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ABSTRACT. In the integration of the equations of motion of a system of particles, con-

ventional numerical methods generate an error in the total energy of the same order as

the truncation error. A simple modification of these methods is described, which re-

sults in exact conservation of the energy.
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i. INTRODUCTION.

When applied to the motion of a system of particles, conventional numerical methods

for the integration of ordinary differential equations only approximately conserve the

total energy of the system. The error in the calculated value of the energy is of the

same order as the truncation error in the velocities. In previous work [1]-[5], a new

class of methods was described, which maximally conserve the constants of motion.

These methods exactly conserve the total energy and linear momentum, and conserve the

total angular momentum to at least one higher order than the corresponding conventional

methods.

In what follows, our purpose is to show how conventional numerical methods--ex-

emplified by the third-order Taylor series and Adams’ formulae--can be modified so

that exact conservation of energy occurs. This modification simply involves the in-

troduction of adjustable, multiplicative parameters, whose values are unity for the

conventional case.

2. EQUATIONS OF MOTION.

The following is a brief description of the equations of motion of a system of

n particles, interacting according to a pairwise-additive potential. For more details,

see [i] or [5].

Suppose particle i has mass mi, position vector

r. (xi,Yi,Zi)l (2.1)
velocity vector
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[dxi .dYi dzilvi [ dt -- (2.2)

and acceleration

d
2

d
2d2xi Yi zi
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i

dt
2

dt
2

dt
2

(2.3)

Newton’s law of motion

m.a. =.
I i I

relates the acceleration a. to the force Fi, given by
1

r.

(2.4)

(2.5)

where is the potential of interaction. It will be assumed that has the pair-

wise-additive form

(ri,r2, rn) Z ij(rij)
i<j

where r is the magnitude of the vector distance ro
13 13

j

r.. =r. -r.
1J J 1

(2.6)

between particles i and

(2.7)

As a consequence of equation (2.6),
n

F. IF..
j=l 31

(2.8)

where

31 13 drji rji drij rij
(2.9)

and Fji 0 if j i. The introduction of equation (2.8) into equation (2.4) gives

the equation of motion

m.a. Z F.. (2.i0)
i

j=l 31 j=l drij rij

For n particles, equation (2.10) yields a system of second-order ordinary differ-

ential equations for the r..1 This system may be used to solve for the and i’
at any later time t’ t + At, given the r. and v. at time t.

1 1

Conservation of the total energy E occurs because of the existence of the poten-

tial . Here,

n n
E Z mi(vi- vi) + Z mi(vi" vi) + Z

i=l i=l i<j ij

where a-b denotes the scalar product of two vectors a and b. Conservation of

energy is expressed by the equation

E(t’) E(t)

for any two times t and t’, with E evaluated along the trajectory.
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3. CONVENTIONAL NUMERICAL METHODS

A simple example of a conventional approximation method for the numerical solu-

tion of equations (2.10) is provided by the truncated Taylor-series formulae

+ A t + i
n I (At)2 (At)31r’ r v. Z + ji (3.1)

c,i i z mi j=l
ji 2 6

and

v’ =v. +-- Z At+
,i z m. i i 2

z j=l
(3.2)

where the r’c,i and V’c,i are the calculated values for the r
ol

and v_ at time

t’ t + At, and

dq d0ji vji 0ji i d0 jirji (3.3)Goo
ro31 dt drj i rJ i dr..

2 rJ i drj i 3i

where

drji rji’vji
rji dt r..

and

vji v
i vj

The method of equations (3.1) and (3.2) is of third-order, since

’r. 7 + 0[(At) 4]
i c,i

(3.4)

and

-v.’ ’.+ 0[(At)3]
l C,l

(3.5)

due to the neglect of the succeeding Taylor-series terms. These errors generate an

error of 0[(At) 3] in the value of the energy E’ calculated using the ’ and
C ci

V .:
Cl

AE E E 0[--(At) 3]
c c

(3.6)

The third-order Adams’ method arises via equations (3.1) and (3.2) and the ap-

proximation

/a
G.. G.. + 0[At]
zj j

where
F -ij/a c

G.. ,ij
zj At

In equation (3.8) ’ denotes the value ofc,ij
using the r’c,zj+o.. Equations (3.4), (3.5), and (3.6) also hold when the ij
used for the Gij.

(3.7)

(3.8)

Fij obtained from equation (2.9)

are
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4. ENERGY CONSERVING MODIFICATION OF CONVENTIONAL METHODS.

Consider the third-order methods of Section 3, with G.*. replacing either the.. or

(t)2 3
(At)r’ r + v At +- l + G (4 i)c,i i i m ji 2 i 6

i j=l

and

(At) 2v’ v +-- E + (4 2)
c,i i mi j=l

2

When equations (4.1) and (4.2) are used to obtain estimates for r.l and v
i,

an error

AE is made in the total energy, which is given by
c

n I ,AE E’ E 7. m
i

(v
i c 1 ic c

i=1

F-n n I.+ At n
At Z Z vi +-m. Z Fki). F

i=l j=l l k=l ji

+--(vi+- z +i G*. + Am. 3l k=l

G.* AtAt Y. + aijAt + b
i3 lji<j

where

+ ($ij + aij -) Fij + (4.3)

n Fki
aij l

Lmjk=l mi

A ij ’ (r’c ),c,ij ij ij ,ij ij(rij

and

c,lJ c,j c,i (4.4)

Suppose now, instead of using Gii Gij or Gij in equation (4.3)--which leads

to an error AE of 0[(At)3]--that adjustable *.. given by
c lj

G.. e.. .. (4.5)

or

* e +a
GijGij ij
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is used. The are to be chosen so that
lj

g.. 1 + 0[At] (4.6)
l]

(preserving the order of the method) and so that exact conservation of energy occurs.

Solving

AE 0
C

for the e.. gives, for example, for (4.5), the equation (cf. [i] and [5])

2
/+ + (At) } ij At s

ij aijAt ij 4 - ij

t Aij
0+ (Vij + aij--) Fij + At (4.7)

For n particles, equation (4.7) yields a set of implicit, coupled equations in the

depend upon the values of theij’ since the bi3 and c,ij ij"
For small At the equations of (4.7) are strongly linear in the ... The

e
ij c,ij’ (throughonly nonlinear dependences on the occur through the bij and

the r’ ..). In both these cases, the terms involving the e.o occur with coefficients
c, 13 lJ

proportional to (At)3. (Compare equations (4.1), (4.2), (4.4), and (4.7).) In con-

trast the coefficients of the linear terms in ij’ namely

At
(vij + aijAt) ij -are of 0[At].

Because the equations of (4.7) are linear except for terms of 0[(At)3], they

may be easily solved via the iteration formula

&ij At+ (V.o+a. --) ..
2 At 13 lj z

-" Atij At ... + (.)
I] (vij aij At+bij 4

For small At the equations of (4.8) are solved via successive substitutions,

starting with

(4.8)

.. i (4.9)

Iteration to convergence of the e.. guarantees exact conservation of energy in the

method.

Higher-order formulae may be obtained directly in the same way as equation (4.7).

If the highest-order terms involve

13 dt
m

then these are replaced by

/(m)* +(m)
F.. e.. F..
13 1J
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where the S.o satisfy equation (4.6). The formulae for the v’ are substituted
lj C,l

in equation (4.3), the sum transformed to i <j, and the ij terms set individually

to zero. These resulting implicit equations in the e.. are then solved by standard

methods, with the first approximations given by equations (4.9).

For very high order methods, the extra algebra needed to obtain the e.. is con-

siderable, and substantially reduces the relative efficiency of the method. However,

it should be noted that conservation of energy guarantees stability in the usual sense

(bounded motion), which is always a desirable computational property.

5. NUMERICAL EXAMPLE.

As an illustration of the affect of the modification described in Section 4, the

modified and unmodified forms of the third-order Adams’ method are compared numerically

on a sample two-dimensional problem involving two particles.

Here n 2,

m
I

m
2

2 (5.1)

and the gravitational interaction

i
(5.2)12(r12) r12

is used. The initial conditions are chosen so that the center-of-mass of the system

is at rest with

r12(0) (,0) (5.3)

v12(0) (0,1.63). (5.4)

The value of the energy is then

E 0.6715500000... (5.5)

Because of the form of 12 in (5.2), the exact motion that occurs traces out

a closed ellipse with major-axis

2a 1.48909 23855 (5.6)

corresponding to upper and lower bounds on r12 of

r> 0.98909 23855

and r< 0.50000 00000.

The motion repeats itself with period equal to

4.0366 15087,

The implicit equations of the third-order methods were iterated to a relative con-
-8

ergence of I0 A constant step-size of

t /80

was used. In order to focus attention on the errors made in the methods, results were

obtained at times t which were multiples of the period where the exact solu-
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tion returns to the initial conditions. Measures of the errors at these points are the

error in the calculated value of E, the deviations from zero of dX/dt and , and

the deviation of r12 from 1/2.

Table I gives these quatities for several times t mr. It can be seen that the

unmodified Adams’ method makes an error in E as well as larger errors in dX/dt and

Y, and compares unfavorably with the modified method. Another simple measure of the

error for this problem is the number of steps over which a phase error of 180 is made:

i.e., the time at which r12 0.985 instead of 0.5. For the unmodified methods,

this was about 2800 steps (35T). For the modified methods, at 20000 steps (250T), a

phase error of less than 180 had been made.

Programs for the methods are given in the Appendix of [6].

m Method E r

0 Exacta 0.67155 0.50000

i U
b

0.67140 0.50221

Mc 0.67155 0.49997

2 U 0.67099 0.50873
M 0.67155 0.49997

3 U 0.67040 0.51924
M 0.67155 0.50001

5 U 0.66905 0.55019
M 0.67155 0.50017

i0 U 0.66679 0.65934
M 0.67155 0.50116

I00 U 0.66561 0.97998
M 0.67155 0.62554

dX

dt Y

0.00000 0.00000

0.20630 -0.08704

0.02164 -0.00462

0.40254 -0.17213
0.04328 -0.00923

0.58036 -0.25351
0.06492 -0.01385

0.86162 -0.39996
0.10818 -0.02311

1.15127 -0.64976
0.21592 -0.04639

0.82003 -0.97598
1.35684 -0.57888

At times t m

alnitial conditions

bunmodified third-order Adams’ method

CThird-order Adams’ method modified to give exact energy conservation.

TABLE I.
Comparison of Modified and Unmodified liethods

on a Simple Gravitation Problem
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