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ABSTRACT. Two results are proved. (i) It is shown that the matching polynomial is

both node and edge reconstructable. Moreover a practical method of reconstruction is

given. (ii) A technique is given for reconstructing a graph from its node-deleted and

edge-deleted subgraphs. This settles one part of the Reconstruction Conjecture.
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I. INTRODUCTION.

The graphs considered here will be finite and will have no loops. Let G be such

a graph. The matching polynomial of G has been defined (see Farrell [i]) as

m(G) a
k wlP-2kw2k, (l.l)

where w and w
2

are indeterminates (or weights) associated with each node and edge

respectively in G, a
k

is the number of matchings in G with k edges and the summa-

tion is taken over all the k-matchings in G.

The famous Reconstruction Conjecture (see Harary [2]) is the following. If G is

a graph with p > 2 nodes and if the deck (i.e. the p subgraphs G vi) is given,

then the entire graph G can be reconstructed, uniquely up to isomorphism, from these

node-deleted subgraphs. For an interesting historical account of this conjecture, we

refer the reader to [2]. An analogous form of this conjuecture, with "node" replaced

by "edge" is called the Edge-Reconstruction Conjecture.

In this paper we will first concern ourselves with the reconstruction of m(G).

We will therefore answer the following question. Suppose that the deck of G is given,

can m(G) be found? Dually, we will also give an answer to the edge version of this

question. If the answer is yes, we will say that m(G) is reconstructible (node-

reconstructible). In the case of the edge version of the question, we say that m(G)

is edge-reconstructible.

It is important to know whether or not m(G) is reconstructible. One reason is

this. If m(G) is reconstructible, then any graph that is characterized by m(G) will
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be reconstructible. In general, the reconstruction of graph polynomials can shed some

light on the Reconstruction Conjecture itself. For example, the reconstruction of the

characteristic polynomial was investigated by several authors. In Particular, Gutman

and Cvetkovic [3] investigated the reconstruction of the characteristic polynomial and

its implications to Ulam’s Conjecture. The existence of a reconstruction for the char-

acteristic polynomial was eventually established by Tutte [4]. Tutte (in [4]) also es-

tablished the reconstructibility of the rank polynomial and the chromatic polynomial.

Although the reconstruction of several graph polynomials has been established, no

practical means of reconstruction exists for any of them. For example, given the deck

of the graph G, there is no method available for finding either the characteristic

polynomial or the chromatic polynomial of G. The reconstruction results are merely

existence results. It is of interest therefore, to find pc methods of recon-

structing the polynomials.

In this article, we will not only show that m(G) is node and edge-reconstruct-

ible, but in doing so, we will give practical methods for reconstruction. We note that

Godsil [5] has given a result (Theorem 4.1) which essentially establishes the node-

reconstruction of a special form of m(G). However his result does not provide a prac-

tical reconstruction technique, since he used Tutte’s existence result to establish the

reconstruction of the number of perfect matchings in G.

The problem of reconstructing a graph from a given deck has always been an inter-

esting one, because of its connection with Ulam’s Conjecture (see [3]). We will give

a solution to this problem, using the matching polynomial of the graph. In fact, our

technique gives all the graphs with the given deck. Thus we will have established the

first part of the Reconstruction Conjecture i.e. given the deck of G, G itself can

be reconstructed. However we are unable to say whether or not G is unique. This

would have settled the Reconstruction Conjecture.

For the graph G, with p nodes and q edges, the node set will be V(G) {v I,
v
2

v and the edge set, E(G) {e e
2

e }. We will denote by G-vi,P q

the graph obtained from G by removing node V. G(-) eo will denote the graph ob-

tained from G by removing the nodes at the ends of the edge eo. G e. will be

the graph obtained from G by deleting the edge eo. Throughout the paper, we will

assume that the general graph G has p nodes and q edges unless otherwise speci-

fied.

2. THE NODE-RECONSTRUCTION OF m(G).

In order to establish our main result, we will need the following lemma.

LEMMA i. Let G be a graph with p nodes and q edges. Then

P
(i) (m(G)) i m(G-vi)

(ii) (m(G))
j m(G(-)ej)

PROOF. We establish (i) by showing that the two polynomials A m(G) and

P
B i m(G-vi) have precisely the same terms with equal coefficients. The proof (ii)

will be similar.
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k
a term wlj+lw2k. It followswlJw2 be of A. Then m(G) has a term inLet

that G has a matching S with (j+l) nodes and k edges. Let v V(G). Then
r

Jw2kG-v will contain the matching S-v Hence B also contains a term in w
r r

Conversely, if B contains a term in wlJw2k, then there exists a node v such
r

that G-v has a matching with nodes and k edges. Therefore G has a matching
r

with (j+l) nodes and k edges. It follows that m(G) has a term in wlJ+lw2k.
Hence A has a term in wlJw2k. We conclude that A and B have the same kinds of

terms.

We will show that the coefficients of like terms are equal. Let a
k wlJw2k be

J-lw2k Hence thea term in m(G). Then the corresponding term in A will be JakW
coefficient of wlJw2k in A will be jak. Now, for each matching in G with

nodes, there will be exactly corresponding matchings in the graphs G-v with j-1
r

nodes. Since G contains a
k

such matchings, then B will contain the term

wlJ-lw2k with coefficient jak. Therefore the coefficients of like terms are equal.

Hence the result follows. The proof of (ii) is similar.

We define a pec mZching in G to be a matching which contains edges only.

we will denote the number of perfect matchings in G by y(G). Clearly y(G) is the

coefficient of the term independent of w in m(G).

THEOREM I.
P

m(G) =i fm(G-vi)dw + y(G)

PROOF. This is straightforward from the lemma, by integrating with respect to wI.

Since we are given the deck of G (i.e. the G-v.’s) we can find m(G-vi) for
1

i 1,2 p. Hence the summation on the RHS of Theorem can be found. The pro-

blem which confronts us now is that of finding y(G). In order to give a technique

for finding (G), we will use the concept of the matching matrix A(G) and the d-

function of A(G) (see Farrell and Wahid [6]).

Let G be a graph with p nodes, we define the mocng x A(G) of G as

follows. w2
if i < j.

A(G) (aij), where aij -’Jw2 if i > j,

w if i j.

The d-uncO is defined recursively as follows. If A(G) is 3 x 3 or smaller,

d(A(G)) IA(G) I. Otherwise,

d(A(G)) wld(A(G-vi) + w
2

Z d(A(G-vi-vj) ).

viv E E(G)

The following lemma was established in [6].

LEMMA 2. d(A(G)) re(G).

Let G-v. be any element of the given deck. Then we can write
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iA(G_vi) A 1P (2 l)A(G)
-A w

p

where A is the first p-I elements in the (unknown) pth column of A(G). A will
P

By using Lemma 2, we can ob-contain p-i boolean unknowns Xlp X2p, Xp_l, p
rain [p/2]-f!ne equations involving these unknowns. These equations can be solved

to obtain expressionthe Xip s. The coefficient of w2P/2 in the for d(A(G))

could then be found. This coefficient will be y(G).

From Theorem and the above analysis, we obtain the following result which esta-

blishes the practical reconstruction of m(G).

THEOREM 2. THe matching polynomial is node-reconstructible.

By integrating with respect to w2, the expressions given in part (ii) of Lemma I,

we get
q

m(G) j$1 f m(G(-)ej) dw
2 + C(Wl), (2.2)

where C(wI) is a function of wI. The only term independent of w
2

in m(G) is

P (N B We can also put w
2

0 in Equation (2.2)). Therefore C(wI) wlPw

Hence we have the following result.

q
THEOREM 3. re(G) ji fm(G(-)ej)dw2 + wlP"

Suppose that we are given the q subgraphs G(-)e. of G. Then both terms on

the RHS of Theorem 3 can be found. Hence m(G) could be found. We therefore have the

following theorem.

THEOREM 4. The matching polynomial is reconstructible from the set of subgraphs ob-

tained by removing the pairs of nodes defined by the edges in the graph.

Again, we have given a practical means by which the reconstruction of m(G) can

be carried out. This is explicit from Theorem 3.

3. THE EDGE-RECONSTRUCTION OF m(G).

The following lemma is the basic tool in the practical edge-reconstruction of

re(G).

q
LEMMA 3. qm(G) w

2 w2(m(G)) + jl m(G-ej).

PROOF. Let eo be an edge in G. We can partition the matchings in G into two

classes (i) those in which e. is used and (ii) those in which e. is not used. The

matchings in class (i) are all matchings in the graph G(-)e.. The matchings in class

(ii) are matchings in the graph G-e.. Hence we get

m(G) w
2 m(G(-)ej) + m(G-ej).

By summing over the q edges in G, we get
q q q

jl m(G) w
2 jl m(G(-)ej) + jl m(G-ej).

The result follows by using (ii) of Lemma I. D
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Suppose that the q edge-deleted subgraphs G-e. of G are given. Then the

q
summation term jl= m(G-ej) on the RHS of the equation can be found. By using the gen-

eral expression for m(G) given in Equation (i.I), we get

Hence we have’,

p-2kw2k p-2k k-i 7. m(G-e ).q ak Wl w2 Ek kak Wl w2 +
j=l

[p/2]

kE--0 ak(q-k) wlP-2kw2k I m(G-e ).
J

By comparing coefficients, a
k

could be found for all values of k. Hence m(G)

could be found. Therefore Theorem 5 establishes the practical edge-reconstruction of

m(G).

THEOREM 6. The matching polynomial is edge-reconstructible.

4. CONNECTIONS WITH THE RECONSTRUCTION CONJECTURE.

Lemma 2 provides a technique for constructing a graph with a given matching poly-

nomial. Suppose that m(G) is known. Then from Lemma 2 we will obtain a system of

equations in the boolean unknowns x.. associated with off-diagonal elements of A(G).

These equations can then be solved to obtain values for the xij s. Hence A(G) could

be found. A(G) defines the graph G. Hence G itself can be found. This method of

constructing G from m(G) is given in [6].

Given the deck of G we can node-reconstruct m(G) according to Theorem 2.

From m(G), G itself can be found. Hence G can be reconstructed from its deck. We

state the result formally in the following theorem.

THEOREM 7. If the deck of G is given, then the entire graph G can be reconstructed

(though perhaps not uniquely).

The edge analogue of this result follows by a similar argument using Theorem 6.

THEOREM 8. If the edge-deleted subgraphs of G is given, then the entire graph G

can be reconstructed (though perhaps not uniquely).

The reconstruction of the graph G is carried out from the mathcing matrix A(G).

A(G) in turn is defined by the solutions for the boolean unknowns xij i 1,2

p, and 1,2, p (i#j)). In practice, we have found that although there might

be different solutions for the x..’s, the graphs defined by the resulting matching ma-

trices are always isomorphic.

5. ILLUSTRATIONS OF THE MAIN RESULTS.

In this section we will give two examples which illustrate Theorems 2, 6, 7 and 8.

Example

Let the following graphs be the node-deleted subgraphs of a graph G.

HI H2
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H4

5

H5 I H6 2

The following matching polynomials can be easily obtained.

8w13w2 2 3w2m(Hl) w15 + + 9WlW2 m(H2) w15 + 8w + 10WlW2

5 3w2 2 3w2m(H w + 7w + 7WlW2 m(H4) w15 + 8w + 9WlW22
5 + 6w13w2 + 6WlW2

2 3w2m(H# w m(H6) w15 + 7w + 7WlW22.
Therefore

5
il fm(G-vi)dw f(6w + 44WlW2 + 48WlW2)dwI,

6 4 2w22 (G)w23w + 11w + 24w + Y

Using the labelled subgraph H6, the matching matrix A(G) defined in Equation (2.1)

is

A(G) wI 0 Cw2

0 wI
/w

2

-/w
2

-/w
2 wI

-/w2 -/w2 -/w2

0 -w2 -w2

/w2 0 /16w2
/w

2
/w

2 x26w2
/w

2
/w

2 x36w2
wI 0 x46w2
0 wI x56w2

It can be confirmed that

d(A(G)) w16 + (x16 + x26 + x36 + x46 + x56 + 7)w14w2
+ (5x16 + 4x26 + 3x36 + 4x46 + 5x56

+(2x16 + x26 + x36 + x46 + 2x56)w23.
From Lemma 2, we get, by comparing coefficients

x16 + x26 + x36 + x46 + x56 4.

5x16 + 4x26 + 3x36 + 4x46 + 5x56 17.

It is clear that the only solutions to these equations are

(x16, x26, x36, x46, x56 )T (I, 0, I, I, I)
T

and

2 2+ 7)w w
2

(x16, x26, x36, x46, x56 )T (i, I, i, 0, I) T.
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By substituting into d(A(G)) we get in both cases y(G) 6. Hence we obtain

m(G) Wl
6 + llWl4W2 + 24w12w2 + 6w23.

We can now use A(G) in order to reconstruct the graph G. THe following la-

belled graphs are constructed, corresponding to the two solutions obtained. G is ob-

tained by using the first solution.

s

51
2 6

2GI G2

Figure 2
It can be easily confirmed that the mapping defined by :G G

2 such that (i) 5;
(2) 4; (3) 3; (4) 2; (5) and (6) 6 is an isomorphism. Hence GI--G2.

Example 2
Let the following graphs be the edge-deleted subgraphs of a graph G.

G1 G2

6 5 4

2 3
G4 G5

G6

Figure 3

The following matching polynomials can be easily obtained.

m(Gl) Wl6 + 6Wl4W2 + 6w12w22 4w2 2w22 3m(G2) wi6 + 6w + 7w + w
2

2 2 6 2w22 3m(G3) w16 + 6Wl4W2 + 5w w
2 m(G4) w + 6w14w2 + 6w + w

2

m(G5) w16 + 6w14w2 + 6w12w22 4w2 2w22 3m(G6) w16 + 6w + 7w + w
2

2 3m(GT) w16 + 6w14w2 + 8w12w2 + w
2

7

i m(Gi) 7w16 + 42w14w2 + 45w12w22 + 4w23 C(Wl, w2).
From Theorem 5, we get

3 6-2k k 6w w
2 7w + 42w14w2 + 45w12w22 + 4w23.kS0 me(Y-k)

By comparing coefficients in this equation, we get

a
0 i, a 7, a2 9 and a

3 I.

Hence the matching polynomial of G is
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m(G) Wl
6 + 7w14w2 + 9w12w22 + w23.

We can extend the reconstruction to G itself by using the labelled subgraph G4

to form the following matching matrix of G.

-/w2 w1 /w2 x/x24w2 /w2 /w2

-Xl/3w2 -’/w
2

w
1

/w
2 x3/x5w2 x3/’36w2

By using Lemma 2, all the boolean unknowns in A(G) could be found. Hence A(G) and

donsequently G can be found. The calculations involved in finding d(A(G)) are a

bit tedious. We will not reproduce them here. One solution is

(x13 x14 x15 x16 x24 x35 x36 x45 x46)T (0, 0, 0, 0, O, O, O, O, I, O)
T

The graph G defined by this solution is the following.

G:

Figure 4
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