,



72 I. K. ARGYROS

but
i;,(r) < 1 by hypothesis.

The result now follows from the contraction mapping principle.

DEFINITION 7. Defime the polynomiai g (rj of degree k on E' by

Bl b+ e i e a (0) + [, (2) -

q, (r) = |p -k,

Note that

n

I, +M 2 +M222+ ceed Mkzk—z I
k k
"MO-MO +Mlz—le +oeeo 4 Mkz Nz (Fk(z)-z) Il
2
Pyoiy 1 el Byl el e o o |- e

if z is a fixed point of (1.2).
The proof of the following theorem follows from Theorem 1 and the above observation.

“Pk(z)-z "

Wn

THEOREM 2. Suppose that there exists a solution 2z satisfying (1.2) and that
Ur) = ql(r)—r has two positive solutionms s, <s,. Then Pk has & unique fixed
point in U(z,r), where r € (si,s’z) c (51’52)'

3. APPLICATIONS.
From now on we assume that k = 2 and Ml = 0. Then Theorem 2 becomes

THEOREM 3. Consider the equation

z = M0+N222. (3.1)

Suppose that there exists a solution 2z satisfying (3.1) and

el < (v T, (/TR ] +/ T D172

(I) Then the equation

x = M0+M2x2 (3.2)

has a unique solution x € U(z,a), where

“appr

a

(II) Moreover, x € U(z,b) where
v = {1-20pt, |- LI, I B I-0)%-0 -, b, - e IR 22 o, 72
In practice, an exact solution of the auxiliary equation (3.1) can seldom be
obtained. The following theorem, whose proof is similar to that of Theorem 2, guaran-
tees that the original equation (3.2) has a solution even when we can only find an

approximate solution of (3.1).
THEOREM 4. Let z ©be fixed in X and set

a = 2|“2 " "Z "
P2° + 12 - e
] [32 ey, e 1P+ < e ItT/ ?

(]
"

o
"

I, |l
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LE3ume the

2l < 2T i/ T+ VT 7 &0

tner
(I} equation (3.2) has 2 unique solution i1r U{z,a);
(II) this solution actually lies in E(Z,b).

PROOI. Let us define the operator on X DY

= r ] .2
T(x) LO +L21 .
Clair 1. T maps U(z,r) into U(z,r) for r € [b,a). If x € U(z,r) then
T(x)-2z = M2x2+ Mo-z
_ 2 2 2
= (Me—Nz)(x—z+z) + Nz(x-z) 4—2N22(x-z)+ (sz +M0-z).
Now, ||T(x)-z| = r

(Mg iy 2%+ (2] 2 | M-, 2 i |- e 20 + ot |- P+ 6 e 72 < 0

which is true for r € [a,b).

ra
1

o)

Claim 2. T 4is a contraction operator on U(z,r). If w,v € U(z,r) then
WTG)-T(v N =W M-t v7 )
= WM, (w-z+v-z+22 Y (w=v)
= 2(r+nzi Uv-vI) -

So T is a contraction on U(z,r) for O0<r<a.
Because Theorem L4 relies on the contraction mapping principle, it actually pro-

vides an iteration procedure for solving (3.2), namely, set

xo =2z and
X =M +M x2 n=1,2,--
n+l 0 "2°n’ 2T
REMARK 1. The iteration
2
= + =
xn+l Mo 1‘/12xn N n 1,2,

converges for any X, € U(z,b) to the solution x of (3.2) at the rate of a geometric

progression with quotient
a = 1- [y e 202 - by by - e JP12/2.
PROOF. By Theorem 3 we have
a = 2(v+ [z [ |4, |
= 1- LM, e 202 - b, |- Iy, |- e P22
COROLLARY 1. Under the hypotheses of Theorem 3, the solution x obtained in

Theorem 3 satisfies

1
lkell < TR

PROOF. By Theorem 3,

|x-z| < a,
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sc that
xl = fz)+,
Il < gy

COROLLARY 2. For any M. € X such that h||M2||°||MO | <1,

(1) equation (3.2) has 2 unique solution x € U(Mo,a), where
-2l I

2, |

(II) moreover, x € G(N ,b) where

_ 12N [ 18 [ - V3B -2, Il
2, |

PROOF. Apply Theorem 3 with M2 =0 and z = Mo.
We now state Rall's theorem for comparison. The proof can be found in [8], [9].
THEOREM 5. If h\]MEx\ -\lMo\\< 1 then

(I) equation (3.2) has a solution x € X satisfying

1- A - W v

2m, |

<]l =
(II) moreover, x is unique in U(x,R), where
- Vi- “IMQHMO "
M, |

H

PROPOSITION 1. Assume:
(I) the hypotheses of Theorems 3, 5 are satisfied;
(1) (WA W, g0 2 - wzl M > o
Then Theorem 3 provides a sharper estimate on \||x\{ than Theorem 5.

PROOF. By Theorem 3,
wx-z\| = b sO  uxw = b+izly.

et ol i, |
2m, |

By Theorem 5,

so it is enough to show

1-0 (2| -[M 1) - W oo-m ) = P12 P AN
2|, | 2l |

or

(I, IHIM-m, DI 2 - Uz [+ iyl > o

and the result follows from (II).
REMARK 2. If the evaluation of ||M2-N2“ in Theorem 3 is difficult, then

(a) we can look for a 2z such that:
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T ey O [ e VN LVl BN S

(2w ol (W =B i+ o R )37
and start the iterationm witnh %, =z
(b; we can apply tne theorem in the ball U(z.z';. wnere b sz <a anc

e [Pl

-2l fz - [e2fu el -1)% - u i+, ]

2"1"12 I

provided that the quantity under the radical is nonnegative. Also note that sice

b =a' <a, we have
U(z,b) € U(z,a’) € U(z,a).

EXAMPLE 1. For the equation of Chandrasekhar,
x(s) = 1+lx(s)f —x(t)dt (3.3)
we have X = C[0,1] with the sup-norm. The operator Q:X — X defined by
Q(x) = (s),g T x(t)at
is quadratic since the symmetric bilinear operator M2 :X X X —* X defined by
M, (x,y) = [x(S),[) e y(t)dt+y(5)f x(t)dt]

satisfies
M2(x,x) = Q(x) for all x €X.

We will prove that the norm [[M,| = 1n 2. Now
llefl = t dt =1n 2
and since always
llall = i, |
we obtain
1n 2 = |M, .

The proof will be completed if we prove that

M| = 1n 2.
But by the definition of M2,

S

oy dt =1n 2

Iyl < 2 max erl

so
My} = 1n 2.
We now apply Theorem 5 and Corollary 2 to (3.3) with B = XM2. According to Theorem
5, equation (3.3) has a unique solution in U(x,R), where
R = f/1-LA 1n 2
2\ 1n 2 °
provided that 1-4A 1n 2 >0, i.e., A < .36067°-°. According to Corollary 2,
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(I, equation (>.3, has a unique solutior =r U{x,k,, wnerc

- 1-2A in 2
2\ ir 2 °
(II) moreover, x € U(l,a), where

a = 1-2\ 1n 2 -4/1-LX 1n 2
2\ 1n 2 >

provided that 1-bA 1n 2 >0, i.e., A < .36067-+-.

One can now see by comparing the above that Corollary 2 under the same condition
on A gives a better information on the location of the solution than Theorem 5 [8],
[9].

Our next goal is to use Theorem L to obtain solutions of (3.3) for a wider range
of A. It is not necessary to assume B has any connection with Chandrasekhar's
equation in Proposition 2 or 3.

PROPOSITION 2. If 2z € X is a solution of the equation

z =M+ XMz(z,z),

satisfying
N, |- el < 1,
then for
AsA< Cl,
where

-1
cy = byl a2 [y |- flz )
the conclusions of Theorem 3 for the equation
x = MO + XlM2(x,x)
hold.
PROOF. To apply Thoerem 3 we need

lell <[22 M, | (1 TP I+ /A e, 1017

since
-1
Ayo<cp o= (b flzll (R fpe e 21
we have
2 A
N < <—1 ) T
2[M, II- Jlz | I, 11 = 1
or by taking the square root of both sides of the above inequality and using

A < (2l l ™
we get
— .
M- =l

The result now follows by solving the last inequality for [jz|.

Jxl(xl-x) <

If z 1is not an exact solution of the quadratic equation

z = Mo + Ne(z,z),

then we can use the following generalization of Proposition 2.
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PROPOSITION . Let IN_.z bpe fixed ir. X anéd . > _. S

T

[

e = [,z z )4z |- 1,0~ fiz 7
ana
¢; = {hfe M, lla--e) My - 2137
Tnen for any A, satisfying X =X, <C, the equatior
x = MC + XlMg(x,x)

has a unique solution in U(z,a), and in fact this solution lies in a(z,b). Here
1

- L g

2 I |
2 A 2 oL/2
o= o[-l -iuzu]l :

PROOF. Similar to Proposition 2.
REMARK 3. According to Corollary 2 or Theorem 5 and the discussion following

Example 1, Chandrasekhar's equation
= = rl.d}_l
z(s) l-PXMz(z(s),z(s)) 1+2isz(s) s dt (3.4)

has a solution 2z provided that A < .36067376:-. But now using Proposition 3 and
the iteration suggested in Remark 1 for a suitable X, = ZN(X), we can extend the
range of A until .424059379---. Here are some characteristic values for A the

norm of the corresponding approximate solution ZN(X) and Cl(k).

A uzN(x)H cl(x)
.35 1.4LLTL532 -384363732
.3é 1.53h;01867 .39h5i2252
-39 1.558263525 -3999k2101
.hf 1.598%1923 .hoszéh331
.hé 1.683%3661 .h201é3281
.hé3 1.696%&92h .h230£1h29
.héh 1.700%5561 .h2ho%ooh7
.héh059378 1.700;73716 .h2h0;9379
. 424059379 1.700973721 424059379

Note that the above results coincide at least at six decimal places with the ones
obtained in [2], [3] and [10].
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